

Propeller Unit Heaters/Unitary

8.0 to 705.6 MBh

Two Versatile Models - Various Sizes Easy Installation

July 2009

Introduction

The square, compact design of the Model P and rectangular Model S allow easy handling and installation. In most cases, only one person is needed to carry a unit.

What's more, the Model P can be stored standing on end. This means several units can be loaded on a single skid for moving from one point to another.

Yet, the benefits of this compact design go beyond ease of installation. They continue with attractive styling. The Model S unit's simple, clean-line symmetry and the Model P unit's classic modern shape enhance any industrial facility.

Contents

Model Number Description 4
Features & Benefits
Application Consideration
Selection Procedure 11
Performance Data
Steam Performance Data17
Hot Water Performance Data21
Technical & Mounting Data
Motor Characteristics Data
Wiring Diagrams
Dimensional Data
Mechanical Specifications

Model Number Description

U	н	S	в	Α	1	8	1	т	Α	А	1	0	1	Α	0	Α	0	Α		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19		
Serv	ice M riptio	odel		-	0	28 33 38	80 86 84	280,000 336,000 384,000) BTU/) BTU/) BTU/	HR HR HR	12	10	B Heavy Duty TSTAT w/ subbase DIGIT 16 - THERMOSTAT COVER							
	Г 1,2,3	_ PR		ст ту	PF	50 60		500,000 600,000					DIGI	16 -	THER	MOS	IAI C	OVER		
	1,2,5					72		720,000					0	Non						
UHP													A	LOCK	king Th	ermos	stat Co	ver		
UHS						D	GIT	8–VO	LTAGE				DIGI	Г 17 -	Manu	al Sta	arter			
DIGI	r 4— D	EVEL	.OPM	ENT		1		115/1/60					0	Non	е					
SEQU	JENCE					3		230/1/6 Transfo		v mote	or with		A	Mar	ual St	arter				
В						4		208/3/6						F 10	OTEA	NЛ О. L				
						5		230/3/6					CON				101 0	/ATER		
	5, 6 , 1	7—CA	PACI	TY/CO	JIL	6 7		460/3/6			closed)									
TYPE			_		_	,		(P only)			siuseu)		0 1	Non Stra	e pon H	ot Wat	ter Co	ntrol		
Hot V	Vater (Serpe lodel		Туре	_							2		am Pre					
4.00	-			3		DI	GIT	9 - MO	TOR T	YPE			•	(Ope	en on r	ise in	pressu	ıre)		
A08 A18		BTU/H 0 BTU				E		Explosi					3		am Pre se on i					
A10		0 BTU				Т		Totally	Enclos	sed			4		Amp S					
A36		0 BTU				D	GIT	10- DE	SIGN	SEQU	JENCE			Swit	tch (Ca					
Ste	eam oi				der	A							5	only Opti	r) ions 1 a	and A				
	Туре	e Coil'	" Mod	lel S		~							6		ons 2					
018	18,00	0 BTU	/HR			D	GIT	11- TUI	BE MA	ATERI/	AL		7	Opti	ons 3	and 4				
024 036		0 BTU 0 BTU				Α		Copper						F 10	VERT			ED		
048		0 BTU				В		Steel (F	only)							ICAL		LN		
060	60,00	0 BTU	/HR			וח	GIT	12- FAI					0 A	Non	e ical Lo	uvor				
072		0 BTU					GII						B				user (I	only)		
084 096		0 BTU 0 BTU				0 1		Standar OSHA F			1		С	Lou	ver Co	ne Diff				
108	108,0	00 BTI	J/HR			2		Standa			d with			Coa	ting (P	only)				
120		00 BTI						Shelf N												
132 144		00 BTI 00 BTI				4		None (F	only)											
156		00 BTI				D	GIT	13 - SP	ECIAI		TING									
180		00 BTI						No Spe												
204 240		00 BTI 00 BTI				A		Phenoli			aked)									
240		00 BT				В		Ероху		•										
300	300,0	00 BT	U/HR			С		Epoxy F	Phenol	lic										
360		00 BTI				וס	GIT	14 - DI	SCON	NECT	SWIT	СН								
Ste	eam or	Hot	Water	Mod	el P			None			0.111									
042	1	0 BTU				0 1		Discon	nect sv	vitch										
064						-	_													
080 102		0 BTU 00 BTI						15 - TH	IERMO	OSTAT	rs (Lin	IE								
122	122,0	00 BTI	U/HR			V	JLT/	AGE)												
146	146,0		U/HR			0		None			,									
166 202		00 BTI 00 BTI				A		Light D			/ subba	ise								
202 252		00 BT						Line Vo	its 8 A	inps										
	,•																			

Features & Benefits

Features & Benefits: Overview

Trane propeller unit heaters feature the largest selection of standard sizes from any line in the industry. In fact, vertical Model P and horizontal Model S unit heaters provide enough 'off-the-shelf' selections to fit almost any application.

The versatile two-in-one Model P is available in 15 sizes with capacities from 41.3 MBh to 705.6 MBh. The companion standard and bypass Model S is available in 23 sizes with the capacities from 8.0 MBh up to 360 MBh. Both are designed for durability, attractiveness and compactness. These features combined with economical operation, give strategically sized Trane unit heaters an edge unmatched by any other manufacturer.

Two Units in One – The Versatile Model P

The Trane Model P can be quickly field converted from standard to low final temperature PL design simply by removing the unit's patented knockout air ports. This unique two-in-one design allows the stocking wholesaler to cut inventories in half and still meet most customer application requirements.

Patented Trane louver cone diffusers allow directional flexibility of heated air.

The Space Saving Model S

The Side Connection type Model S unit features functional styling in a space-saving design. This hot water unit heater is available in capacities from 8.0 to 35.9 MBh and is ideal for applications where clearance is limited.

The Heavy-Duty Model S

The versatile Header-Type unit can be used with either steam or hot water systems and is available in capacities from 18.0 to 360.0 MBh. Rugged cast brass headers and mechanically bonded fins provide reliable heating to suit a wide variety of solutions.

Note: Vertical louvers are available for all Model S units to put heat where it's needed.

Horizontal Unit Heaters Construction and Features

Motors

115 volt, single speed motors are standard. Most models can be supplied with single phase, explosion proof motors. For standard motors in 230 volt or threephase configuration, and threephase explosion-proof motors, see the motor data-portion of the Performance Data chapter for availability.

Fan Guards

All models with standard (non explosion-proof) single phase 115 or 230 volt motors utilize a wire fan guard as a motor mount. (Optional OSHA type guards are also available.) All models with threephase or explosion-proof motors are shelf-mounted. Standard type fan guards can be added as an optional accessory.

Horizontal and Vertical Louvers

Horizontal louvers are standard on all models. Vertical louvers are an optional accessory on all models. Vertical louvers are installed on built to order units or shipped loose for field installation.

Thermostats

Two, line voltage wall thermostats are in stock for immediate shipment. All models operate in a 45-85 degree F range (7-28 degree C). Standard duty model with "fan control" and a heavy duty model with "auto-offfan" switching are available. Other models available on request. Plastic tamperproof one size fits all thermostat guards are also available.

Strap-on Water Control

A SPDT strap-on type hot water control with 100° to 240°F (38 to 116°C) rated at 10 amps at 120V is also available. Control can be used for direct or reverse acting applications as a high or low limit.

Steam Pressure Control

SPST switch opens on a rise in pressure. Control is automatically reset, has a range of 0 to 15 PSIG (0 to 103 KPa) and has an adjustable differential. **Other actions, ranges, circuits and manual reset models are available on request.**

Manual Starters

Single and three-phase models are available. Standard models are single-speed, toggle-operated, NEMA Type 1 and are surfacemounted.

Wall Mounted Speed Controllers

Units up to S-108 and P-104 with standard motors (115V) can be operated at reduced speeds by addition of optional speed controller. Controller is 5 amps, pre-set at factory for maximum and minimum speeds, with intermediate speeds infinitely controllable. All 1/3, 1/2 H.P. and 230V motors operate only at rated speed and CFM – See tables.

Vertical Unit Heaters Construction and Features

Vertical projection unit heaters provide heat where it is required in commercial and industrial applications. Mounted near the ceiling, this unit provides air circulation and reduces stratification, without occupying otherwise usable building space. Units can be provided with an optional diffuser for patterned discharge, or, without a diffuser for higher velocity 'spot' heating near doorways and other highloss areas.

Vertical units are available in fifteen sizes for steam or hot water heating. Steam capacities range from 140 to 2,580 E.D.R. (26.0 to 705 MBH) (2 PSI w/60° E.A.T.). Hot water capacities range from 18.9 to 519.4 MBH (200° E.W.T./20° drop w/60° E.A.T.).

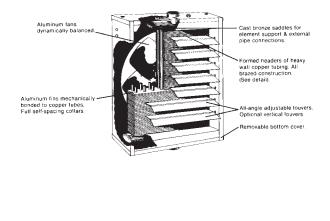
Construction

The unit casing is formed by two square steel plates. The bottom plate forms an orifice for air delivery. Air ports are stamped in the top plate of standard units for easy conversion of low output units.

Fan

Aluminum blade fans are quiet, factory balanced and sturdy for standard or sparkproof applications.

Heating Element


Hot water-steam coils are rectangular 3 or 4-sided, one-pass, multiple circuit, with aluminum fins mechanically bonded to the tubes. Standard coils are seamless copper tubing. Coils tested at 375 psi under water. Supply and return connections are steel pipe. Standard coils have .025 copper tubing suitable for use on steam pressure to 75 psi or hot water up to 225 psi or 325°F.

Motors

Standard motors are 115/60/1, totally enclosed, with thermal overload protection for all units through size P-280. Standard motors for sizes 42, 64 and 80 are shaded pole, sleeve bearing. The P-102 motor is permanent split capacitor type with sleeve bearings. Motor for unit sizes 122 through 280 are permanent split capacitor types with permanently lubricated ball bearings. Motors used on unit sizes 336 through 720 are 230/ 460/60/3, totally enclosed, with permanently lubricated ball bearings. Unit sizes smaller than 336 are also available with 230/460/60/3 motors.

All motors fractional H.P. and integral H.P., have Class "B" insulation. The 115/60/1 motors used as standard on unit sizes 42 through 102 can be operated at multiple speeds with the addition of a solid-state control.

All units are available with 1140 rpm explosion-proof motors.

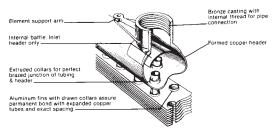


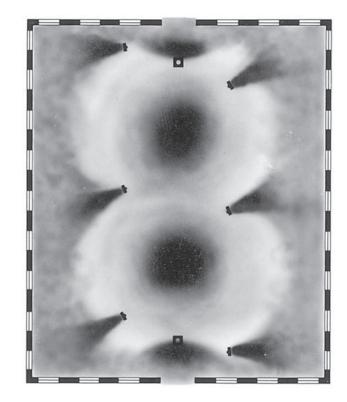
Figure 1.

Application Consideration

General Rules

In locating or spotting Trane Propeller Unit Heaters – either the Model S Horizontal or Model P Projection Unit Heater – the following general rules should be considered.

- Spot units at points of greatest heat loss. Blanket outside doorways effectively and provide ample coverage for exposed window areas.
- Units, especially in the case of the Model S Horizontal Unit Heater, should be arranged to blow toward or along exposed walls, preferably striking the wall at a slight angle so that the heated air exerts a wiping effect along the wall. Balance of units required to supply Btu requirements should be spaced strategically in balance of the area.
- Unit heaters should be arranged 3. to blow into open spaces such as aisles and not directly at any worker. An exception to this rule involves the use of the Model P Unit Heater equipped with the Louver Cone Diffuser. This combination can be used effectively over closely spaced bins or machines without regard for open space. But not even the Model P Unit Heater with Louver Cone Diffuser should be in such close proximity to the workers to cause discomfort.
- The Trane solid-state speed control will provide maximum capacity flexibility and quieter operation. Note that this speed controller is available only on selected models.
- Mounting heights and distance of throw recommendations as given elsewhere in this catalog should be carefully observed.
- In the case of Model P Units, they should be spotted so that they will most effectively prevent stratification of excessively warm air at the ceiling. By carefully observing this rule, this type of unit may be


used between seasons to tap waste heat at the ceiling and drive it down to occupied zones, thereby eliminating the need for added heat on the system.

 Do not spot units close to any obstruction that will impede the full and natural air delivery of the unit.

Typical Factory

In the typical industrial building, where ceilings are high, Model P Unit Heaters may be used without diffusers.

In plants where the ceilings are exceptionally high, such as in crane bays as illustrated in Model P Units with Louver Cone Diffusers can

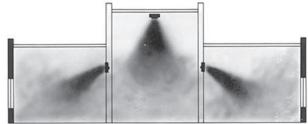
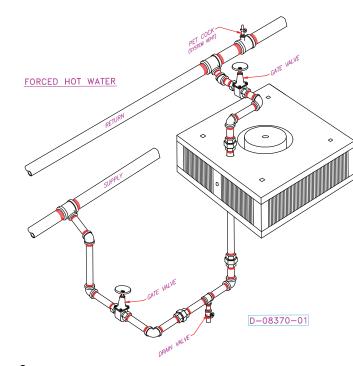


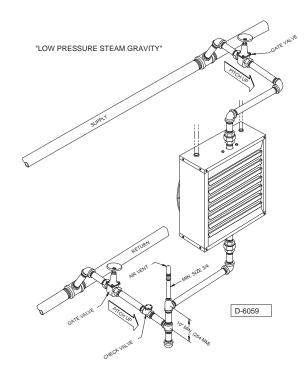
Figure 2. The floor plan and elevation of a typical industrial building showing how a Trane Unit Heater System will heat various parts. Where ceilings are high in the main manufacturing section, large Projection Heaters without diffusers are used. Where ceilings are exceptionally high, as in crane bays, Model P Units with Louver Cone Diffusers provide up to 45% greater throw to top the "ceiling heat reservoir." Model P Units with half closed Louver Cones blanket doorways. Model S Units with Louver Fins blanket windows.

increase the downward projection of heat by as much as 45% over units without diffusers.

Model P Units with the Louver Cone Diffusers can also be used to blanket doorways effectively, as shown in Figure 2 by simply adjusting half of the louvers vertically, and half closed.


Model S horizontal-type units are ideal for mounting in plant areas where ceilings are low. In fact, due to the extremely small height of the Model S, and because all piping connections are made at the back of the unit, the Model S provides a greater saving in headroom than other horizontal unit heater makes.

As illustrated in Figure 2, the Model S Unit Heaters may be mounted conveniently from the ceiling, or from building structural supports and beams. With Louver Fin Diffusers, they are ideal for blanketing windows, and Model S "Bypass" Unit Heaters, provide further flexibility of application where greater throw and more effective distribution of air in the living zone is required.


Horizontal and Vertical Unit Heater Piping and Instalation

The illustrations in this portion of the catalog depict five different typical piping configurations. Proper selection should be based on the operational characteristics of the source supply. For selection and sizing of piping, traps, filters and other piping specialities, ASHRAE guides and specialty manufacturer's literature should be consulted. We assume that the type and total design of systems has been selected or approved by a qualified engineer. The installation and service manual should be consulted for further information on installation, operation, drainage and system cleaning.

Piping and installation is typical for both horizontal and vertical unit heaters – except side connections.

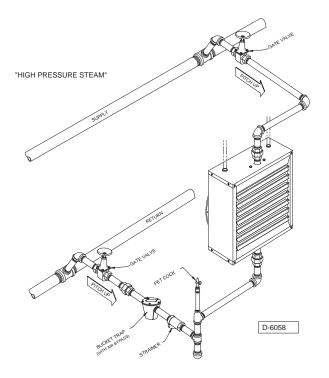
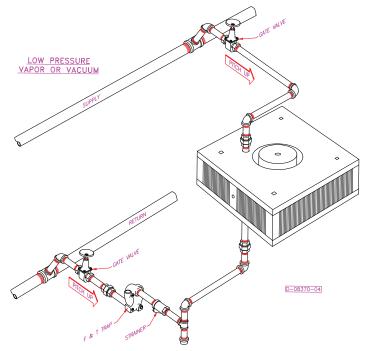



Figure 5.

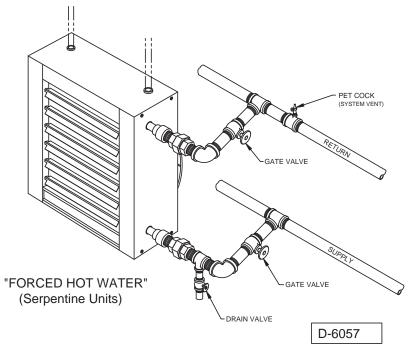


Figure 7.

Selection Procedure

Trane Propeller Unit Heaters

Both Model S and Model P Propeller Unit Heaters are ideally suited to such a wide variety of installations that there can be no hard and fast rules regulating their selection. In determining the type and size of the units for any building, the following points are generally considered:

BTU Requirements

While the choice of units depends upon several important factors, the total Btu requirement is usually determined first. In calculating heat loss, methods as recommended by the ASHRAE Guide may be used, or any other procedure which is known to be acceptable.

Type of Building

Once the total Btu requirement is known, the type of building together with its architecture and its purpose is considered.

In the many cases where a combination of space characteristics is found, a combination of Model S and Model P Unit Heaters may be used to create the most satisfactory heating system.

The Model P Unit Heater has the natural ability to tap the reservoir of heated air which collects at the ceiling level and return it to active service in the floor zone.

The Model P can be used on either high or low ceilings. From high mounting positions the Model P will allow ample clearance for moving objects and can project heat down into occupied areas regardless of obstacles which would restrict the flow of air from horizontal units.

From low mounting positions the Model P, with proper diffusion, can be used without disturbing nearby occupants with direct blasts of high velocity heated air, or requiring return lines so low as to leave insufficient head room.

The superior horizontal action of the Model S, on the other hand, is ideal for creating a wiping effect of warm air along exposed walls which neutralizes drafts at their source, beaming heat down narrow aisles and production lines, and blanketing large windows, doors and other points of high heat loss.

Spacing of Units

It is the usual practice to divide the building into areas with like exposures, or in relation to heat load distribution desired.

In general, Model S Unit Heaters may be selected for buildings where direct horizontal air currents are desired and where there are no obstacles to interrupt the flow of air from the heaters.

Model P Unit Heaters are successfully used where high or low mounting heights are required and should ordinarily be specified with diffusers, depending upon the mounting height and application.

Mounting Heights

The maximum effective mounting height is determined by the outlet temperature of the air, the outlet velocity, the cfm for which the heater is designed, and if a diffuser is used – the setting of its blades.

The higher the outlet temperature of the air, the more difficult it is to force it down into the living zone.

The cfm also affects the mounting height as a large volume of air will travel farther than a small volume under the same initial conditions of temperature and velocity.

In the preliminary planning stages, it is well to remember that the lowest possible mounting height is desirable in order to get the most heat down to the floor line and to allow the greatest possible diffusion adjustment to provide tailor-made distribution for each area.

In providing for the use of diffusers please remember, adjustment of a Louver Cone Diffuser to deflect the air toward the horizontal immediately lowers the mounting height limit. Adjustment for lateral deflection with the Louver Fin Diffuser shortens the distance of throw.

Diffusion

The use of Trane Louver Cone or Louver Fin Diffusers influences the selection of units in two principal ways: First: It is seldom necessary to install oversized heaters to extend the maximum effective mounting height of the Model P or the distance of throw of the Model S. Conversely, Trane Diffusers enable extremely low mounting since the adjustable blades direct heat where it is wanted without creating uncomfortable hot spots near the units.

Second: After the original selection has been made, units may be located with confidence because adjustments in heat distribution are possible to accommodate future changes or unforeseen draft conditions.

Air Changes

Better diffusion and more even temperatures can be maintained in a heated space when the rate of air recirculation through the heaters is relatively high. For buildings where large numbers of people are engaged, it is desirable to provide for a greater number of air changes than for sparsely occupied areas. A greater number of small units are used where wide diffusion and even temperatures are necessary. A few centrally located units of large capacity would be used where there are few occupants.

Comfort Conditions and Economy

Air circulation, diffusion and spacing of units are closely related to economy and comfort in the selection of unit heaters. The more units used to provide the required number of Btu's, the more comfortable will be the conditions for personnel. On the other hand, a few large units can be selected to provide plenty of heat at low first cost, but may be slower in response and thorough distribution of heat. Here again, adjustable diffusion equipment can go a long way toward saving the buyer first cost expense while still providing completely satisfactory comfort conditions.

Formula

The following formula is used to arrive at final air temperature volume when 70 F (Standard Air Basis) is known or vice versa:

Cfm at final temp. =

 $Cfm at 70F \times \frac{460 + Final temp}{460 + 70}$

Cfm at 70 F =

Cfm final air $\times \frac{460 + 70}{460 + \text{Final temp}}$

Determining Special Steam Capacities

Where capacity of the unit under standard conditions is known – 2 lbs. steam, 60 F entering air – and it is desired to know the capacity of this same unit under different steam and air conditions, follow instructions given in Example 1.

Where a set of conditions is given – Btu, temperature rise, final temperature, cfm, steam pressure available, etc. Refer to Example 2.

Useful Data

Btu/240=Sq. Ft. of radiation (EDR)

Sq. ft. of radiation/4=Lbs. of condensate per hour

Btu/Latent heat=Lbs. of water per hour

Cfm x Temp. Rise x 1.085 = Btu.

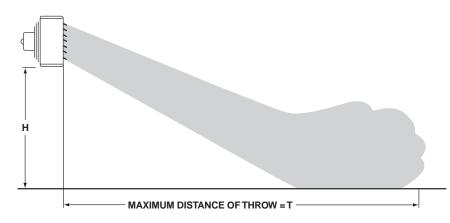
Specific heat of air (70 F) = .241

Specific weight of one cubic foot of air (70 F) = .075.

 $Cfm \times 60 = cfh.$

Therefore, .241 x .075 x 60 = 1.085

Example 1


Given: Model 60S Horizontal Propeller Unit Heater with a rated capacity of 60,000 Btu at 2 lbs. steam with 60 F entering air.

Desired: Capacity of this unit using 15 lbs. steam and 40 F entering air.

Under 40 F and across from 15 lbs. in Table 2, we find the factor 1.34. $60,000 \times 1.34 = 80,400$ Btu per hour.

Table 1.Max. Mounting Heights and Distance of throw for Model S Units (based on2 lbs Steam Pressure 60F entering Air)

Unit	Outlet Velocity	CFM	Final Temp (F)	Mounting Height	Max Throw
A08*	250	245	91	8	20
A18*	500	500	94	8	25
A25*	590	580	102	9	29
A36*	550	850	99	9	29
018	395	395	102	8	20
024	450	450	109	8	24
036	550	550	119	9	28
048	550	750	119	9	30
060	650	900	121	10	30
072	800	1100	120	10	29
084	900	1400	115	10	30
096	930	1400	123	11	38
108	1000	1800	115	11	40
120	900	1900	118	12	40
132	950	2000	121	13	54
144	1000	2200	120	13	55
156	1150	2600	115	13	55
180	800	2200	135	13	53
204	1000	2900	124	13	55
240	900	3500	123	14	57
280	980	4200	121	14	57
300	700	5000	117	15	58
360	1000	5500	120	15	60

Determining Amount of Condensate

To determine the amount of condensate, divide the capacity in BTU by the latent heat of steam:

80,400/945=85 lbs per hour.

945=Latent Heat of Steam at 15 psi. (See Table 12)

Determining Final Temperature

Final temperature of air leaving Trane Unit Heaters may be determined as follows:

Inlet Air Temp. + Btu rating/Cfm X 1.085=Final Temp

Inlet Air Temp. 40F + 80,400/900 (from Table 7) X 1.085=Final Temp

Example 2:

Problem: A Trane Model S Horizontal Unit Heater is desired to deliver 200,000 Btu per hour in a garage where ventilation is required. Entering air temperature is 40 F. Steam at 30 lbs. pressure is available. Temperature to be maintained is 70 F.

Solution: Under 40 F and across from 30 lbs. in Table 2, find the factor 1.51.

Equivalent capacity of required unit at 2 lbs. steam 60 F entering air is

Required Btu per hour/F=200,000/ 1.51=132,500 Btu

From Table 7, select a Number 132S Unit Heater with a capacity of 132,000 Btu per hour with standard coil, and at 2 lbs. steam and 60 F entering air.

The capacity of this unit at 30 lbs. steam and 40 F entering air is:

1.51 x 132,000 = 199,300 Btu per hour.

Surplus Capacity

While the ventilation load is being handled, any air entering the space over the desired room temperature should be considered in the heating calculations. This surplus capacity can be found by multiplying the difference between the final temperature leaving the heater and the room temperature to be maintained by 1.085 and that by the cfm. That amount of heat can be used to offset heat losses.

Model S

Maximum mounting heights for Model S Unit Heaters are given in Table 1. When equipped with standard vertical Louvers, direction of air flow can be adjusted both horizontally and vertically.

Mounting the unit at or below maximum mounting height will insure that heated air reaches the living zone.

Model P

Maximum mounting heights for Model P Unit Heaters are given in Table 4. These distances are figured from the floor line to the bottom plate of the unit heater.

Where ceilings are unusually low, a nearly horizontal flow of air can be

obtained by equipping these units with Louver Cone Diffusers. The individually adjustable blades of the Louver Cone permit an infinite variety of adjustments to meet any on-the-job problems. By setting the blades vertically to straighten the airstream, as much as 45% increase in throw can be obtained.

Hot Water Selection Example

Selection Procedure

Select the proper size of unit heater for whatever application desired, as illustrated by the following examples.

Select a Model S horizontal unit heater to deliver 95 MBH with 220°F entering water temperature (EWT), 70°F entering air temperature (EAT) and a 30°F water temperature drop (WTD).

- 1. Determine GPM: GPM=Btu/hr/ (485) WTD=95000/485x30=6.53
- 2. Refer to Table 17 to select the conversion factor at 220° EWT and 70° EAT. Factor is 1.06.
- Determine equivalent MBH at standard conditions (200° EWT, 60° EAT). Equiv. MBH=MBH/ Factor=95/1.06=89.6.

4. Select unit size from Table 13. Select the unit which will provide 89.6 MBH In this example, the selection indicates a Model S 132 unit heater.

To determine the actual capacity of this Model S 132 at operating conditions (220° EWT and 70° EAT) proceed as follows:

- 1. Determine the MBH at 6.53 GPM by applying factor from Table 20. Multiply this MBH by the water flow factor (95.8 MBH X .95=91.0 MBH)
- 2. Multiply this MBH by the conversion factor 91.0 X 1.06 = 96,500.
- 3. The GPM remains constant = 6.53 GPM.
- 4. Calculate the water temperature drop WTD=Btu/hr/GPM x 485 = 96,500/(6.53)(485) = 30.5

Table 2.Factors for Determining Steam Capacity of Model S Horizontal UnitHeaters at Various Pressures and Temperatures (Table based on 2 psig and 60Fentering Air)

Steam Pres	ssure PSIG		Т	empera	ature of	f Enteri	ng Air ((F)	
		30	40	50	60	70	80	90	100
	0	1.19	1.11	1.03	0.96	0.88	0.81	0.74	0.67
	2	1.24	1.16	1.08	1.00	0.93	0.85	0.78	0.71
	5	1.29	1.21	1.13	1.05	0.97	0.90	0.83	0.76
	10	1.38	1.29	1.21	1.13	1.06	0.98	0.91	0.84
	15	1.44	1.34	1.28	1.19	1.12	1.04	0.97	0.89
Blow	20	1.50	1.42	1.33	1.25	1.17	1.10	1.02	0.95
Blow Through	30	1.60	1.51	1.43	1.35	1.27	1.19	1.12	1.04
Туре	40	1.68	1.60	1.51	1.43	1.35	1.27	1.19	1.12
	50	1.70	1.60	1.58	1.50	1.42	1.34	1.26	1.19
	60	1.81	1.73	1.64	1.56	1.47	1.39	1.31	1.24
	70	1.87	1.78	1.70	1.61	1.53	1.45	1.37	1.29
	75	1.90	1.81	1.72	1.64	1.55	1.47	1.39	1.32
	100	2.02	1.93	1.84	1.75	1.66	1.58	1.50	1.42
	125	2.11	2.02	1.93	1.84	1.76	1.68	1.59	1.51
	150	2.20	2.11	2.02	1.93	1.84	1.76	1.67	1.59

To determine the Btu per hour capacity of a Model S Horizontal Unit Heater at any steam pressure and entering air temperature multiply rated capacity at 2 psig steam 60 F entering air (Table 7) by factor from above table.

Steam Pressure	PSIG			Temperature of Entering Air (F)									
		-10	0	10	20	30	40	50	60	70	80	90	100
	0	1.49	1.41	1.33	1.25	1.18	1.11	1.03	0.96	0.90	0.83	0.76	0.69
	2	1.52	1.45	1.37	1.29	1.22	1.15	1.07	1.00	0.93	0.86	0.80	0.73
	5	1.58	1.50	1.42	1.34	1.27	1.20	1.12	1.05	0.98	0.91	0.85	0.78
	10	1.64	1.57	1.49	1.41	1.34	1.27	1.19	1.12	1.05	0.98	0.91	0.85
	15	1.70	1.62	1.55	1.47	1.40	1.32	1.25	1.18	1.11	1.04	0.97	0.90
Draw-Through Unit	20	1.75	1.67	1.60	1.52	1.45	1.37	1.30	1.23	1.16	1.09	1.02	0.96
	30	1.83	1.75	1.68	1.61	1.53	1.46	1.39	1.32	1.25	1.18	1.11	1.04
	40	1.90	1.82	1.75	1.68	1.61	1.53	1.46	1.39	1.32	1.25	1.18	1.11
	50	1.96	1.87	1.81	1.74	1.67	1.59	1.52	1.45	1.38	1.31	1.24	1.17
	60	2.02	1.94	1.87	1.79	1.72	1.64	1.57	1.50	1.43	1.36	1.29	1.22
	70	2.07	1.99	1.92	1.84	1.76	1.69	1.62	1.55	1.47	1.40	1.33	1.27

Table 3. Factors For Determining Steam Capacity Of Model P Projection Unit Heaters At Various Pressures And Temperatures (Table based on 2 PSIG and 60 F Entering Air)

Note:

75

2.10

2.02

1.94

To determine the Btu per hour capacity of a Model P projection unit heater at any steam pressure and entering air temperature, multiply rated capacity at 2 psig steam 60 F entering air (Table 8) by factor from Table 3. Factors in italics: Units should not be operated when entering air is below freezing at steam pressures below 10 psig.

1.79

1.71

1.64

1.57

1.49

1.42

1.36

1.29

Table 4. Maximum Mounting Heights in Feet for Model P Unit Heaters with and without Louver Cone Diffuser

1.86

Unit		5	Steam Pressure (PS	51)	
Size	2	5	10	50	75
42-P	10.5	10.0	10.0	9.0	8.0
	12.5	12.0	12.0	11.0	10.0
42-P LS*	8.0	8.0	8.0	8.0	8.0
	9.0	8.5	8.5	8.0	8.0
42-P-L**	12.5	12.0	12.0	10.5	9.5
	14.5	14.0	13.5	12.0	11.5
42-P-L LS	9.0	8.5	8.5	8.0	8.0
	10.5	10.0	10.0	9.0	8.5
64-P	12.0	11.5	11.5	10.0	9.5
	14.5	14.0	14.0	12.0	11.5
64-P LS	9.5	9.0	9.0	8.0	8.0
	11.5	11.0	11.0	9.5	9.0
64-P-L	15.0	14.5	14.5	12.5	12.0
	19.0	18.5	18.5	16.5	16.0
64-P-L LS	11.5	11.0	11.0	9.5	8.0
	14.0	13.5	13.5	12.0	11.5
80-P	15.0	14.5	14.0	12.0	11.5
	18.5	18.0	17.5	15.5	13.5
80-P LS	11.0	10.5	10.5	9.0	8.5
	13.5	13.0	13.0	11.5	11.0
80-P-L	18.0	17.5	17.5	15.0	14.0
	22.0	21.0	21.0	19.0	18.0
80-P-L LS	13.0	12.5	12.0	11.0	10.5
	17.0	16.5	16.0	14.0	13.5
102-P	14.0	13.5	13.0	11.5	11.0
	17.0	16.5	16.0	14.0	13.5
102-P LS	11.0	10.5	10.5	9.5	9.0
	13.5	13.0	13.0	12.0	11.5
102-P-L	17.5	17.0	16.5	15.0	14.5
	21.5	21.0	20.5	18.5	17.5

			with and without		
Unit			Steam Pressure (PS	-	
Size	2	5	10	50	75
102-P-L LS	15.0	14.5	14.5	13.0	12.5
	18.5	18.0	18.0	16.0	15.0
122-P	16.0	15.5	15.5	14.0	13.5
	19.5	19.0	18.5	17.0	16.0
122-P-L	21.0	20.5	20.0	17.5	17.0
	26.0	25.5	25.0	22.5	21.5
146-P	15.5	15.0	14.5	13.0	12.0
	19.0	18.5	18.0	16.0	15.5
146-P-L	18.0	17.5	17.5	15.0	14.0
	22.5	22.0	21.5	18.5	18.0
166-P	18.0	17.5	17.0	14.5	14.0
	22.5	22.0	21.5	19.0	18.0
166-P-L	22.0	21.5	21.0	18.5	17.5
	27.5	27.0	26.5	23.5	22.5
202-P	22.0	21.5	21.0	18.5	17.5
	27.5	27.0	26.5	24.0	23.0
202-P-L	25.5	25.0	24.5	22.0	21.0
	31.5	31.0	30.5	27.0	26.0
252-P	20.0	19.5	19.0	17.0	16.0
	25.0	24.0	23.5	20.5	19.5
252-P-L	24.0	23.5	23.0	20.0	19.0
	29.5	28.5	28.0	24.5	23.5
280-P	21.0	20.5	20.0	17.5	17.0
	26.0	25.5	25.0	22.0	21.0
280-P-L	25.5	25.0	24.5	21.0	20.0
	32.0	31.0	30.0	26.0	25.0
336-P	24.0	23.0	22.0	20.0	19.0
	30.0	29.0	28.0	25.0	24.0
336-P-L	29.0	28.5	28.0	25.0	24.0
	36.0	35.0	34.0	30.0	29.0
384-P	28.5	28.0	27.5	24.0	23.0
	35.5	35.0	34.0	30.0	29.0
384-P-L	32.5	31.5	30.5	27.5	26.5
	41.0	40.0	39.0	35.0	33.5
500-P	29.5	29.0	28.5	25.0	24.0
	36.5	36.0	35.5	32.0	30.5
500-P-L	35.0	34.0	33.0	29.0	28.0
	43.5	42.5	41.5	35.0	34.0
600-P	34.0	33.0	32.0	28.0	27.0
	42.5	41.5	40.5	36.0	34.5
600-P-L	37.0	36.0	35.0	31.0	30.0
	46.5	45.5	44.5	39.0	37.0
720-P	38.5	37.5	36.5	32.0	30.5
	48.0	47.0	46.0	40.0	39.0
720-P-L	42.5	41.5	40.5	35.0	33.5
	53.0	52.0	51.0	44.0	42.0

Notes: *LS = Low speed. **PL = Model P low final temperature model with all air ports open. Figures in bold face show maximum mounting height with louver cone diffusers set vertically. To meet CSA and OSHA requirements, Model P Unit Heaters mounted lower than 8.0 ft. from the floor must be equipped with an OSHA fan guard. Table 4 based on 60 F entering air temperature. In providing for the use of diffusers, it must be remembered that adjustment of a LCD to deflect air toward horizontal immediately lowers the mounting height limit.

Table 5. M	laximum	Spread	l in Fee	et											
Unit Size: P	42	64	80	102	122	146	166	202	252	280	336	384	500	600	720
Spread ft	15	17	20	24	26	27	28	32	35	37	45	50	54	57	60

Additional Selection Data

Motor and Fan Speeds

Motor and fan speeds are selected to provide efficient performance. The solid-state speed control will provide an infinite number of speeds between the highest and the lowest cataloged fan speeds. The speed control is not calibrated in specific fan speeds. For use on units with 115 volt/60 cycle/1 phase, 1/8 hp and smaller standard motors only.

Standard and Bypass Units

Standard models meet most requirements and are most economical. Bypass units meet conditions as mentioned above, and are also used where low final temperature is specified.

25 and 50 Cycle Unit Heat Capacities

Table 6 shows the Btu, cfm, and the hp required on unit heaters when operated on 25 or 50 cycle circuits. The multipliers in Table 6 may be applied to standard 60 cycle unit capacities to determine the capacities of the same unit when operating on 25 or 50 cycle current. These multipliers may be used on units cataloged at 1050 to 1150 RPM.

For the smaller Trane Unit Heaters cataloged at 1550 RPM, the capacity data in the catalog may be applied to either 25 or 50 cycle service.

РМ	Applied To 60-Cycle 1	100 RPM Ratings	
50 CY	BTU	CFM	НР
1425	1.17	1.25	1.95
950	.87	.833	.572
710	.7	.623	.242
	50 CY 1425 950	50 CY BTU 1425 1.17 950 .87	50 CY BTU CFM 1425 1.17 1.25 950 .87 .833

Performance Data

Steam Performance Data

Horizontal Unit Heaters

Performance based on 2# steam pressure at heater with air entering @ 60° F (max working pressure 150 PSI,366° F)

Table 7.								_	
Model No.	Total MBh	Cond. lbs./hr.	E.D.R. Sq. Ft.	LAT °F	Motor HP	Motor RPM	Nominal CFM	Outlet Velocity FPM	Sound Rating
	18,000	18.0	75	102		1550	395	395	П
S-18	16,200	16.2	68	105	16 Watts	1350	330	330	I
	24,000	24.5	100	109		1550	450	450	11
S-24	21,600	22.0	90	112	16 Watts	1350	380	380	Ι
	36,000	37.0	150	119		1550	550	550	11
S-36	32,400	33.0	135	120	25 Watts	1350	480	480	I
	48,000	49.0	200	119		1000	750	550	11
S-48	43,200	44.0	180	123	1/20	900	630	460	I
_	60,000	61.0	250	121		1000	900	650	11
S-60	54,000	55.0	225	131	1/20	900	700	510	I
	72,000	73.0	300	120		1000	1100	800	П
S-72	64,800	66.0	270	123	1/20	900	950	700	I
S-84 -	84,000	85.0	350	115		1000	1400	900	111
	75,600	76.0	315	123	1/12	900	1100	750	П
	96,000	97.0	400	123		1000	1400	930	111
S-96	86,400	88.0	360	132	1/12	900	1100	800	П
	108,000	110.0	450	115		1000	1800	1000	111
S-108	97,200	98.0	405	120	1/12	900	1500	900	П
S-120	120,000	122.0	500	118	1/3	1140	1900	900	111
S-132	132,000	134.0	550	121	1/3	1140	2000	950	IV
S-144	144,000	146.0	600	120	1/3	1140	2200	1000	IV
S-156	156,000	160.0	650	115	1/3	1140	2600	1150	IV
S-180	180,000	190.0	770	135	1/3	1140	2200	800	111
S-204	204,000	208.0	850	124	1/3	1140	2900	1000	IV
S-240	240,000	244.0	1000	123	1/3	1140	3500	900	IV
S-280	280,000	280.0	1100	121	1/2	1100	4200	980	IV
S-300	300,000	310.0	1250	117	1/2	1100	5000	700	IV
S-360	360,000	366.0	1500	120	1/2	1100	5500	1000	IV

* For the lower output, an optional Speed Controller must be ordered. For Sound Ratings, see the Technical and Mounting Data-portion of this chapter.

Vertical Unit Heaters

Performance based on 2# steam pressure at heater with air entering @ 60°F.

Table 8.	Standa	rd Units							
Model No.	Total MBh	Cond. lbs./hr.	E.D.R. Sq. ft.	LAT °F	Motor HP	Motor RPM	Nominal CFM	Outlet Velocity FPM	Sound Rating
	41,300	43	172	124		1550	595	877	
P-42	33,600	55	140	131	1/40	1150	436	658	
_	65,500	68	273	121		1550	989	1005	
P-64	52,800	55	220	129	1/20	1150	706	727	II
	80,600	83	336	122		1550	1200	1220	
P-80	65,100	67	271	130	1/20	1150	858	894	II
_	101,800	106	424	123		1070	1490	980	
P-102	87,900	91	366	129	1/8	850	1180	783	II
P-122	124,400	129	518	124	1/6	1100	1790	1170	111
P-146	152,000	157	633	123	1/6	1100	2220	1045	111
P-166	173,000	179	720	121	1/6	1100	2620	1230	IV
P-202	210,200	208	838	118	1/4	1100	3200	1495	111
P-252	249,800	260	1040	115	1/4	1100	4180	1205	IV
P-280	283,800	294	1180	119	1/2	1100	4430	1275	IV
P-336	333,400	345	1390	119	3/4	1140	5210	1500	IV
P-384	386,000	400	1610	118	3/4	1140	6140	1770	IV
P-500	496,000	514	2070	117	1-1/2	1160	8020	1640	IV
P-600	585,000	605	2440	117	1-1/2	1160	9450	1930	IV
P-720	705,000	729	2940	119	3	1165	11,000	2250	IV

Notes: Constant speed units are rated at capacities shown in regular type; capacities shown in italic faced type apply only to units with multi-speed motors. ** To determine BTU per hour capacities at various steam pressures and entering air temperatures, use conversion factors from Table 11. Final temper-atures at new conditions can be calculated by applying basic formula.

Table 9.	Low Outp	Low Output Units: Standard Model Units w/All Air Ports Open												
Model No.	Total MBh	Cond. lbs./hr.	E.D.R. Sq. ft.	LAT °F.	Motor HP	Motor RPM	Nominal CFM	Outlet Velocity FPM	Sound Rating					
	34.8	36	145	108		1550	668	950						
P-42L	26.0	27	108	111	1/40	1150	470	672	I					
	57.2	59	238	104		1550	1200	1190						
P-64L	45.8	48	191	109	1/20	1150	862	858	I					
	68.0	71	283	106		1550	1360	1350						
P-80L	55.0	57	229	111	1/20	1150	995	992	II					
	85.4	89	356	108		1070	1640	1050						
P-102L	71.2	74	296	111	1/8	850	1290	827	II					
P-122L	111.0	115	462	107	1/6	1100	2180	1390	111					
P-146L	125.0	130	524	109	1/6	1100	2360	1080	111					
P-166L	149.0	154	620	107	1/6	1100	2920	1340	IV					
P-202L	176.8	183	736	108	1/4	1100	3390	1560	111					
P-252L	214.9	224	895	104	1/4	1100	4500	1270	IV					
P-280L	251.8	260	1050	106	1/2	1100	5040	1420	IV					
P-336L	291.0	302	1210	107	3/4	1140	5700	1610	IV					
P-384L	344.0	356	1430	108	3/4	1140	6600	1870	IV					
P-500L	428.0	446	1785	102	1-1/2	1160	9380	1860	IV					
P-600L	515.0	533	2140	106	1-1/2	1160	10,300	2060	IV					
P-720L	620.0	642	2580	108	3	1165	11,900	2380	IV					

NOTES:

Constant speed units are rated at capacities shown in regular type; capacities shown in italic faced type apply only to units with multi-speed motors. **To determine BTU per hour capacities at various steam pressures and entering air temperatures, use conversion factors from Table 11. Final temperatures at new conditions can be calculated by applying basic formula.

		EXAMPLE: UNIT SIZE P-42 Steam Pressure 10 PSI Entering Air Temp 40°F
I. CAPACITY A. For 2 lbs. steam, 60° entering air	Read output directly from Table 8: 41,300 BTU/HR.	
B. For higher steam pressures and/or E.A.T.'s above or below 60°F	Multiply output from Table 8 by appropriate correction factor from Table 11.	41,300 x 1.27 = 52,451 BTU/HR.
II. FINAL AIR TEMPERATURE A. For 2 lbs. steam, 60° entering air	Read temperature directly from Table 8: 124°F.	
B. For capacities calculated in I.B. (above)	Output from I.B./1.085 x CFM from Table 8 + E.A.T. = Final Air Temp	52,451/1.085 x 595 + 40 = 121.0°F
III. FINAL AIR VOLUME A. For 2 lbs. steam, 60° entering air	460 + Final Air Temp from Table 8/530 x Nom. CFM from Table 8 = Final Air Volume	460 + 124/530 x 595 = 655 CFM
B. For final air temperatures calculated In II. B. (above)	460 + Final Air Temp from II.B./530 x Nom. CFM from Table 8 = Final Air Volume	460 + 121.0/530 x 595 = 652 CFM
IV. CONDENSATE PER HOUR A. For 2 lbs. steam, 60° entering air	Read lbs. per hour from Table 8: 43 LBS./HR.	
B. For capacities calculated in I.B. (above)	Output from I.B./Latent Heat from Table 12 = lbs. per hour of condensate	52,451/953 = 55.0 LBS./HR.

ENTERING			STEAM PRESSURE - LBS. PER SQ. IN. (SATURATED)										
AIR TEMP	0	2	5	10	15	20	30	40	50	75			
30°	1.18	1.22	1.27	1.34	1.40	1.45	1.53	1.61	1.67	1.79			
40°	1.11	1.15	1.20	1.27	1.32	1.37	1.46	1.53	1.59	1.71			
50°	1.03	1.07	1.12	1.19	1.25	1.30	1.39	1.46	1.52	1.64			
60°	0.96	1.00	1.05	1.12	1.18	1.23	1.32	1.39	1.45	1.57			
70°	0.90	0.93	0.98	1.05	1.11	1.16	1.25	1.32	1.38	1.49			
80°	0.83	0.86	0.91	0.98	1.04	1.09	1.18	1.25	1.31	1.42			
90°	0.76	0.80	0.85	0.91	0.97	1.02	1.11	1.18	1.24	1.36			
100°	0.69	0.73	0.78	0.85	0.90	0.96	1.04	1.11	1.17	1.29			

Table 12. PROPERTIES OF SATURATED STEAM															
	STEAM PRESSURE IN LBS. PER SQUARE INCH GAUGE														
	0	2	5	10	15	20	30	40	50	75					
Steam Temperature-°F	212.0	218.5	227.1	239.4	249.8	258.8	274.0	286.7	297.7	319.9					
Latent Heat of Steam	970	966	961	953	946	940	929	920	912	891					

Note: Ratings apply only to free inlet and discharge without diffusers.

Note: All motors are constant speed and operate at top speed as indicated in motor data. Models 018 through 108 can be run at a reduced speed with addition of optional variable speed switch. This switch is factory-calibrated for low and high speed ratings, with intermediate speeds infinitely controllable. Models A08 - A36 and Models 120 through 720 operate at constant speed as indicated in motor data.

Note: For specific motor data, refer to motor specifications at the end of this chapter.

Note: To correct for entering air temperatures, use 1° temperature rise for each foot in mounting height. As an example, 60° air is required at work area (5 ft. above floor) units are to be mounted at (20 ft.) above floor. Mounting height (20 ft.) minus work height (5 ft.) equals differential (15 ft.) or, 15° rise in air temperature at unit air inlet. Correct for actual inlet air temperature of 75° (60° + 15° = 75° E.A.T.) on Table 10

Hot Water Performance Data

Horizontal Unit Heaters

Peformance based on 200° EWT, 60° E.A.T., 20° WTD (max working pressure 150 PSI, 366° F)

Table 13.

Model No.	Total MBh	GPM	LAT °F	WPD	Motor HP	RPM	Nominal CFM	Outlet Velocity FPM	Sound Rating
	8.0		91			1550	245	250	11
S-A08	6.8	0.80	90	.80	16 Watts	1350	210	215	Ι
	18.4		94			1550	500	500	11
S-A18	15.7	1.9	96	2.2	16 Watts	1350	420	420	I
	24.8		102			1550	580	590	П
S-A25	21.2	2.5	106	2.2	25 Watts	1350	460	450	I
	35.9		99			1000	850	550	11
S-A36	32.3	3.6	100	3.0	1/20 -	900	750	480	I
	13.1		95			1550	395	395	11
S-18	11.7	1.3	99	.005	16 Watts	1350	350	350	I
	17.4		96			1550	450	450	11
S-24	15.6	1.8	98	.014	16 Watts	1350	380	380	I
	26.1		103			1550	550	550	11
S-36	23.5	2.7	103	.09	25 Watts	1350	480	480	I
	34.8		103			1000	750	550	11
S-48	31.3	3.5	111	.12	1/20 -	900	630	460	I
	43.6		105			1000	900	650	11
S-60	39.2	4.4	112	.17	1/20 -	900	700	510	I
	52.3		104			1000	1100	800	11
S-72	47.0	5.3	106	.23	1/20 -	900	950	700	I
	61.0		100			1000	1400	900	111
S-84	54.9	6.1	106	.24	1/12 -	900	1100	750	11
	69.7		106			1000	1400	930	111
S-96	62.7	7.0	113	.29	1/12 -	900	1100	800	
	78.4		100			1000	1800	1000	111
S-108	70.5	7.9	103	.36	1/12 -	900	1500	900	11
S-120	87.1	8.8	102	.39	1/3	1140	1900	900	111
S-132	95.8	9.6	104	.41	1/3	1140	2000	950	IV
S-144	104.0	10.4	104	.43	1/3	1140	2200	1000	IV
S-156	113.0	11.3	100	.53	1/3	1140	2600	1150	IV
S-180	118.0	11.8	110	.60	1/3	1140	2200	800	111
S-204	148.1	14.9	107	.79	1/3	1140	2900	1000	IV
S-240	174.0	17.4	106	1.06	1/3	1140	3500	900	IV
S-280	209.1	21.0	106	1.33	1/2	1100	4200	980	IV
S-300	230.0	23.0	102	2.1	1/2	1100	5000	700	IV
S-360	261.3	26.2	103	2.1	1/2	1100	5500	1000	IV

* For the lower output, an optional Speed Controller must be ordered.

Vertical Unit Heaters

Table 14.	Standard	Output Uni	its**							
Model No.	Water Temp. Drop	Total MBh	GPM	WPD	LAT °F	Motor HP	RPM	Nominal CFM	Outlet Velocity FPM	Sound Rating
	10°	28.8	5.93	.37	104.6°					
P-42	20°	22.7	2.34	.06	95.2°	1/40	1550	595	877	I
1 72	30°	16.7	1.15	.02	85.9°	1740	1550	373	0//	•
	10°	22.9	4.71	.24	108.3°					
P-42*	20°	18.1	1.87	.04	98.3°	1/40	1150	436	658	I
1-42	30°	13.4	.92	.01	88.4°	1740	1150	450	030	I I
	10°	48.1	9.92	1.05	104.8°					
P-64	20°	39.6	4.08	.19	96.9°	1/20	1550	989	1005	П
1-04	30°	31.1	2.14	.06	89.0°	1720	1550	707	1005	
	10°	38.1	7.85	.67	109.7°					
P-64*	20°	31.5	3.24	.13	101.1°	1/20	1150	706	727	П
F-04	30°	24.8	1.71	.04	92.4°	1720	1150	700	121	
	10°	58.7	12.11	.98	105.1°					
P-80	20°	48.4	4.99	.18	97.2°	1/20	1550	1200	1220	П
P-00	30°	38.1	2.62	.05	89.3°	1720	1550	1200	1220	
	10°	46.5	9.59	.63	110.0°					
P-80*	20°	38.5	3.97	.12	101.2°	1/20	1150	050	004	
P-80"	30°	30.5	2.09	.03	92.7°	1/20	1150	858	894	II
	10°	77.2	15.91	2.06	106.6°					
D 100	20°	68.3	7.03	.44	101.2°	1 /0	1070	1500	000	
P-102		59.3	4.08	.16	95.8°	1/8	1070	1528	980	II
	10°	63.7	13.13	1.43	108.6°					
P-102*	20°	56.5	5.82	.31	103.1°	1 (0	050	1200	702	
P-102"	30°	49.2	3.38	.11	97.6°	1/8	850	1208	783	II
	10°	94.9	19.55	3.04	108.9°					
D 100	20°	83.7	8.63	.65	103.1°	1.11	1100	1700	1170	
P-122		72.5	4.98	.23	97.3°	1/6	1100	1790	1170	111
	10°	117.6	24.24	4.32	108.8°					
D 444		105.2	10.84	.96	103.7°		1100		4045	
P-146	 30°	92.8	6.38	.36	98.5°	1/6	1100	2220	1045	111
	10°	132.4	27.29	3.67	106.6°					
D 4//		118.6	12.22	.81	101.7°		1100	0/00	4000	
P-166		104.8	7.20	.30	96.9°	1/6	1100	2620	1230	IV
	10°	156.2	32.20	5.02	105.0°					
D 202		139.7	14.40	1.11	100.2°	1/4	1100	2200	1405	,
P-202		123.2	8.47	.41	95.5°	1/4	1100	3200	1495	111
	15°	188.9	25.95	3.92	101.8°					
	20°	180.1	18.56	2.10	99.9°	1/4	1100	4140	1005	1.7
P-252		162.7	11.18	.82	96.0°	1/4	1100	4162	1205	IV
	15°	215.4	29.60	5.02	104.8°					
D. 000	20°	205.4	29.00	2.68	104.8 102.7°	4 12	4.000	4400	4075	
P-280		185.3	12.73	1.04	98.5°	1/2	1100	4430	1275	IV

Table 14.	Standard	l Output Un	its** (continued	i)						
Model No.	Water Temp. Drop	Total MBh	GPM	WPD	LAT °F	Motor HP	RPM	Nominal CFM	Outlet Velocity FPM	Sound Rating
	15°	254.9	35.03	6.88	105.1°					
P-336	20°	242.9	25.03	3.67	103.0°	3/4	1140	5210	1500	IV
	30°	218.9	15.04	1.42	98.7°					
	15°	294.7	40.49	6.60	104.2°					
P-384	20°	280.8	28.94	3.52	102.2°	3/4	1140	6140	1770	IV
	30°	253.1	17.39	1.36	98.0°					
	15°									
P-500	20°	368.1	37.93	5.81	102.3°	1-1/2	1160	8020	1640	IV
	30°	333.6	22.92	2.29	98.3°					
	15°	451.2	62.00	8.78	104.0°					
P-600	20°	431.1	44.43	4.72	102.0°	1-1/2	1160	9450	1930	IV
	30°	391.0	26.86	1.86	98.1°					
	15°									
P-720	20°	519.4	53.52	5.29	103.5°	3	1165	11,000	2250	IV
9	30°	470.9	32.35	2.08	99.5°	-		,		

**Performance based on 200° EWT, 20° T.D., 60° E.A.T. Performance at 10° & 30° T.D. is also shown. For capacities at other conditions, use the correction multipliers in Table 16, Table 17, Table 18, Table 19, and Table 20 *Speed controller option is required for reduced ratings.

Table 15.	Low Ou	tput Units Sta	ndard Model	P Units wit	h All Air Por:	ts Open**				
Model No.	Water Temp. Drop	Total MBh	GPM	WPD	LAT °F	Motor HP	RPM	Nominal CFM	Outlet Velocity FPM	Sound Rating
	10°	23.9	4.92	.26	92.9°	Hotor III		CITI		Sound Ruting
	20°	18.9	1.95	.04	86.1°					
P-42L		14.0	.96	.04	79.3°	1/40	1550	668	950	I
	10°	16.7	3.45	.13	92.8°					
	20°	13.5	1.39	.02	86.4°					
P-42L*	 			.02		1/40	1150	470	672	I
	10°	41.5	8.56	.80	91.9°					
		34.2	3.53	.80	91.9 86.3°					
P-64L	 	27.0	1.85	.04	80.3°	1/20	1550	1200	1190	11
	30 10°	32.4			94.7°					
			6.68	.50						
P-64L*	20°	26.9	2.77	.09	88.7°	1/20	1150	862	858	П
	30°	21.3	1.46	.03	82.8°					
	10°	48.9	10.09	.69	93.2°					
P-80L	20°	40.5	4.17	.13	87.4°	1/20	1550	1360	1350	П
	30°	32.0	2.20	.04	81.7°					
	10°	38.5	7.94	.44	95.7°					
P-80L*	20°	32.0	3.29	.08	89.6°	1/20	1150	995	992	П
	30°	25.4	1.75	.02	83.5°					
	10°	63.7	13.13	1.43	93.5°					
P-102L	20°	56.5	5.82	.31	89.7°	1/8	1070	1752	1050	П
	30°	49.2	3.38	.11	85.9°					
	10°	54.5	11.24	1.06	93.5°					
P-102L*	20°	48.5	4.99	.23	89.8°	1/8	850	1499	827	П
	30°	42.4	2.91	.08	86.1°					

Table 15.	Low Ou	tput Units Sta	ndard Model	P Units wit	h All Air Por	ts Open** (cont	inued)			
Model No.	Water Temp. Drop	Total MBh	GPM	WPD	LAT °F	Motor HP	RPM	Nominal CFM	Outlet Velocity FPM	Sound Rating
	10°	83.7	17.24	2.40	95.4°					
P-122	20°	73.9	7.62	.51	91.3	1/6	1100	2180	1390	111
	30°	64.2	4.41	.18	87.1°					
	10°	95.4	19.66	2.92	97.3°					
P-146L	20°	85.5	8.81	.65	93.4°	1/6	1100	2360	1080	111
	30°	75.6	5.20	.24	89.5°					
	10°	112.3	23.15	2.70	95.4°					
P-166L	20°	100.7	10.38	.60	91.8°	1/6	1100	2920	1340	IV
	30°	89.2	6.13	.22	88.1°					
	10°	135.8	27.98	3.85	96.9°					
P-202L	20°	121.8	12.52	.85	93.0°	1/4	1100	3390	1560	111
	30°	107.3	7.37	.32	89.2°					
	10°	168.5	34.72	6.75	94.5°					
P-252L	20°	153.8	15.85	1.56	91.4°	1/4	1100	4507	1270	IV
. 2022	30°	139.1	9.56	.61	88.4°			1007	1270	
	10°	188.9	25.95	3.92	94.5°					
P-280L	20°	180.1	18.56	2.10	92.9°	1/2	1100	5040	1420	IV
	30°	162.7	11.18	.82	89.7°					
	10°	220.9	30.35	5.26	95.7°					
P-336L	20°	210.6	21.70	2.81	94.1°	3/4	1140	5700	1610	IV
1 0002	30°	189.9	13.05	1.09	90.7°	0, 1		0,00	1010	
	10°	260.7	35.82	5.24	96.4°					
P-384L	20°	248.5	25.61	2.80	94.7°	3/4	1140	6600	1870	IV
1 0012	30°	224.2	15.40	1.09	91.3°	0, 1		0000	1070	
	10°									
P-500L	20°	310.5	32.00	4.23	90.5°	1-1/2	1160	9380	1860	IV
	30°	281.7	19.35	1.67	87.7°			,		
	10°	394.4	54.19	6.83	95.3°					
P-600L	20°	377.0	38.85	3.68	93.7°	1-1/2	1160	10,300	2060	IV
. 0002	30°	342.2	23.51	1.45	90.6°	1 1/2	1100	10,000	2000	
	10°									
P-720L	20°	453.7	46.76	4.11	95.1°	3	1165	11,900	2380	IV
1 - / 20L	30°	411.7	28.28	1.62	91.9°	5	1105	11,700	2300	I V

**Performance based on 200° EWT, 20° T.D., 60° E.A.T. Performance at 10° & 30° T.D. is also shown. For capacities at other conditions, use the correction multipliers in Table 16, Table 17, Table 18, Table 19, and Table 20.

Table 16. HOT WATER CALCULATIONS AND CORRECTION FACTORS

		EXAMPLE: UNIT:P-42 Entering Water Temp160°F Entering Air Temp40°F Water Temperature Drop10°F
I. CAPACITY @ 20° TD: A. For 200° EWT, 60° EAT	Read output directly from Table 14 & Table 15, 22,700 BTU/HR (Ref., Std. P-42, p. 22).	
B. For EWT and/or EAT above or below Standard	Multiply output from Table 14 & Table 15 by factor from Table 17.	22,700 x .878 = 19,931 BTU/HR.
II. CAPACITY AT OTHER TD's A. For TD's from 5 to 60°F	Multiply output obtained in IA. or IB. (above) by appropriate factor from Table 18	IA - 22,700 x 1.15 = 26,105 BTU/HR. -OR- IB - 19,931 x 1.15 = 22,921 BTU/HR.
III. GPM AT OTHER TD's A. For TD's from 5 to 60°F	Multiply GPM of unit for 20° TD, from Table 14 by appropriate factor from Table 18	2.34 x 2.30 = 5.38 GPM (Applies only to units with. Std. 200° EWT, 60° EAT.) For all others calculate using formula - GPM = BTU/500 x TD
IV. PRESSURE LOSS AT OTHER TD's A.ForTD's from 5 to 60°F	Multiply P.D. of unit for 20° TD, from Table 14 & Table 15 by appropriate factor from Table 18	$.06 \times 5.00 = .30 \text{ Ft. H}_2\text{O}$

Table 17. HOT WATER CONVERSION FACTORS BASED ON 200° ENTERING WATER 60° ENTERING AIR 20° TEMPERATURE DROP

ENTERING AIR	ENTERING WATER TEMPERATURE -20° WATER TEMPERATURE DROP													
TEMPERATURE	100°	120°	140°	160°	180°	200°	220°	240°	260°	280°	300°			
30°	0.518	0.666	0.814	0.963	1.120	1.268	1.408	1.555	1.702	1.850	1.997			
40°	0.439	0.585	0.731	0.878	1.025	1.172	1.317	1.464	1.609	1.755	1.908			
50°	0.361	0.506	0.651	0.796	0.941	1.085	1.231	1.375	1.518	1.663	1.824			
60°	0.286	0.429	0.571	0.715	0.857	1.000	1.143	1.286	1.429	1.571	1.717			
70°	0.212	0.353	0.494	0.636	0.777	0.918	1.060	1.201	1.342	1.483	1.630			
80°	0.140	0.279	0.419	0.558	0.698	0.837	0.977	1.117	1.257	1.397	1.545			
90°	0.069	0.207	0.345	0.483	0.621	0.759	0.897	1.035	1.173	1.311	1.462			
100°	0	0.137	0.273	0.409	0.546	0.682	0.818	0.955	1.094	1.230	1.371			

To obtain the BTU capacity for conditions other than those in the basic capacity tables, multiply the basic rating (200° entering water, 60° entering air) by the proper constant from Table 17.

Table 18. HOT WATER BTU, GPM AND PRESSURE LOSS FACTORS BASED ON STANDARD CONDITIONS OF 200°F ENTERING WATER 60°F ENTERING AIR & 20°F WATER DROP

USE FACTORS FROM THIS TABLE TO OBTAIN	TEMPERATURE DROP °F										
APPROXIMATE RESULTS	5	10	15	20	25	30	40	50	60		
To obtain BTU for other Water Temperature Drops, multiply basic BTU rating by applicable Factor.	1.25	1.15	1.08	1.00	.94	.90	.83	.76	.72		
To obtain GPM for other Water Temperature Drops, multiply basic GPM rating by applicable Factor.*	5.00	2.30	1.44	1.00	.74	.59	.40	.30	.24		
To obtain Pressure Loss Feet of Water for other temperature Drops, multiply Basic loss at 20° drop by Factor.	10.00	5.00	2.00	1.00	.60	.40	.20	.13	.07		

Table 19. *N	Table 19. *MINIMUM WATER FLOW - GPM														
MODEL No.	42	64	80	102	146	166	202	252	336	384	500	600	700		
MIN. GPM	.55	.55	.55	.55	.82	.82	1.10	1.10	1.10	1.10	1.0	1.4	1.6		

Table 20. *HEATING CAPACITY FACTORS FOR VARIOUS RATES OF WATER FLOW

% of Rated Water Flow	25%	50%	75%	100%	125%	150%	175%
Btu/Hr Heating Capacity	.80	.89	.96	1.00	1.04	1.07	1.10

Technical & Mounting Data

Horizontal Unit Heaters

Technical Data

The performance data listed in Table 13, Table 14, and Table 15 include sound ratings. The ratings provide a guide in determining the acceptable degree of loudness in particular occupancy situations.

Certain general rules apply to specific selection of unit heaters with regard to degree of quietness (or loudness);

- The greater the fan diameter, the higher the sound level.
- The higher the motor RPM, the higher the sound level. Note that on most units the lower the speed mode results in lowering the sound rating one increment.
- Selecting a larger number of smaller units generally results in lower overall noise levels than fewer large units.

All horizontal steam and hot water unit heater motors, whether fan guard or shelf-mounted, are isolated from the mechanical mount by resilient isolators. This mounting along with balanced fan blades and excellent overall construction integrity, assures you the utmost in quiet operation.

The following table outlines sound ratings for various applications. The lower the number, the quieter the unit and the lower the sound requirement.

Mounting Heights and Throws

The following table is based on 60° entering air and either 2 lb. steam or 200° water with a 20° T.D. The data is based on the higher speed CFM throughout and velocity. Care should be exercised in locating adjacent unit heaters and allowance should be made for obstructions in the air pattern and conflicting air currents from other air moving devices.

CATEGORY OF AREA	SOUND RATING
apartment, assembly hall, classrooms, churches, courtrooms, executive offices, hospitals, libraries, museums, theatres	Ι
dining rooms, general offices, recreation areas, small retail stores	П
restaurants, banks, cafeterias, department stores, public buildings, service stations	111
gymnasiums, health clubs, laundromats, supermarkets	IV
garages, small machine shops, light manufacturing	V
Factories, foundries, steel mills	-V *

*Depending on specific use in these facilities, size of operation, etc.

Table 21. Corrections When Using Glycol Solution in System

		Propylene Glycol
Heat transfer @ 180°F with no	20% solution	.97*
increase inflow rate	50% solution	.90*
G.P.M. Req'd. @ 180°F, 20°F Δ t (no correction to pump curve)		1.10%*
Pump Head Req'd. @ 180°F w/ increase in G.P.M.		1.23%*
Specify gravity (water = 1.0)		1.045-1.055*
Pounds/Gallons @ 60°F (water = 8.3453 Pound/Gallon)		8.77
pH @ 50% by volume		9.5
	55%	-
	50%	-28°F
Freezing Point by volume	40%	13°F
	30%	+ 4°F
	20%	+17°F

*Compared to water.

Table 22. Approximate factors at varying altitudes	
--	--

Altitude	Factor
Sea level - 1000 ft.	1.00
1000 ft 3000 ft.	.958
3000 ft 5000 ft.	.929
5000 ft 7000 ft.	.900
7000 ft 10000 ft.	.871

Motor Characteristics Data

Horizontal Unit Heaters

S Unit Model No.	AMP	MCA	MOP	HP	RPM
		115/	1/60		
18, 24, A08, A18	0.8	1	1.8	16W*	1550
A36	1.4	1.8	3.2	1/20*	1000
36, A25	1.2	1.5	2.7	25W*	1550
48, 60, 72	1.4	1.8	3.2	1/20*	1000
84, 96, 108	2.2	2.8	5.0	1/12*	1000
120, 132, 144, 156, 180, 204, 240	4.5	5.6	10.1	1/3	1140
280, 300, 360	5.4	6.8	12.2	1/2	1100
		230/	1/60		
18, 24, A08, A18	0.4	0.5	0.9	16W	1550
A36	1.4	1.8	3.2	1/20†	1000
36, A25	0.6	0.8	1.4	25W	1550
48, 60, 72	1.4	1.8	3.2	1/20†	1000
84, 96, 108	2.2	2.8	5.0	1/12†	1000
120, 132, 144, 156, 180, 204, 240	4.5	5.6	10.1	1/3†	1140
280, 300, 360	5.4	6.8	12.2	1/2†	1100
		208-230/	460/3/60		
48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 180, 204, 240, 280, 300, 360	2.6-2.6/1.3	3.3-3.3/1.6	5.9-5.9/2.9	1/2**	1140

*Optional variable speed switch is available.

**These motors are without thermal overload protection.

†230/1/60 unit has 115/1/60 motor supplied with field installed stepdown transformer.

Note 1:

All motors are constant speed and operate at top speed as indicated in motor data. Models 18 through 108, excluding A08, A18, A25 and A36, can be run at reduced speed with addition of optional variable speed switch. This switch is factory-calibrated for low and high speed ratings, with intermediate speeds infinitely controllable. Models 120 through 360 and Models A08, A18, A25 and A36 operate at constant speed as indicated in motor data. All 1/4 H.P. motors are P.S.C.

Note 2:

Motors under 1/3 H.P. are totally enclosed, frame mounted, 115/1/60 with thermal overload protection and permanently lubricated sleeve bearings with optional speed controller available. 1/3 H.P. (115/1/60) motors are open frame constant speed with thermal over-load protection and ball bearings. 1/3 H.P. (230V) and 1/2 H.P. (230V) motors are open frame constant speed with thermal overload protection and ball bearings.

Note 3:

1/3 and 1/2 H.P. motors are available as 230V single and 3 phase in open frame and explosion-proof housings, all available as options. 1/3 and 1/2 H.P. motors operate at single speed only.

Note 4:

Stated AMP draw is Full Load Amp (FLA). AMP draw varies by motor manufacturer ± .2 AMPS. Verify FLA per unit motor data plate.

S Unit Model No.	AMP	MCA	MOP	HP	RPM
		115/	1/60		
48, 60, 72, 84, 96, 108, 120, 132	3.7	4.6	8.3	1/6	1140
144, 156, 180, 204	5.4	6.8	12.2	1/4	1140
240, 280, 300	240, 280, 300 7.4		16.7	1/3***	1140
360	7.4	9.3	16.7	1/2***	1140
		230/	1/60		
48, 60, 72, 84, 96, 108, 120, 132	3.7	4.6	8.3	1/6†	1140
144, 156, 180, 204	5.4	6.8	12.2	1/4†	1140
240, 280, 300	3.7	4.7	8.3	1/3***	1140
360	3.7	4.7	8.3	1/2***	1140
		230/460	/3/60/TE		
144, 156, 180, 204, 240, 280, 300, 360	2.2/1.1	2.8/1.4	5.0/2.5	1/3	1140

*Optional variable speed switch is available. **These motors are without thermal overload protection. ***These motors are 115/230 volts.

†230/1/60 unit has 115/1/60 motor supplied with field installed stepdown transformer.

Note 1:

Models 120 through 360 operate at constant speed as indicated in motor data. All 1/4 H.P. motors are P.S.C.

Note 2:

Motors under 1/3 H.P. are totally enclosed, frame mounted, 115/1/60 with thermal overload protection and permanently lubricated sleeve bearings with optional speed controller available. 1/3 H.P. (115/1/60) motors are open frame constant speed with thermal over-load protection and ball bearings. 1/3 H.P. (230V) and 1/2 H.P. (230V) motors are open frame constant speed with thermal overload protection and ball bearings.

Note 3:

1/3 and 1/2 H.P. motors are available as 230V single and 3 phase in open frame and explosion-proof housings, all available as options. 1/3 and 1/2 H.P. motors operate at single speed only.

Note 4:

Stated AMP draw is Full Load Amp (FLA). AMP draw varies by motor manufacturer ± .2 AMPS. Verify FLA per unit motor data plate.

Vertical Unit Heaters

P Unit Model No.	AMP	MCA	МОР	HP	RPM
		115/	/1/60		
42	1.23**	1.6	2.8	1/40*	1550
64, 80	2.1**	2.6	4.7	1/20*	1550
102	1.2**	1.5	2.7	1/8*	1070
122					
146	2.3**	2.9	5.2	1/6	1100
166					
202	3.6**	4.5	8.1	1/4	1100
252	3.6**	4.5	8.1	1/4	1100
280	5.4**	6.8	12.2	1/2	1100
		208-230/	460/3/60		
42	0.98-1.1/0.55	1.2-1.4/0.7	2.2-2.5/1.2	1/6	1140
64, 80	0.98-1.1/0.55	1.2-1.4/0.7	2.2-2.5/1.2	1/6	1140
102	0.98-1.1/0.55	1.2-1.4/0.7	2.2-2.5/1.2	1/6	1140
122					
146	0.98-1.1/0.55	1.2-1.4/0.7	2.2-2.5/1.2	1/6	1140
166					
202	1.2-1.4/0.7	1.5-1.8/0.9	2.7-3.2/1.6	1/4	1140
252	1.2-1.4/0.7	1.5-1.8/0.9	2.7-3.2/1.6	1/4	1140
280	1.8-2.0/1.0	2.3-2.5/1.3	4.1-4.5/2.3	1/2	1140
336, 384	3.1-3.2/1.6	3.9-4.0/2.0	7.0-7.2/3.6	3/4	1140
500, 600	5.3-5.0/2.5	6.6-6.3/3.1	11.9-11.3/5.6	1-1/2	1160
720	9.9-9.8/4.9	12.4-12.3/6.1	22.3-22.1/11.0	3	1165
		575/	/3/60		
2, 64, 80, 102, 122, 146, 166, 202, 252	0.6	0.8	1.4	1/3	1140
280	0.8	1.0	1.8	1/2	1140
336, 384	1.3	1.6	2.9	3/4	1140
500, 600	2.0	2.5	4.5	1-1/2	1160
720	3.8	4.7	8.6	3	1165

* Optional variable speed switch is available.
 ** These motors have automatic thermal overload protection or impedance protection.

Note 1:

All motors are constant speed and operate at top speed as indicated in motor data. Models through 1/8 H.P. can be run at reduced speed with addition of optional variable speed switch. This switch is factory-calibrated for low and high speed ratings, with intermediate speeds infinitely controllable. Models 166 through 720 operate at constant speed as indicated in motor data.

Note 2:

Stated draw is Full Load (FLA). AMP draw varies by motor manufacturer ± .2 AMPS.

Unit Model No.	AMP	MCA	MOP	HP	RPM
		115/	1/60		
42	3.8	4.8	8.6	1/6	1140
64, 80	3.8	4.8	8.6	1/6	1140
102	3.8	4.8	8.6	1/6	1140
122					
146	3.8	4.8	8.6	1/6	1140
166					
202	4.4	5.5	9.9	1/4	1140
252	4.4	5.5	9.9	1/4	1140
280	7.8	9.8	17.6	1/2	1140
		208-230/	460/3/60		
42	1.0-1.0/0.5	1.3-1.3/0.6	2.3-2.3/1.1	1/6	1140
64, 80	1.0-1.0/0.5	1.3-1.3/0.6	2.3-2.3/1.1	1/6	1140
102	1.0-1.0/0.5	1.3-1.3/0.6	2.3-2.3/1.1	1/6	1140
122	1 0 1 0 0 5				
146	1.0-1.0/0.5	1.3-1.3/0.6	2.3-2.3/1.1	1/6	1140
166					
202	1.1-1.1/0.55	1.4-1.4/0.7	2.5-2.5/1.2	1/4	1140
252	1.1-1.1/0.55	1.4-1.4/0.7	2.5-2.5/1.2	1/4	1140
280	1.9/0.95***	2.4/1.2	4.3/2.1	1/2	1140
336, 384	3.1-3.2/1.6	3.9-4.0/2.0	7.0-7.2/3.6	3/4	1145
500, 600	5.0/2.5	6.5/3.3	11.3/5.6	1-1/2	1150
700	10.0/5.0***	12.5/6.3	22.5/11.3	3	1150

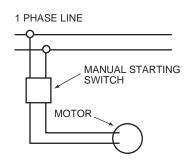
*** These motors are 230/460 volts only.

Note 1: Models 166 through 720 operate at constant speed as indicated in motor data.

Note 2: Stated draw is Full Load (FLA). AMP draw varies by motor manufacturer \pm .2 AMPS.

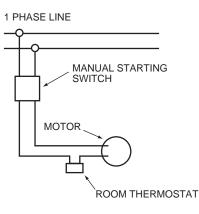
Wiring Diagrams

Wiring Diagrams


AWARNING Hazardous Voltage

Disconnect all electric power, including remote disconnects before servicing. Follow proper lockout/ tagout procedures to ensure the power can not be inadvertently energized. Failure to disconnect power before servicing could result in death or serious injury.

AWARNING Hazardous Voltage


Do not use any tools (i.e. screwdriver, pliers, etc.) across the terminals to check for power. Use a voltmeter. Failure to disconnect power before servicing could result in death or serious injury.

- For internal wiring and overload protection on all starters, consult the control manufacturer for details.
- 2. When using thermostatic control with a manual starter, be sure that the electrical rating of the thermostat is sufficient to carry the motor current.
- **Note:** Refer to the Motor Characteristics-portion of the Performance Data chapter for motor characteristics of Individual Unit Heaters

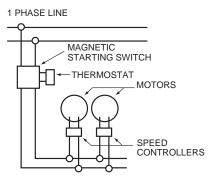

MANUAL CONTROL WITH SINGLE PHASE MOTOR

Figure 8.

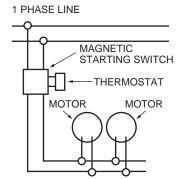
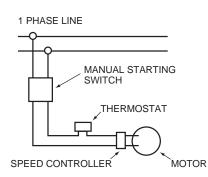

THERMOSTATIC CONTROL WITH MANUAL STARTER

Figure 9.


SPEED CONTROLLERS WITH MAGNETIC STARTING SWITCH FOR OPERATING SEVERAL UNITS Figure 12.

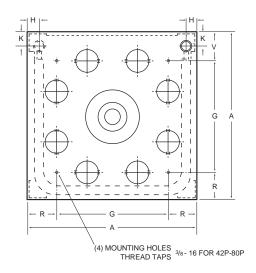
THERMOSTATIC CONTROL USING MAGNETIC STARTER OPERATING SEVERAL UNITS

Figure 10.

SPEED CONTROLLER WITH MANUAL STARTING SWITCH Figure 11. 3 PHASE LINE MANUAL STARTING SWITCH MOTOR MANUAL CONTROL WITH

THREE PHASE MOTOR

Figure 13.


3 PHASE LINE MAGNETIC STARTING SWITCH THERMOSTAT MOTORS THERMOSTATIC CONTROL


OF SEVERAL THREE PHASE UNITS Figure 14.

Dimensional Data

Dimensional Data: P Model

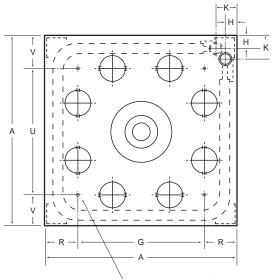


Table 27. Roughing in	able 27. Roughing in Dimensional Data - Model Size 42-80																
Unit Capacity (MBH)	Fan Dia.	Α	В	С	D	Е	F	G	н	К	L (Min.)	P (NPT)	R	s	т	U	V
042	11 1/4	18 1/4	4 5/8	1 1/4	11 3/4	3/4	4	11	1 3/8	1 7/8	7	1 1/2	3 5/8	6 5/8	2 3/4	11	3 5/8
064	13 1/2	21 1/4	4 5/8	1 5/8	14	1	4	14	1 3/8	1 7/8	7	1 1/2	3 5/8	7 1/8	2 3/4	14	3 5/8
080	13 1/2	21 1/4	6 1/8	1 5/8	14	1	3	14	1 3/8	1 7/8	7	1 1/2	3 5/8	8 5/8	2 3/4	14	3 5/8

(4) MOUNTING HOLES 3/8 - 16 FOR 102P-384P THREAD TAPS 1/2 - 13 FOR 500P-720P

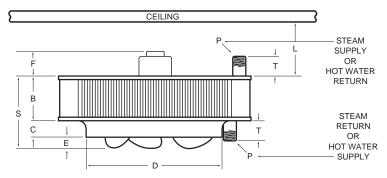
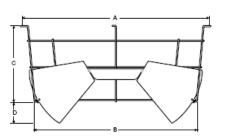



Figure 16. Models 102-720

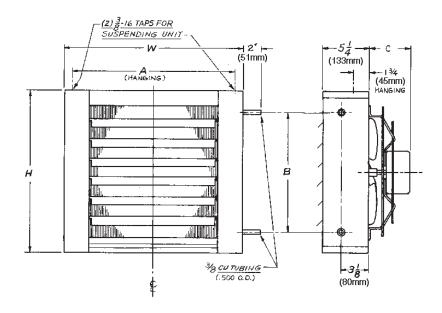

Table 28.	Roughi	ng in Di	mensio	nal Da	ta - Mo	del Siz	e 102-	720									
Unit Capacity (MBH)	Fan Dia.	A	В	с	D	E	F	G	н	к	L (Min.)	P (NPT)	R	s	т	U	v
102	16 3/4	25 1/4	6 1/8	2	17 1/2	1 1/8	3	17	1 3/8	2 3/4	7	1 1/2	4 1/8	9 1/8	2 3/4	17	4 1/8
122	16 3/4	25 1/4	6 1/8	2	17 1/2	1 3/4	3	17	1 3/8	2 3/4	7	1 1/2	4 1/8	9 3/4	2 3/4	17	4 1/8
146	19 3/4	29 1/2	6 1/8	2 3/8	20 5/8	1 1/4	4	20 1/2	1 3/4	3 1/2	7	2	4 1/2	9 5/8	2 3/4	20 1/2	4 1/2
166	19 3/4	29 1/2	6 1/8	2 3/8	20 5/8	1 3/4	4	20 1/2	1 3/4	3 1/2	7	2	4 1/2	10 1/8	2 3/4	20 1/2	4 1/2
202	19 3/4	29 1/2	7 5/8	2 3/8	20 5/8	2	4	20 1/2	1 3/4	3 1/2	7	2	4 1/2	12	2 3/4	20 1/2	4 1/2
252	25 1/4	37 1/2	7 5/8	3	26 3/8	1	3 1/2	28	1 3/4	3 1/2	7	2	4 3/4	11 5/8	2 3/4	18	9 3/4
280	25 1/4	37 1/2	7 5/8	3	26 3/8	1 1/4	3 1/2	28	1 3/4	3 1/2	7	2	4 3/4	11 3/4	2 3/4	18	9 3/4
336	25 1/4	37 1/2	7 5/8	3	26 3/8	2 1/8	4	28	1 3/4	3 1/2	7	2	4 3/4	12 3/4	2 3/4	18	9 3/4
384	25 1/4	37 1/2	9 1/8	3	26 3/8	2	3 1/2	28	1 3/4	3 1/2	7	2	4 3/4	14 1/8	2 3/4	18	9 3/4
500	30	42	9 1/8	3 1/2	31 1/4	1 5/8	3	30	2 1/4	4 1/4	7	2 1/2	6	14 1/4	3	30	6
600	30	42	12 1/8	3 1/2	31 1/4	2 1/8	3	30	2 1/4	4 1/4	7	2 1/2	6	17 3/4	3	30	6
720	30	42	13 5/8	3 1/2	31 1/4	3	4	30	2 1/4	4 1/4	7	2 1/2	6	20 1/4	3	30	6

Table 29. Louver Cone Diffuser Roughing in Dimensions												
Unit Size	Α	В	С	D	No. of Louvers							
42	16 1/2	14 1/4	6 1/2	2 5/8	8							
64 & 80	20	17	8	3 1/8	8							
102 & 122	24 1/4	21	9 3/4	3 15/16	8							
146, 166 & 202	28 3/8	24 3/4	11 1/2	4 5/8	8							
252, 280, 336, & 384	, 336, & 384 35 1/2		13 3/4	4	12							
500, 600 & 720	41 1/2	37 1/4	17	4 3/4	12							

Dimensional Data: S Model

Figure 17. Serpentine Type Models A08, A18, A25, A36


Note: Motors are totally enclosed, thermally protected, sleeve bearing, with 4" (w) x 2" (h) conduit connection boxes. Nutserts are attached to enclosure for balanced hanging.

Table 30.	Serpentine	Models
-----------	------------	--------

MODEL	н	w	Α	В	с	NO. OF LOUVERS	NOM. FAN DIAM.	APPROX. SHIP WT.
A08	16	18	16 7/32	11 1/4	4 1/4	5	9	22
A18	16	18	16 7/32	11 1/4	4 1/4	5	10	24
A25	16	18	16 7/32	11 1/4	4 1/4	5	10	25
A36	18 1/2	20 1/2	18 23/32	13 3/4	5 1/8	6	12	31

MODEL	Α	В	с	D	E	F	G*	Н*	J	к	L	м	N	NO. OF LOU- VERS	NOM. FAN DIAM.	APPROX SHIP WT.
S-18	14 5/8	7 5/16	15	7 1/2	6 1/8	2 15/16	3 1/4	9 3/8	12 1/4	9 1/2	1 1/4	2 1/4	12 7/8	4	9	26
S-24 S-36	14 5/8	7 5/16	18	9	6 1/8	2 15/16	3 1/4	9 3/8	12 1/4	12 1/2	1 1/4	2 1/4	12 7/8	5	10	30
S-48 S-60	17 1/8	8 9/16	20 1/2	10 1/4	5 7/8	2 15/16	5 1/16	10 15/16	14 3/4	15	1 1/4	1 3/4	15 3/8	6	12	41
S-72	18 3/8	9 3/16	21 3/4	10 7/8	6	2 15/16	5 1/16	11 1/16	16	16 1/4	1 1/4	1 3/4	16 5/8	7	14	44
S-84	20 7/8	10 9/16	24 1/4	12 1/8	6 1/8	2 15/16	5 11/16	11 13/16	18 1/2	18 3/4	1 1/4	1 3/4	19 1/8	8	14	47
S-96 S-108	19 5/8	9 13/16	24	12	6 5/16	3 3/16	7 1/2	13 13/16	17 1/4	17 1/2	1 1/2	1 3/4	17 7/8	8	16	49
S-120	20 7/8	10 7/16	25 1/4	12 5/8	6 5/16	3 3/16	6 11/16	13	18 1/2	18 3/4	1 1/2	1 3/4	19 1/8	8	18	59
S-132 S-144	23 3/8	11 11/16	27 3/4	13 7/8	6 5/16	3 3/16	7 5/8	14	21	21 1/4	1 1/2	1 3/4	21 5/8	9	18	74
S-156	23 3/8	11 11/16	27 3/4	13 7/8	6 5/16	3 3/16	7 7/16	13 3/4	21	21 1/4	1 1/2	1 3/4	21 5/8	9	18	74
S-180 S-204	24 5/8	12 5/16	29	14 1/2	6 3/8	3 3/16	7 7/16	13 3/4	22 1/4	22 1/2	1 1/2	1 3/4	22 7/8	9	18	90
S-240	27 7/8	13 15/16	30 1/4	15 1/8	8 1/8	3 3/16	5 7/8	14	25 1/2	23 3/4	2	1 3/4	26 1/8	10	20	125
S-280	27 7/8	13 15/16	30 1/4	15 1/8	8 1/8	3 3/16	9-5/8	17 3/4	25 1/2	23 3/4	2	1 3/4	26 1/8	10	20	118
S-300 S-360	33 3/8	16 11/16	37 3/4	18 7/8	9	3 3/16	9 5/8	18 5/8	31	31 1/4	2	1 3/4	31 5/8	13	24	154

* Applies to standard motor with standard fan guard. When optional motors or OSHA fan guards are requested, dimensions will change according to the substitutions made.

NOTES

Standard motor and standard guard shown.
 Optional OSHA guards available for all units with 1 phase motor. Models A08 - A36 and 018 - 048 OSHA guards standard.
 All 3 phase and explosion proof motors are shelf mounted.

Mechanical Specifications

Horizontal Specifications

General

Furnish and install, where indicated or scheduled on plans Model S horizontal steam/hot water unit heaters. Unit shall be equipped as specified herein. All units shall be installed in a neat and workmanlike manner in accordance with this specification and the manufacturer's installation instruction.

Casing

Casings are fabricated from 20 gauge die-formed steel. Casing substrates are prepared for finishing with a hot wash, iron phosphatizing clear rinse, chromic acid rinse and oven drying. Paint finish is leadfree, chromate free, alkyd melamine resin base and applied with an electrostatic two-pass system. Finish is baked at 350°F.

Coil Models 18 - 360

Coil elements and headers are heavy wall drawn seamless copper tubing. Element tubes are brazed into extruded header junctions. Pipe connection saddles are cast bronze. Aluminum fins have drawn collars to assure permanent bond with expanded element tubes and exact spacing. All Element Assemblies are submersion tested at factory at 250 P.S.I., and are rated at 150 pounds of saturated steam pressure at 366°F, under maximum load conditions. We recommend operating pressure of 75 P.S.I. at 320°F for long life.

Motors

Motors are totally enclosed, resilient mounted with class "B" windings. All motors are designed for horizontal mounting. Motors under 1/3 H.P. are totally enclosed, frame mounted, 115/1/60 with thermal overload protection and permanently lubricated sleeve bearings with optional solid state speed controller available. 1/3 H.P. (115/1/60) motors are open frame construction, with thermal overload protection and ball bearings. 1/3 H.P. at (230V) and 1/2 H.P. (230V) motors are open frame construction, with thermal overload protection and ball bearings. 1/3 and 1/2 H.P. motors are available in single and 3 phase in open frame construction or explosion-proof housings, all the above are available as options.

Explosion Proof Motors

An enclosed motor whose enclosure is designed and constructed to withstand an explosion of a specific gas or vapor which may occur within the motor and to prevent the ignition of this gas or vapor surrounding the machine.

Motors comply with the National Electrical Code classification as follows:

Class I, Group D; all sizes Class II, Group F; all sizes Class II, Group G; all sizes Division I & II Installations T-code (T3B)

Explosion proof equipment is not generally available for Class I, Groups A and B and it is necessary to isolate motors from the hazardous area. All explosion proof motors are shelf mounted.

Fans

Fans are aluminum blade, hub type designed and balanced to assure maximum air delivery, low motor horsepower requirements and quiet operation. Blades are spark proof.

Fan Guards

Fan guards are welded steel, zinc plated or painted. To meet CSA and OSHA requirements, units mounted below 8 feet from floor must be equipped with an OSHA fan guard. OSHA fan guards are optional.

Air Deflection Louvers

Units are equipped with horizontal, individually adjustable louvers. An optional vertical louver is available for four-way air control.

Serpentine Coil Specifications

General

Furnish and install, where indicated or scheduled on plans Model S-A horizontal hot water unit heaters. Unit shall be equipped as specified herein. All units shall be installed in a neat and workmanlike manner in accordance with this specification and the manufacturer's installation instruction.

Casing

Casings are fabricated from 20 gauge die-formed steel. Casing substrates are prepared for finishing with a hot wash, iron phosphatizing clear rinse, chromic acid rinse and oven drying. Paint finish is leadfree, chromate free, alkyd melamine resin base and applied with an electrostatic two-pass system. Finish is baked at 350°F.

Coil Models S-A08– S-A36

Coil is a serpentine design with seamless copper tubing. Aluminum fins have drawn collars to assure permanent bond with expanded tubes. Tubing connection are 3/8" copper tubing, type "M" (.500 O.D.). Coils are factory tested at 250 P.S.I.

Motors

Motors are totally enclosed, resilient mounted with class "B" windings. All motors are designed for horizontal mounting.

Fans

Fans are aluminum blade type, designed and balanced to assure maximum air delivery, low motor horsepower requirements and quiet operation.

Fan Guards

Fan guards are welded steel, zinc plated or painted. To meet CSA and OSHA requirements, units mounted below 8 feet from floor must be equipped with an OSHA fan guard. OSHA fan guards are optional.

Air Deflection Louvers

Units are equipped with horizontal, individually adjustable louvers.

Vertical Specifications

General

Furnish and install, where indicated or scheduled on plans Model P vertical steam/hot water unit heaters. Unit shall be equipped as specified herein. All units shall be installed in a neat and workmanlike manner in accordance with this specification and the manufacturer's installation instruction.

Casing

Casing is formed by two square steel plates. Bottom plate forms orifice for air delivery. Air ports stamped in top plate as standard for easy removal for low final air temperature.

Coil

Hot water/steam coils are rectangular 3 or 4-sided, one-pass, multiple circuit, with aluminum Sigma-Flow (there should be a registered sign after Sigma-Flow) fins mechanically bonded to tubes. Standard coils are tested at 375 psi under water. Supply and return connections are steel pipe. Standard coils have .025 copper tubing suitable for use on steam pressure to 75 psi or hot water up to 225 psi or 325 F. Optional .049 steel tubing is suitable for use for 450 F water at 400 psi.

Motors

Standard motors are 115/60/1, totally enclosed, with thermal overload protection for all units through size 280P. Standard motors for 42P. 64P and 80P are shaded pole, sleeve bearing. The 102P motor is permanent split capacitor type with sleeve bearings. Motor for unit sizes 122P through 280P are permanent split capacitor types with permanently lubricated ball bearings. Motors used unit sizes 336P through 720P are 230/460/60/3, totally enclosed, with permanently lubricated ball bearings. Unit sizes smaller than 336 are also available with 230/460/60/3 motors.

All motors fraction hp and integral hp, have Class "B" insulation. The 115/60/1 motors used as standard on unit sizes 42P through 102P can be operated at multiple speeds with the addition of a solid-state speed control.

Explosion Proof Motors

An enclosed motor whose enclosure is designed and constructed to withstand an explosion of a specific gas or vapor which may occur within the motor and to prevent the ignition of this gas or vapor surrounding the machine. All units are available with 1140 rpm explosion-proof motors.

Fan

Fans are aluminum blade designed and balanced for quiet operation. Blades are spark proof.

Louver Cone Diffuser

Optional louver cone diffuser is available for complete versatility in air diffusion patterns. Adjustable 18gauge steel blades are held in set position by spring steel clips.

www.trane.com

For more information, contact your local Trane office or e-mail us at comfort@trane.com

 Literature Order Number
 UH-PRC001-EN

 Date
 July 2009

 Supersedes
 UH-PRC001-EN September 2008

Trane has a policy of continuous product and product data improvement and reserves the right to change design and specifications without notice.