

Product Catalog

Air-Cooled Scroll Chillers

Model CGAM 20-130 Nominal Tons 60 Hertz Version

Introduction

Design and manufacturing excellence makes Trane a leader in the air-cooled chiller market place. This tradition of using excellence to meet market demands is illustrated with the new Trane AquaStream 20-130 ton nominal air-cooled chiller. The introduction of this next-generation chiller is an exciting step forward in energy-efficiency, sound, reliability, ease of serviceability, control precision, application versatility, and operational cost-effectiveness. The new chiller is designed to deliver proven AquaStream performance based on the redesign of a European model that has been a market leader, plus all the benefits of new heat transfer and fan designs, as well as, low-speed, direct-drive scroll compressors.

Important Design Advances and New Features

- Higher full-load and part-load energy efficiency that reduce operating costs.
- Significantly lower noise levels than other scroll compressor chillers.
- HFC-410A optimized design.
- Factory-installed evaporator pump and buffer tank are available to make installation easier.
- Flow switch and water strainer are factory installed in the optimum locations for seamless operation and reduced chiller installation and maintenance time.
- Trane CH530[™] with Adaptive Controls[™] have improved fan algorithms for more reliable operation at extreme conditions.
- Single chiller time of day scheduling communication for easier control of small jobs.
- Easily integrated with existing BAS via Modbus[™] or LonTalk[™] communication interface.
- All major service components are close to the unit edge for safe and easy maintenance.
- The chiller is designed for easy serviceability with input from our extended experience in design, testing and field operation.

Table of Contents

Features and Benefits 4
Application Considerations 6
Model Number Descriptions 13
General Data
Controls
Electrical Data
Electrical Connections 22
Dimensions
Weights

Features and Benefits

Reliability

- Years of laboratory testing, including running the chiller at extreme operating conditions, have resulted in optimized compressor and chiller systems reliability by confirming a robust design and verifying quality each step of the way.
- Direct-drive, low-speed scroll compressors with fewer moving parts provide maximum efficiency, high reliability, and low maintenance requirements. Suction gas-cooled motor stays at a uniformly low temperature for long motor life.
- The third generation microprocessor control system provides improved control capabilities with Adaptive Control[™] to keep the unit operating even in adverse conditions. Advanced microelectronics protect both the compressor and the motor from typical electrical fault conditions like thermal overload and phase rotation.
- Standard factory-installed water strainer helps prevent system debris from affecting unit flow or heat transfer.
- Flow switch is factory-installed at the optimum location in the piping for reduced chiller installation cost and superior flow sensing, reducing the potential for nuisance trips.
- Exceptionally rigid condenser coil structure is manufactured with hairpin tubes which halves the number of braze joints significantly reducing the potential for leaks.
- Innovative condenser pressure integrated fan control algorithms provide more reliable operation at extreme temperature conditions.

Life Cycle Cost-Effectiveness

- Industry leading full- and part-load efficiency
- Electronic expansion valve and high speed suction temperature sensor enables tight chilled water temperature control and low superheat, resulting in more efficient full-load and part-load operation than previously available.
- Partial heat recovery available to save energy on pre-heat or reheat applications.
- The factory-installed and tested pump package is available with many options to meet a variety of customer needs.

Application Versatility

- Industrial/low temperature process cooling Excellent operating temperature range and precise control capabilities enable tight control.
- Ice/thermal storage Utilities and owners benefit from reduced cooling energy cost. The AquaStream chiller's dual setpoint control and industry leading ice energy storage efficiency assures reliable operation and superior system efficiency.
- Partial heat recovery An optional factory-installed heat exchanger provides hot water for many needs; water preheat and reheat for enhanced system humidity control are just two. This option reduces operating costs associated with boilers/domestic hot water.

Simple, Economical Installation

- Standard sound levels are roughly 5-8 dBa less than the previous Trane air-cooled models, perfect for applying outdoor HVAC equipment in neighborhoods, such as K-12 schools. There are a variety of sound options to help meet many different job site requirements: compact, super quiet and comprehensive acoustic package.
- System integration available with LonTalk, BACnet or ModBus, through a single twisted-pair wire for a less expensive translation to an existing building automation system.
- Powder-coated paint provides superior durability, corrosion protection, and is less likely to be damaged while rigging/lifting/installing the chiller.
- Single point power connection installation
- Factory commissioned unit-mounted starter reduces overall job cost and improves system reliability by eliminating job site design, installation and labor coordination requirements.

Precision Control

- Microprocessor-based Trane CH530 controls monitor and maintain optimal operation of the chiller and its associated sensors, actuators, relays, and switches, all of which are factoryinstalled, powered up and tested prior to shipping.
- Adaptive Control maintains chiller operation under adverse conditions, when many other chillers might simply shut down. Operating conditions that are compensated for include high condensing pressure and low suction pressure.
- AquaStream advanced microprocessor controls enable variable primary flow applications providing chilled water temperature control accuracy of ±2°F (1.1°C) for flow changes up to 10 percent per minute, plus handling of flow changes up to 30 percent per minute with continuous operation.
- Easy-to-use operator interface displays all operating and safety messages, with complete diagnostics information, on a highly readable panel with a scrolling touch-screen display. Status and diagnostic messages are in plain language no codes to interpret and are available in 20 languages.

Improved Serviceability

- All major serviceable components are close to the edge. Service shutoff valves and water strainer are conveniently located to enable easy service.
- Water piping connections are factory piped to the edge of the unit to make installation safer and faster.
- Electronic expansion valve designed so controls can be removed and serviced without refrigerant handling.
- The optional pump package is designed to be serviced in place. The unit structure includes a rigging point for pump servicing, making inspection, cleaning and pump seal changes easier.
- High pressure transducer and temperature sensors mountings enable troubleshooting and replacement without removing refrigerant charge, greatly improving serviceability over the life of the unit.
- Dead front panel construction provides for enhanced service technician safety.

Application Considerations

Certain application constraints should be considered when sizing, selecting and installing Trane AquaStream chillers. Unit and system reliability is often dependent upon proper and complete compliance with these considerations. Where the application varies from the guidelines presented, it should be reviewed with your local Trane sales engineer.

Note: The terms water and solution are used interchangeably in the following paragraphs.

Unit Sizing

Intentionally over-sizing a unit to assure adequate capacity is not recommended. Erratic system operation and excessive compressor cycling are often a direct result of an oversized chiller. In addition, an oversized unit is usually more expensive to purchase, install, and operate. If over sizing is desired consider using two smaller units.

Water Treatment

The use of untreated or improperly treated water in chillers may result in scaling, erosion, corrosion, and algae or slime buildup. This will adversely affect heat transfer between the water and system components. Proper water treatment must be determined locally and depends on the type of system and local water characteristics.

Neither salt nor brackish water is recommend for use in Trane air-cooled AquaStream chillers. Use of either will lead to a shortened life. Trane encourages the employment of a qualified water treatment specialist, familiar with local water conditions, to assist in the establishment of a proper water treatment program.

Foreign matter in the chilled water system can also increase pressure drop and, consequently, reduce water flow. For this reason it is important to thoroughly flush all water piping to the unit before making the final piping connections to the unit.

Effect of Altitude on Capacity

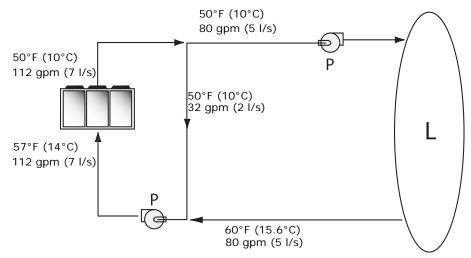
At elevations substantially above sea level, the decreased air density will decrease condenser capacity and, therefore, unit capacity and efficiency.

Ambient Limitations

Trane AquaStream chillers are designed for year-round operation over a range of ambient temperatures. The air-cooled model CGAM chiller will operate in ambient temperatures of up to 125°F (up to 52°C). Selecting the wide ambient option will allow the chiller to operate down to 0°F (-18°C). Without the wide ambient option freeze damage can occur with operation between 32°F (0°C) and 55°F (12.8°C) depending on the unit tonnage.

The minimum ambient temperatures are based on still conditions (winds not exceeding five mph). Greater wind velocities will result in a drop in head pressure, therefore increasing the minimum starting and operating ambient temperature. The Adaptive Control[™] microprocessor will attempt to keep the chiller on-line when high or low ambient conditions exist, making every effort to avoid nuisance trip-outs and provide the maximum allowable tonnage.

Water Flow Limits


The minimum water flow rates are given in the General Data section of this catalog. Evaporator flow rates below the tabulated values will result in laminar flow causing freeze-up problems, scaling, stratification and poor control. The maximum evaporator water flow rate is also given. Flow rates exceeding those listed may result in very high pressure drop across the evaporator.

Flow Rates Out of Range

Many process cooling jobs require flow rates that cannot be met with the minimum and maximum published values within the AquaStream evaporator. A simple piping change can alleviate this problem. For example: a plastic injection molding process requires 80 gpm (5.0 l/s) of 50°F (10°C) water and returns that water at 60°F (15.6°C). The selected chiller can operate at these temperatures, but has a minimum flow rate of 106 gpm (6.6 l/s). The system layout in Figure 1 can satisfy the process.

Figure 1. Flow Rate Out of Range Systems Solution

Flow Proving

Trane provides a factory-installed water flow switch monitored by CH530 which protects the chiller from operating in loss of flow conditions.

Variable Flow in the Evaporator

An attractive chilled water system option may be a Variable Primary Flow (VPF) system. VPF systems present building owners with several cost-saving benefits when compared with Primary/ Secondary chilled water systems. The most obvious cost savings results from eliminating the constant volume chiller pump(s), which in turn eliminates the related expenses of the associated piping connections (material, labor), and electrical service and switch gear. In addition to the installed cost advantage building owners often cite pump related energy savings as the reasons that prompted them to select a VPF system.

The AquaStream has the capability to handle variable evaporator flow without losing leaving water temperature control. The microprocessor and capacity control algorithms are designed to take a 10 percent change in water flow rate per minute while maintaining a $\pm 2^{\circ}$ F (1.1°C) leaving water temperature control accuracy. The chiller tolerates up to 30 percent per minute water flow variation as long as the flow is equal or above the minimum flow rate requirement.

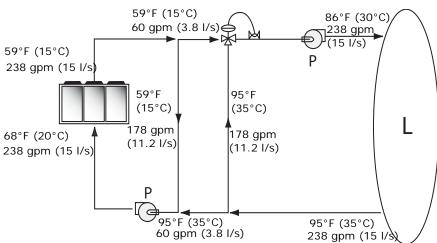
With the help of a software analysis tool such as System Analyzer[™], DOE-2 or TRACE[™], you can determine whether the anticipated energy savings justify the use of variable primary flow in a particular application. Existing constant flow chilled water systems may be relatively easily converted to VPF and benefit greatly from the inherent efficiency advantages.

Water Temperature

Leaving Water Temperature Limits

Trane AquaStream chillers have three distinct leaving water categories:

- standard, with a leaving solution range of 42 to 65°F (5.5 to 18°C)
- low temperature process cooling, with leaving solution range of 10 to 65°F (-12 to 18°C)
- ice-making, with leaving solution range of 20 to 65°F (-7 to 18°C)


Since leaving solution temperature below 42°F (5.5°C) results in suction temperature at or below the freezing point of water, a glycol solution is required for all low temperature and ice-making machines. Ice making control includes dual setpoint controls and safeties for ice making and standard cooling capabilities. Consult your local Trane sales engineer for applications or selections involving low temperature or ice making machines.

The maximum water temperature that can be circulated through the CGAM evaporator when the unit is not operating is 125°F (51.7°C). Evaporator damage may result above this temperature.

Leaving Water Temperature Out of Range

Similar to the flow rate limitations above, many process cooling jobs require temperature ranges that are outside the allowable minimum and maximum operating values for the chiller. Figure 2 below shows a simple example of a mixed water piping arrangement change that can permit reliable chiller operation while meeting such cooling conditions. For example, a laboratory load requires 238 gpm (15 l/s) of water entering the process at 86°F (30°C) and returning at 95°F (35°C). The chiller's maximum leaving chilled water temperature of 65°F (15.6°C) prevents direct supply to the load. In the example shown, both the chiller and process flow rates are equal, however, this is not necessary. For example, if the chiller had a higher flow rate, there would simply be more water bypassing and mixing with warm water returning to the chiller.

Figure 2. Temperature Out of Range System Solution

Supply Water Temperature Drop

Full load chilled water temperature drops from 6 to 18°F (3.3 to 10°C) may be used as long as minimum and maximum water temperature and minimum and maximum flow rates are not violated. Temperature drops outside this range at full load conditions are beyond the optimum range for control and may adversely affect the microcomputer's ability to maintain an acceptable supply water temperature range. Furthermore, full load temperature drops of less than 6°F (3.3°C) may result in inadequate refrigerant superheat which is critical to long term efficient and reliable operation. Sufficient superheat is always a primary concern in any refrigerant system and is especially important in a packaged chiller where the evaporator is closely coupled to the compressor.

Typical Water Piping

All building water piping must be flushed prior to making final connections to the chiller. To reduce heat loss and prevent condensation, insulation should be applied. Expansion tanks are also usually required so that chilled water volume changes can be accommodated.

Avoidance of Short Water Loops

Adequate chilled water system water volume is an important system design parameter because it provides for stable chilled water temperature control and helps limit unacceptable short cycling of chiller compressors.

The AquaStream chiller's temperature control sensor is located in the supply (outlet) water connection or pipe. This location allows the building to act as a buffer to slow the rate of change of the system water temperature. If there is not a sufficient volume of water in the system to provide an adequate buffer, temperature control can suffer, resulting in erratic system operation and excessive compressor cycling.

Typically, a two-minute water loop circulation time is sufficient to prevent short water loop issues. Therefore, as a guideline, ensure the volume of water in the chilled water loop equals or exceeds two times the evaporator flow rate. For systems with a rapidly changing load profile the amount of volume should be increased.

If the installed system volume does not meet the above recommendations, the following items should be given careful consideration to increase the volume of water in the system and, therefore, reduce the rate of change of the return water temperature.

- A volume buffer tank located in the return water piping.
- Larger system supply and return header piping (which also reduces system pressure drop and pump energy use).

An optional factory-installed buffer tank is designed to meet the minimum two minute loop time without additional job site piping. The buffer tank can also be used on jobs that already meet or exceed the minimum loop time to further reduce the potential for compressor cycling, increasing the compressor life span, and reducing system temperature fluctuations.

Minimum water volume for a process application

If a chiller is attached to an on/off load such as a process load, it may be difficult for the controller to respond quickly enough to the very rapid change in return solution temperature if the system has only the minimum water volume recommended. Such systems may cause chiller low temperature safety trips or in the extreme case evaporator freezing. In this case, it may be necessary to add or increase the size of the mixing tank in the return line or consider the optional factory-installed buffer tank with the chiller.

Multiple Unit Operation

Whenever two or more units are used on one chilled water loop, Trane recommends that their operation be coordinated with a higher level system controller for best system efficiency and reliability. The Trane Tracer system has advanced chilled plant control capabilities designed to provide such operation.

Ice Storage Operation

An ice storage system uses the chiller to make ice at night when utilities generate electricity more efficiently and charge less for electricity with lower demand and energy charges. The stored ice reduces or even replaces mechanical cooling during the day when utility rates are at their highest. This reduced need for cooling results in significant utility cost savings and source energy savings.

Another advantage of an ice storage system is its ability to eliminate chiller over sizing. A "rightsized" chiller plant with ice storage operates more efficiently with smaller support equipment while lowering the connected load and reducing operating costs. Best of all this system still provides a capacity safety factor and redundancy by building it into the ice storage capacity for practically no cost compared to over sized systems.

The Trane air-cooled chiller is uniquely suited to low temperature applications like ice storage because of the ambient relief experienced at night. Chiller ice making efficiencies are typically similar to or even better than standard cooling daytime efficiencies as a result of night-time drybulb ambient relief.

Standard smart control strategies for ice storage systems are another advantage of the AquaStream chiller. The dual mode control functionality are integrated right into the chiller. Trane Tracer building management systems can measure demand and receive pricing signals from the utility and decide when to use the stored cooling and when to use the chiller.

Partial Heat Recovery Operation

Partial heat recovery is designed to salvage a portion of the heat that is normally rejected to the atmosphere through the air-cooled condenser coil and put it to beneficial use. With the addition of a heat recovery cycle, heat removed from the building cooling load can be transferred to a preheat application. Keep in mind that the heat recovery cycle is only possible if a cooling load exists to act as a heat source.

To provide a heat recovery cycle, a supplemental heat exchanger is mounted in series to the aircooled condenser. The supplemental heat exchanger is piped into a preheat circuit. During the heat recovery cycle, the unit operates just as it does in the cooling-only mode except that a portion of the cooling load heat is rejected to the water heating circuit rather than to the air through the aircooled condenser. Water circulated through the heat recovery heat exchanger by the pumps absorbs cooling load heat from the compressed refrigerant gas discharged by the compressors. The heated water is then used to satisfy heating requirements.

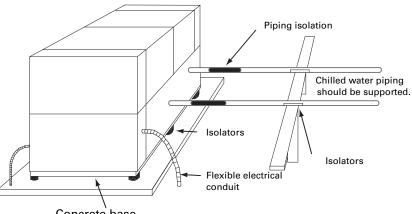
Partial heat recovery can be used in applications where hot water is needed for use in kitchens, lavatories, etc. It is comparatively smaller in size and its heating capacity is not controlled. The partial heat recovery heat exchanger cannot operate alone without a load on the chiller.

The partial heat recovery heat exchanger can get up to 157°F (69.4°C) leaving temperature. For more information see the Performance Selection Program.

Unit Placement

Setting The Unit

A base or foundation is not required if the selected unit location is level and strong enough to support the unit's operating weight (see "Weights" section of this catalog).


For a detailed discussion of base and foundation construction, refer to the sound engineering bulletin or the unit IOM. Manuals are available through the local Trane office.

HVAC equipment must be located to minimize sound and vibration transmission to the occupied spaces of the building structure it serves. If the equipment must be located in close proximity to a building, it should be placed next to an unoccupied space such as a storage room, mechanical room, etc. It is not recommended to locate the equipment near occupied, sound sensitive areas of the building or near windows. Locating the equipment away from structures will also prevent sound reflection, which can increase sound levels at property lines or other sensitive points.

Isolation and Sound Emission

Structurally transmitted sound can be reduced by elastomeric vibration eliminators or spring isolators. Elastomeric or spring isolators are generally effective in reducing vibratory noise generated by compressors, and therefore, are recommended for sound sensitive installations. An acoustical engineer should always be consulted on critical applications.

Figure 3. Installation Example

For maximum isolation effect, water lines and electrical conduit should also be isolated. Wall sleeves and rubber isolated piping hangers can be used to reduce the sound transmitted through water piping. To reduce the sound transmitted through electrical conduit, use flexible electrical conduit.

Local codes on sound emissions should always be considered. Since the environment in which a sound source is located affects sound pressure, unit placement must be carefully evaluated. Sound power levels for chillers are available on request.

Servicing

Adequate clearance for evaporator and compressor servicing should be provided. Recommended minimum space envelopes for servicing are located in the dimensional data section and can serve as a guideline for providing adequate clearance. The minimum space envelopes also allow for control panel door swing and routine maintenance requirements. Local code requirements may take precedence.

Unit Location

General

Unobstructed flow of condenser air is essential to maintain chiller capacity and operating efficiency. When determining unit placement, careful consideration must be given to assure a sufficient flow of air across the condenser heat transfer surface. Two detrimental conditions are possible and must be avoided: warm air recirculation and coil starvation. Air recirculation occurs when discharge air from the condenser fans is recycled back to the condenser coil inlet. Coil starvation occurs when free airflow to the condenser is restricted.

Condenser coils and fan discharge must be kept free of snow or other obstructions to permit adequate airflow for satisfactory unit operation. Debris, trash, supplies, etc., should not be allowed to accumulate in the vicinity of the air-cooled chiller. Supply air movement may draw debris into the condenser coil, blocking spaces between coil fins and causing coil starvation.

Both warm air recirculation and coil starvation cause reductions in unit efficiency and capacity because of the higher head pressures associated with them. The air-cooled AquaStream chiller offers an advantage over competitive equipment in these situations. Operation is minimally affected in many restricted air flow situations due to its advanced Adaptive Control[™] microprocessor which has the ability to understand the operating environment of the chiller and adapt to it by first optimizing its performance and then staying on line through abnormal conditions. For example, high ambient temperatures combined with a restricted air flow situation will generally not cause the air-cooled model CGAM chiller to shut down. Other chillers would typically shut down on a high pressure nuisance cut-out in these conditions.

Cross winds, those perpendicular to the condenser, tend to aid efficient operation in warmer ambient conditions. However, they tend to be detrimental to operation in lower ambients due to the accompanying loss of adequate head pressure. Special consideration should be given to low ambient units. As a result, it is advisable to protect air-cooled chillers from continuous direct winds exceeding 10 mph (4.5 m/s) in low ambient conditions.

The recommended lateral clearances are depicted in the close spacing engineering bulletin available from your local office.

Provide Sufficient Unit-to-Unit Clearance

Units should be separated from each other by sufficient distance to prevent warm air recirculation or coil starvation. Doubling the recommended single unit air-cooled chiller clearances will generally prove to be adequate.

Walled Enclosure Installations

When the unit is placed in an enclosure or small depression, the top of the surrounding walls should be no higher than the top of the fans. The chiller should be completely open above the fan deck. There should be no roof or structure covering the top of the chiller. Ducting individual fans is not recommended.

Model Number Descriptions

Digit 1-4 – Chiller Model

CGAM = Air-Cooled Scroll Packaged Chiller

Digit 5-7 – Unit Nominal Tonnage

Digit 8 – Unit Voltage

- B = 230 Volt 60 Hz 3 PhaseD = 380 Volt 60 Hz 3 Phase
- F = 460 Volt 60 Hz 3 Phase

Digit 9 – Manufacturing Plant

3 = Taicang, China

Digit 10-11 – Design Sequence

A-Z = Factory/ABU Assigned

Digit 12 - Unit Type

2 = High Efficiency/Performance

Digit 13 – Agency Listing

X = No Agency Listing

Digit 14 - Pressure Vessel Code

X = No Pressure Vessel Code

Digit 15 — Unit Application

- B = High Ambient (up to 125F/up to-52C)
- D = Wide Ambient (0 to 125F/-18 to 52C)

Digit 16 – Refrigerant Isolation Valves

- 1 = No Isolation Valves
- 2 = Refrigerant Isolation Valves (Discharge Valve)

Digit 17

А

1

Digit 18 — Freeze Protection (Factory-Installed Only)

1 = With Freeze Protection (External T-Stat Control)

Digit 19 - Insulation

- A = Factory Insulation All Cold Parts
- B = Insulation for High Humidity/ Low Evap Temp

Digit 20 — Factory Charge

= Full Factory Refrigerant Charge (HFC-410A)

Digit 21 — Evaporator Application

- A = Standard Cooling (42 to 65°F/5.5 to 18°C)
- B = Low Temperature Processing (lower than 42°F/5.5°C)
- C = Ice-Making hardwired interface (20 to 65°F/-7 to 18°C)

Digit 22 – Water Connection (Evap)

- 1 = Grooved Pipe Connection
- 2 = Grooved Pipe with Flange Adapter

Digit 23 – Condenser Fin Material

- A = Lanced Aluminum Fins
- B = Non-Lanced Aluminum Fins
- E = Non-Lanced Aluminum Fins w/ Pre-Coat (Black Epoxy)

Digit 24 – Condenser Heat Recovery

- X = No Heat Recovery
 - Partial Heat Recovery w/ Fan Control
- 2 = Partial Heat Recovery w/o Fan Control

Digit 25

Х

1

Digit 26 - Starter Type

A = Across the Line Starter/ Direct on Line

Model Number Descriptions

Digit 27 – Incoming Power Line Connection

1 = Single Point Power Connection

Digit 28 – Power Line Connection Type

- A = Terminal Block Conn. For Incoming Lines
- B = Disconnect Switch

Digit 29 - Enclosure Type

2 = IP55 Protection

Digit 30 – Unit Operator Interface

- A = Dyna-View/English
- P = Dyna-View/Traditional Chinese

Digit 31 – Remote Interface (digital comm)

- X = No Remote Digital Communication
- 1 = LonTalk LCI-C Interface with Modbus Interface
- 2 = LonTalk/Tracer Summit Interface
- 3 = Time of Day Scheduling
- 4 = BACnet Interface

Digit 32 – Ext. Chilled/Hot Water and Curr. Demand Limit Setpoint

- X = No Ext. Chilled Water Setpoint
- A = Ext Chilled Water and Demand Limit Setpoint - 4-20mA
- B = Ext Chilled Water and Demand Limit Setpoint - 2-10Vdc

Digit 33 -% Capacity

- X = Without % Capacity
- 1 = With % Capacity

Digit 34 – Programmable Relays

- X = No Programmable Relays
- A = Programmable Relays

Digit 35 – Pump Type

- X = No Pumps and no Contactors
- 3 = No Pumps w/ Single Contactors
- Single High Head Pump 4 = No Pumps w/ Dual Contactors Dual High Head Pump
- 6 = Single High Head Pump (20-70 ton only)
- 8 = Dual High Head Pump (80-120 ton only)

Digit 36 – Pump Flow Control

X = No Pump Flow Control A = Pump Flow Controlled by Balancing Valve

Digit 37 - Buffer Tank

X = No Tank 1 = With Tank

Digit 38

X =

Digit 39 – Installation Accessories

- X = No Installation Accessories
- 1 = Elastomeric Isolators 2 = Spring Isolators

. .

Digit 40 – Water Strainer

A = With Water Strainer Factory-Installed

Digit 41 – Sound Attenuator Package

- 3 = Super Quiet
- 5 = Comprehensive Acoustic Package

Digit 42 – Appearance Options

- X = No Appearance Options
- A = Architectural Louvered Panels
- B = Half Louvers
- C = Access Guards
- D = Access Guards and Half Louvers

Digit 43 – Exterior Finish

1 = Standard Paint

Digit 44 — Label and Literature Language

- D = English
- G = Chinese Traditional

Digit 45

Х

Digit 46 - Shipping Package

- A = Unit Containerization Package
- Digit 47

Х

- Digit 48
- Х

Digit 49

Х

Digit 50 – Specials

X = None

S = Special

Notes:

1. If a digit is not defined it may be held for future use.

General Data

Table 1. General Data

Size		20	26	30	35	40	52	60	70	80	90	100	110	120	130
Compressor															
Number	#	2	2	2	2	4	4	4	4	4	4	4	4	4	6
Tonnage/circuit ¹		10+10	13+13	15+15	15+20	10+10	13+13	15+15	15+20	20+20	20+25	25+25	25+30	30+30	
Evaporator															
Water storage	(I)	5.3	8.2	8.2	12.1	9.1	15.6	18.9	28.2	26.5	34.1	39.2	43.4	43.4	46.7
Minimum flow ²	(l/s)	1.6	2.1	2.3	2.7	3.2	4.1	4.7	5.5	6.4	7.2	8.1	8.7	9.5	10.2
Maximum flow ¹	(l/s)	4.9	6.2	7.0	8.2	9.5	12.3	14.0	16.6	19.2	21.5	24.2	26.2	28.4	30.7
Water connection	(mm)	50	50	65	65	80	80	80	80	100	100	100	100	100	100
Pump Package															
Evap head pressure avail - high head	(kPa)	239.1	234.7	215.8	208.4	200.9	199.0	190.6	177.7	194.3	186.0	205.4	193.3	249.4	222.7
Power - high head	(kW)	4	4	4	4	5.5	7.5	7.5	7.5	7.5	7.5	11	11	15	15
Expansion tank volume	(I)	24	24	24	24	24	24	24	24	24	24	24	24	24	24
Expansion tank capacity	(I)	350	350	350	350	350	350	350	350	350	350	350	350	350	350
Buffer tank volume	(I)	534	534	534	534	505	505	505	505	580	580	744	744	744	744
Condenser															
Quantity of coils	#	1	1	1	1	2	2	2	2	4	4	4	4	4	4
Coil length	(mm)	2311	2311	3226	3226	2311	2311	3226	3226	3073	3073	3658	3658	3658	4572
Coil height/circuit ¹	(mm)	1727	1727	1727	1727	1727	1727	1727	1727	2134	2134	2134	2134	2134	2134
Number of rows	#	2	2	2	2	2	2	2	2	3	3	3	3	3	3
Fins per foot	(fpf)	192	192	192	192	192	192	192	192	192	192	192	192	192	192
Fan															
Quantity	#	2	2	3	3	4	4	6	6	6	6	8	8	8	10
Diameter	(mm)	732	732	732	732	732	732	732	732	732	732	732	732	732	732
Airflow per fan	(m³/h)	15993	16005	15577	15585	15993	16004	15577	15585	16089	16093	15451	15454	15457	15451
Power per motor	(kW)	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Motor RPM	(rpm)	840	840	840	840	840	840	840	840	840	840	840	840	840	840
Tip Speed	(m/s)	32	32	32	32	32	32	32	32	32	32	32	32	32	32
General Unit															
Refrigerant circuit	#	1	1	1	1	2	2	2	2	2	2	2	2	2	2
Capacity steps	%	50- 100	50- 100	50- 100	43- 100	25-50- 75-100	25-50- 75-100	25-50- 75-100	21-43- 71-100	25-50- 75-100	22-44- 72-100	25-50- 75-100	23-45- 73-100	25-50- 75-100	15-31- 46-62- 81-100
Refrig charge/ circuit ¹	(kg)	14.5	15.4	21.8	21.8	14.5	14.5	22.9	21.8	33.6	35.4	40.8	41.5	39.0	50.8
Oil charge/circuit ¹	(I)	6.6	6.6	13.4	13.4	6.6	6.6	13.4	13.4	13.4	13.4	13.4	13.9	14.4	22.0
Min ambient															
High ambient	(°C)	7	7	3	3	7	7	3	3	3	3	0	0	0	0
Wide ambient	(°C)	-18	-18	-18	-18	-18	-18	-18	-18	-18	-18	-18	-18	-18	-18

Data shown for circuit one only. The second circuits always matches.
 Flow limits are for water only.

Controls

LCD Touch-Screen Display with Multi-Language Support

The standard DynaView display provided with the Trane CH530 control panel features an LCD touch-screen that is navigated by file tabs. This is an advanced interface that allows the user to access any important information concerning setpoints, active temperatures, modes, electrical data, pressure, and diagnostics. It uses full text display available in 19 languages.

Display Features Include:

- LCD touch-screen with LED backlighting, for scrolling access to input and output operating information
- Single-screen, folder/tab-style display of all available information on individual components (evaporator, condenser, compressor, etc.)
- Password entry/lockout system to enable or disable display
- Automatic and immediate stop capabilities for standard or immediate manual shutdown
- Fast, easy access to available chiller data in tabbed format, including:
 - Modes of operation, including normal cooling and heating as well as ice making
 - · Water temperatures and setpoints
 - Loading and limiting status and setpoints
 - Outdoor air temperature
 - Start/stop differential timers
 - Pump status and override
 - Chilled and hot water reset settings
- Optional external setpoints, including:
 - Chilled and hot water
 - Demand limit
 - Ice building

Reports, listed on a single tabbed screen for easy access, including:

- ASHRAE, containing all guideline 3 report information
- Evaporator
- Condenser
- Compressor

Evaporator, condenser, and compressor reports containing all operational information on individual components, including:

- Water temperatures
- Refrigerant pressures, temperatures, and approach
- Flow switch status
- EXV position
- Compressor starts and run-time

Alarm and diagnostic information, including:

- Flashing alarms with touch-screen button for immediate address of alarm condition
- Scrollable list of last ten active diagnostics
- Specific information on applicable diagnostic from list of over one-hundred
- Automatic or manual resetting diagnostic types

Adaptive Controls

Adaptive Controls directly sense the control variables that govern the operation of the chiller: evaporator pressure and condenser pressure. When any one of these variables approaches a limit condition when damage may occur to the unit or shutdown on a safety, Adaptive Controls takes corrective action to avoid shutdown and keep the chiller operating. This happens through combined actions of compressor and/or fan staging. Whenever possible, the chiller is allowed to continue making chilled or hot water. This keeps cooling capacity available unit the problem can be solved. Overall, the safety controls help keep the building or process running and out of trouble.

Stand-Alone Controls

Single chillers installed in applications without a building management system is simple to install and control: only a remote auto/stop for scheduling is required for unit operation. Signals from the chilled-water pump contactor auxiliary, or a flow switch, are wired to the chilled-water flow interlock. Signals from a time clock or some other remote device are wired to the external auto/stop input.

- Auto/Stop A job-site provided contact closure turns the unit on and off.
- External Interlock A job-site provided contact opening wired to this input turns the unit off and require a manual reset of the unit microcomputer. This closure is typically triggered by a jobsite provided system such as a fire alarm.

Time of Day Scheduling

Time of day scheduling allows the customer to perform simple chiller scheduling without the need for a building automation system.

This feature allows the user to set ten events in a seven day time period. For each event the user can specify an activation time and the days of the week the event is active. Any available setpoints can be specified for each event, such as the leaving chilled water temperature (standard) and the demand limit setpoint (optional if ordered).

Required features:

• Time of day scheduling (selectable option with chiller)

Additional options that if ordered may be incorporated into the scheduling:

- External chilled or hot water setpoint, external demand limit setpoint
- Ice-making initiation

Hardwire Points

Microcomputer controls allow simple interface with other control systems, such as time clocks, building automation systems, and ice storage systems via hardwire points. This means you have the flexibility to meet job requirements while not having to learn a complicated control system.

Remote devices are wired from the control panel to provide auxiliary control to a building automation system. Inputs and outputs can be communicated via a typical 4–20 mA electrical signal, an equivalent 2–10 Vdc signal, or by utilizing contact closures.

This setup has the same stand features as a stand-alone water chiller, with the possibility of having additional optional features:

- Ice making control
- External chilled or hot water setpoint, external demand limit setpoint
- Chilled water temperature reset
- Programmable relays available outputs are: alarm-latching, alarm-auto reset, general alarm, warning, chiller limit mode, compressor running, and Tracer control

LonTalk LCI-C Interface with Modbus Interface

LonTalk (LCI-C) with ModBus communications capabilities are available, with communication link via single twisted-pair wiring to factory-installed, tested communication board.

Required features:

- LonTalk LC I-C Interface w/ Modbus Interface
- Protocol Interface Controller

Modbus is a messaging structure developed by the Modicon to transfer and register data between control devices. Modbus is a membership-based trade association that seeks to drive the adoption of the Modbus communication protocol as the messaging structure that devices support. Modbus is a system level communications protocol.

LonTalk LCI-C Interface

LonTalk (LCI-C) communications capabilities are available, with communication link via single twisted-pair wiring to factory-installed, tested communication board.

Required features:

• LonTalk/Tracer Summit Interface (selectable option with chiller)

LonTalk is a communications protocol developed by the Echelon Corporation. The LonMark association develops control profiles using the LonTalk communication protocol. LonTalk is a unit level communications protocol.

LonTalk Communications Interface for Chillers (LCI-C) provides a generic automation system with the LonMark chiller profile inputs/outputs. In addition to the standard points, Trane provides other commonly used network output variables for greater interoperability with any automation system. The complete reference list of Trane LonTalk points is available on the LonMark web site.

Trane controls or another vendor's system can use the predefined list of points with ease to give the operator a complete picture of how the system is running

BACnet Interface

BACnet interface capabilities are available with communication link via single twisted-pair wiring to a a factory-installed and tested communication board.

Required features:

• BACnet Interface (selectable option with chiller)

BACnet is a data communication protocol for building automation and control networks developed by American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE).

Tracer Summit

The chiller plant control capabilities of the Trane Tracer Summit building automation system are unequaled in the industry. Trane's depth of experience in chillers and controls makes us a well-qualified choice for automation of chiller plants using air-cooled AquaStream chillers. Our chiller plant automation software is fully pre-engineered and tested.

Required features:

- LonTalk/Tracer Summit Interface (selectable option with chiller)
- Building Control Unit (external device required)

Energy Efficiency

- Sequences starting of chillers to optimize the overall chiller plant energy efficiency
 - Individual chillers operate as base, peak, or swing based on capacity and efficiency
 - Automatically rotates individual chiller operation to equalize runtime and wear between chillers.
 - Evaluates and selects the lowest energy consumption alternative from an overall system perspective.

Easy Operation and Maintenance

- Remote monitoring and control
- · Displays both current operation conditions and scheduled automated control actions
- Concise reports assist in planning for preventative maintenance and verifying performance
- Alarm notification and diagnostic messages aid in quick and accurate troubleshooting

When integrated with a Tracer Summit building management system the total building operation can be optimized. With this system option, the full breadth of Trane's HVAC and controls experience are applied to offer solutions to many facility issues. If your project calls for an interface to other systems, Tracer Summit can share data via Modbus, BACnet or LonTalk.

Tracer SC

The Tracer SC system controller acts as the central coordinator for all individual equipment devices on a Tracer building automation system. The Tracer SC scans all unit controllers to update information and coordinate building control, including building subsystems such as VAV and chiller water systems. With this system option, the full breadth of Trane's HVAC and controls experience are applied to offer solutions to many facility issues. The LAN allows building operators to manager these varied components as one system from any personal computer with web access. The benefits of this system are:

- Improved usability with automatic data collection, enhanced data logging, easier to create graphics, simpler navigation, pre-programmed scheduling, reporting, and alarm logs.
- Flexible technology allows for system sizes from 30-120 unit controllers with any combination of LonTalk or BACnet unit controllers.
- LEED certification through site commissioning report, energy data collection measurement, optimizing energy performance, and maintaining indoor air quality.

Energy savings programs include: fan pressure optimization, ventilation reset, and chiller plant control (adds and subtracts chillers to meet cooling loads).

Electrical Data

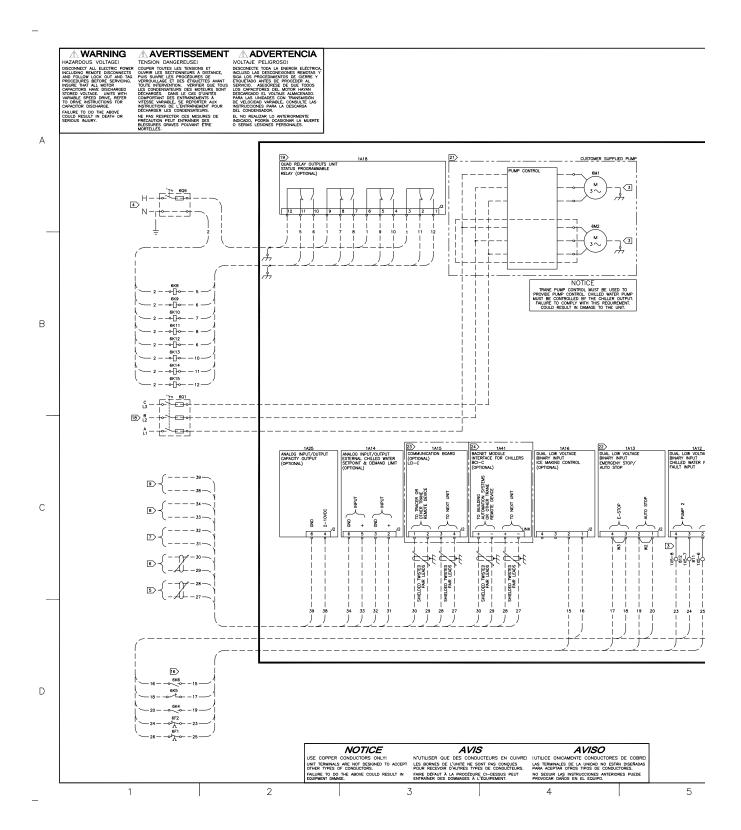
Table 1. Electrical Data

									Field W	/iring		
			Compi	essor Moto	r	Cond Fan		hout Imp	High Head Pump		Ring	
Size	Power	RLA	RLA	LRA	LRA	FLA	MCA	MOPD	MCA	MOPD	Size	
	230/60/3	39	39	278	278	8.8	107	125	121	160	FOT35-8	
20	380/60/3	22	22	177	177	4.7	61	80	69	80	FOT25-8	
	460/60/3	19	19	130	130	4.7	52	63	58	63	FOT16-8	
	230/60/3	44	44	338	338	8.8	119	160	133	160	FOT50-10	
26	380/60/3	26	26	196	196	4.7	70	80	78	100	FOT25-8	
	460/60/3	21	21	158	158	4.7	57	63	64	80	FOT16-8	
	230/60/3	51	51	485	485	8.8	139	160	154	200	FOT70-10	
30	380/60/3	31	31	210	210	4.7	85	100	93	100	FOT35-8	
	460/60/3	26	26	160	160	4.7	71	80	78	100	FOT25-8	
	230/60/3	51	77	485	485	8.8	172	200	186	250	FOT95-10	
35	380/60/3	31	40	210	260	4.7	95	125	104	125	FOT35-8	
	460/60/3	26	33	160	215	4.7	80	100	87	100	FOT25-8	
	230/60/3	39-39	39-39	278-278	278-278	8.8	201	200	220	250	FOT95-10	
40	380/60/3	22-22	22-22	177-177	177-177	4.7	114	125	125	125	FOT50-10	
	460/60/3	19-19	19-19	130-130	130-130	4.7	97	100	107	125	FOT35-8	
	230/60/3	44-44	44-44	338-338	338-338	8.8	223	250	249	250	FOT150-12	
52	380/60/3	26-26	26-26	196-196	196-196	4.7	131	125	146	160	FOT70-10	
	460/60/3	21-21	21-21	158-158	158-158	4.7	108	125	120	125	FOT50-10	
	230/60/3	51-51-	51-51	485-485	485-485	8.8	263	300	289	315	FOT185-12	
60	380/60/3	31-31	31-31	210-210	210-210	4.7	159	160	174	200	FOT95-10	
	460/60/3	26-26	26-26	160-160	160-160	4.7	134	125	146	160	FOT70-10	
	230/60/3	51-77	77-51	485-485	485-485	8.8	321	350	347	400	FOT240-14	
70	380/60/3	31-40	40-31	210-260	260-210	4.7	179	200	194	200	FOT95-10	
	460/60/3	26-33	33-26	160-215	215-160	4.7	150	160	162	160	FOT70-10	

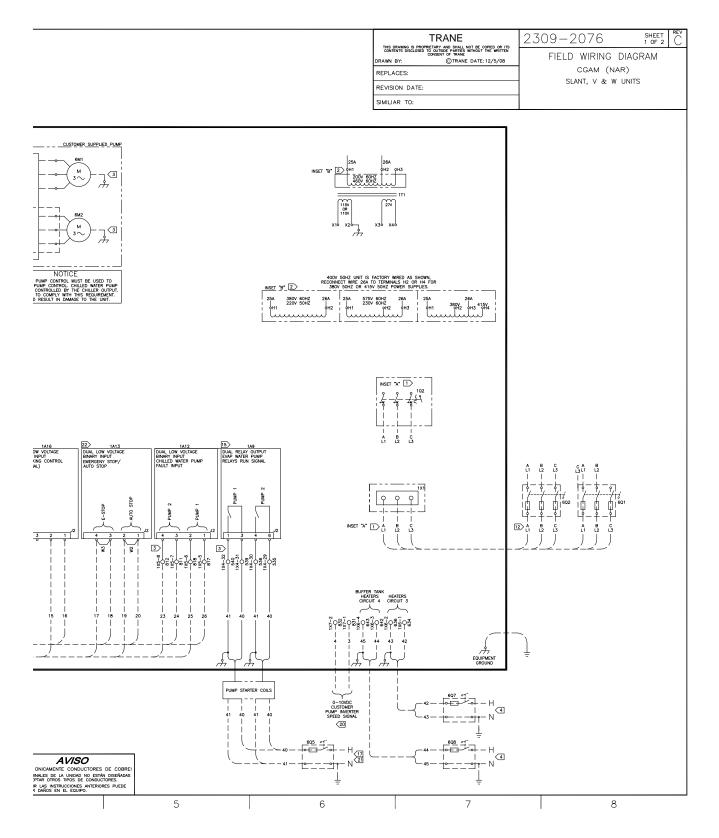
Electrical Data

Table 1. Electrical Data

							Field Wiring				
			Comp	ressor Moto	r	Cond Fan		hout Imp		Head Imp	Ring
Size	Power	RLA	RLA	LRA	LRA	FLA	MCA	MOPD	MCA	MOPD	Size
	230/60/3	77-77	77-77	485-485	485-485	8.8	373	400	399	450	FOT300-14
80	380/60/3	40-40	40-40	260-260	260-260	4.7	196	200	211	250	FOT120-12
	460/60/3	33-33	33-33	215-215	215-215	4.7	164	160	176	200	FOT70-10
	230/60/3	77-87	87-77	485-560	560-485	8.8	396	450	423	500	FOT300-14
90	380/60/3	40-55	55-40	260-310	310-260	4.7	229	250	244	250	FOT150-12
	460/60/3	33-42	42-33	215-260	260-215	4.7	184	200	196	200	FOT95-10
	230/60/3	87-87	87-87	560-560	560-560	8.8	431	500	469	550	FOT500-14
100	380/60/3	55-55	55-55	310-310	310-310	4.7	265	315	288	315	FOT185-12
	460/60/3	42-42	42-42	260-260	260-260	4.7	208	250	227	250	FOT120-12
	230/60/3	87-109	109-87	560-680	680-560	8.8	480	550	519	600	FOT500-14
110	380/60/3	55-60	60-55	310-360	360-310	4.7	277	315	299	350	FOT185-12
	460/60/3	42-51	51-42	260-320	320-260	4.7	228	250	246	250	FOT150-12
	230/60/3	109-109	109-109	680-680	680-680	8.8	525	600	574	650	FOT500-14
120	380/60/3	60-60	60-60	360-360	360-360	4.7	287	315	316	350	FOT240-14
	460/60/3	51-51	51-51	320-320	320-320	4.7	245	250	269	315	FOT150-12
	230/60/3	77-77-87	87-77-77	485-485-560	560-485-485	8.8	576	650	626	700	FOT500-14
130	380/60/3	40-40-55	55-40-40	260-260-310	310-260-260	4.7	323	350	352	400	FOT240-14
	460/60/3	33-33-42	42-33-33	215-215-260	260-215-215	4.7	263	300	287	315	FOT185-12


1. RLA - Rated Load Amps - Rated in accordance with UL Standard 1995.

RLA - Rated Load Amps - Rated in accordance with UL Standard 1995.
 LRA - Locked Rotor Amps - Based on full winding starts.
 MCA - Minimum Circuit Ampacity-125 percent of largest compressor RLA plus 100 percent of all other loads.
 MOPD or Max Fuse or HACR type breaker-225 percent of the largest compressor RLA plus 100 percent of all other loads.
 Voltage Utilization Range: Rated voltage (use range): 230/60/3 (208-254), 380/60/3 (342-418), 460/60/3 (414-506)
 One separate 120/60/1, 15 amp customer provided power connection is required to power the heaters. An additional 120/60/1, 15 amp customer provided power connection.

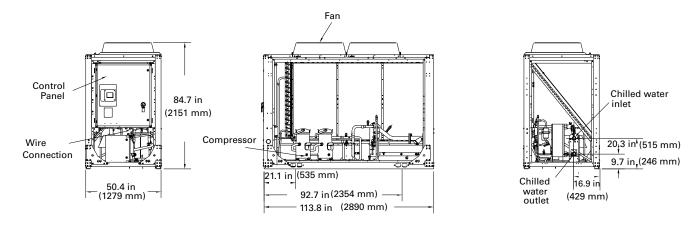

Local codes may take precedence.
 Copper wire only, based on nameplate Minimum Circuit Ampacity (MCA).

Electrical Connections

Electrical Connections

	1 SINGLE SOURCE POWER IS PROVIDED AS STANDARD ON THESE PRODUCTS, FIELD CONNECTIONS ARE MADE TO 1X1, OR 1Q2.	
	POR VOLTAGES 200V/60HZ, 220V/50HZ, 380V/60HZ, 460V/60HZ, WIRE 26A SHALL BE CONNECTED TO H2. FOR VOLTAGES 230V/60HZ & 575V/60HZ, WIRE 26A SHALL BE CONNECT TO H3. 400V/50HZ UNIT IS FACTORY WIRED WITH 26A CONNECTED TO H3 - RECONNECT WIRE 26A TO H2 FOR 380V/50HZ, OR H4 FOR 415V/50HZ. H4 IS ONLY AVAILABLE WITH 400V/50HZ PANELS.	
A	3 FIELD CONNECTIONS ARE ONLY MADE IN A CUSTOMER PROVIDED PUMP (PTYP=NONE). THESE CONNECTIONS WILL BE MADE BY THE FACTORY WHEN THE PUMP IS PROVIDED BY THE FACTORY (PTYP=DHHP).	
	 CUSTOMER SUPPLIED POWER 115/60/1 OR 220/50/1 TO POWER RELAYS. MAX. FUSE SIZE IS 20 AMPS. GROUND ALL CUSTOMER SUPPLIED POWER SUPPLIES AS REQUIRED BY APPLICABLE CODES. GREEN GROUND SCREWS ARE PROVIDED IN UNIT CONTROL PANEL. 	
	5 WIRED TO NEXT UNIT. 22 AWG SHIELDED COMMUNICATION WIRE EQUIVALENT TO HELIX LF22P0014216 RECOMMENDED. THE SUM TOTAL OF ALL INTERCONNECTED CABLE SEGMENTS NOT TO EXCEED 4500 FEET. CONNECTION TOPOLOGY SHOULD BE DAISY CHAIN. REFER TO BUILDING AUTOMATION SYSTEM (BAS) COMMUNICATION INSTALLATION LITERATURE FOR END OF LINE TERMINATION RESISTOR REQUIREMENTS.	
	6 WIRED TO TRACER OR OTHER TRANE REMOTE DEVICE. 22 AWG SHIELDED COMMUNICATION WIRE EQUIVALENT TO HELIX LF22P0014216 RECOMMENDED. THE SUM TOTAL OF ALL INTERCONNECTED CABLE SEGMENTS NOT TO EXCEED 4500 FEET. CONNECTION TOPOLOGY SHOULD BE DAISY CHAIN. REFER TO BUILDING AUTOMATION SYSTEM (BAS) COMMUNICATION INSTALLATION LITERATURE FOR END OF LINE TERMINATION RESISTOR REQUIREMENTS.	
В	7 WIRED TO CUSTOMER CHILLED WATER SET POINT 2–10V OR 4–20mA.	
	8 WIRED TO CUSTOMER EXTERNAL DEMAND LIMIT 2-10V OR 4-20mA.	
	9 WIRED TO CUSTOMER 2-10V OR 4-20mA % CAPACITY ANNUNICIATOR.	
	11. REFER TO CGAM ELECTRICAL SCHEMATIC FOR SPECIFIC ELECTRICAL CONNECTION INFORMATION AND NOTES PERTAINING TO WIRING INSTALLATION.	
	12 ALL UNIT POWER WIRING MUST BE 600 VOLT COPPER CONDUCTORS ONLY AND HAVE A MINIMUM TEMPERATURE INSULATION RATING OF 90 DEGREE C. REFER TO UNIT NAMEPLATE FOR MINIMUM CIRCUIT AMPACITY AND MAXIMUM OVERCURRENT PROTECTION DEVICE. PROVIDE AN EQUIPMENT GROUND IN ACCORDANCE WITH APPLICABLE ELECTRIC CODES. REFER TO WIRE RANGE TABLE FOR LUG SIZES.	
	13. ALL FIELD WIRING MUST BE IN ACCORDANCE WITH NATIONAL ELECTRIC CODE AND LOCAL REQUIREMENTS.	
С	14. ALL CUSTOMER CONTROL CIRCUIT WIRING MUST BE COPPER CONDUCTORS ONLY AND HAVE A MINIMUM INSULATION RATING OF 300 VOLTS. EXCEPT AS NOTED, ALL CUSTOMER WIRING CONNECTIONS ARE MADE TO CIRCUIT BOARD MOUNTED BOX LUGS WITH A WIRE RANGE OF 14 TO 18 AWG OR DIN RAIL MOUNTED SPRING FORCE TERMINALS.	
0	15) UNIT PROVIDED DRY CONTACTS FOR THE CONDENSER/CHILLED WATER PUMP CONTROL. RELAYS ARE RATED FOR 7.2 AMPS RESISTIVE, 2.88 AMPS PILOT DUTY, OR ½ HP, 7.2 FLA AT 120 VOLTS 60 HZ, CONTACTS ARE RATED FOR 5 AMPS GENERAL PURPOSE DUTY 240 VOLTS.	
	16) CUSTOMER SUPPLIED CONTACTS FOR ALL LOW VOLTAGE CONNECTIONS MUST BE COMPATABLE WITH DRY CIRCUIT 24 VOLTS DC FOR A 12 mA RESISTIVE LOAD. SILVER OR GOLD PLATED CONTACTS RECOMMENDED.	
	17) FIELD CONNECTIONS ARE ONLY MADE IN A CUSTOMER PROVIDED PUMP. THESE CONNECTIONS WILL BE MADE BY THE FACTORY WHEN THE PUMP IS PROVIDED BY THE FACTORY. CUSTOMER SUPPLIED POWER 115V, 60Hz, 1PH.	
	18 CUSTOMER SUPPLIED 3 PHASE POWER.	
	19) OPTIONAL FIELD ASSIGNED PROGRAMMABLE RELAYS (STAT=PRLY). CLASS 1 FIELD WIRED MODULE, RELAY AT 120V: 7.2A RESISTIVE 2.88A PILOT DUTY, 1/2HP 7.2FLA; AT 240VAC: 5 AMPS GENERAL PURPOSE.	
	20> WIRED TO CUSTOMER 0-10 VDC PUMP SPEED SIGNAL.	
D	21 WHEN FACTORY PROVIDED PUMP IS NOT SELECTED. CUSTOMER MUST SUPPLY SUITABLE PUMP SYSTEM. REFER TO PUMP MANUFACTURER FOR WIRING REQUIREMENTS.	
	 THE CONTACTS FOR AUTO STOP AND EMERGENCY STOP SWITCHES ARE JUMPERED AT THE FACTORY BY JUMPERS W2 & W3 TO ENABLE UNIT OPERATION. IF REMOTE CONTROL IS DESIRED, REMOVED THE JUMPERS AND CONNECT TO THE DESIRED CONTROL CIRCUIT. 1415, LCI MODULE USED WHEN (COMM = LCI). 	
	23 (A15, LCI MODULE USED WHEN (COMM = LCI). 24) 141, BACNET INTERFACE MODULE USED WHEN (COMM = BCNT).	
	27 INT, BRUNCH MUDULL USED THEM (COMM - BUNT).	
	1 2 3 4	

_


Electrical Connections

				_		REV					
				THE	TRANE	2309-2076 SHEET C					
				DRAW	TRAWING IS PROPRIETARY AND SHALL NOT BE COPIED OR ITS ITENTS DISCLOSED TO OUTSIDE PARTIES WITHOUT THE WRITTEN CONSENT OF TRANE	FIELD WIRING DIAGRAM					
					ACES:	CGAM (NAR)					
						SLANT, V & W UNITS					
					SION DATE:	-					
				SIMIL	IAR TO:						
		REP	LACEME	ENT F	USE TABLE						
FUSE	VOLTAGE	Hz	CLASS		NOTES						
1 F 1	ALL	ALL	СС	10	FUSE, COMPRESSOR CRANKC	ASE HEATER,					
1F2 1F3	ALL	ALL	C C C C	10	CIRCUIT 1 FUSE, COMPRESSOR CRANKC	ASE HEATER					
1F-5	ALL	ALL	CC	10	CIRCUIT 2	ASE HEATER,					
	200	60	ĈĈ	10							
	230	60	СС	8							
1F5,	380	60	CC	5	FUSE, CONTROL POWER TRANSFORMER, PRIMARY						
1F6	400 460	50 60	CC CC	5	PRIMART						
	575	60	CC	4	-						
	200	60	СС	10							
	230	60	СС	8	THIRD PHASE, PHASE PROTECTION Monitor						
1F7	380 400	60 50	CC	5							
	400	60	CC	5	MONTOR						
	575	60	CC	4							
	200	60	СС	10							
1F8,	230	60	CC	8	DUAL BOINT DOWED CEOOND	DUACE					
1F9,	380 400	60 50	CC CC	5	DUAL POINT, POWER SECOND PHASE PROTECTION MONITOR	PHASE,					
1F10	460	60	CC	5							
	575	60	СС	4							
1 F 1 1	ALL	ALL	СС	10	FUSE, CONTROL POWER TRAN SECONDARY, 115V	SFORMER,					
1F12 - 1F13	ALL	ALL	СС	6	FUSE, CONTROL POWER TRAN SECONDARY, 24V	SFORMER,					
1F14 - 1F16	200-460	ALL	СС	30	FUSE, INVERTER, FAN						
1F17 - 1F19	575	60	СС	6	(FAST ACTING EXCEPT 575V)						
1F38 - 1F40 1F44 - 1F46	ALL	ALL	СС	30	FAST ACTING FUSE, ATM-R-30						
1F38 - 1F40 1F41 - 1F43	ALL	ALL	СС	30	FAST ACTING FUSE, USED ONLY ON W UNITS						
	FAC	TORY	PROVIDE	D PUM	P INVERTER FUSE						
	200,230	60	J	30	3.7Kw VSD						
	460,575	60	J	25	5.5 Kw VSD						
1F32,	200,230		J	60							
1F33,	460,575	60	СС	30	7.5Kw VSD						
1F34			00								
	200,230	60	J	60	11Kw VSD						
	460,575	00	5	40							
	•		•		•						

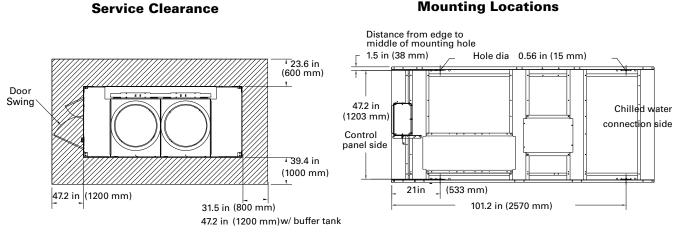
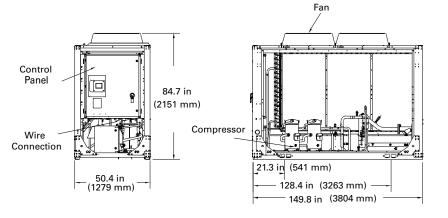

Dimensions

Figure 1. CGAM 20 and 26 ton

Water connections are 1.8 in (44 mm) from the end.

Figure 2. CGAM 20 and 26 ton - service clearances and mounting locations


More clearance may be needed for airflow depending on the installation.

Mounting Locations

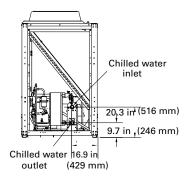
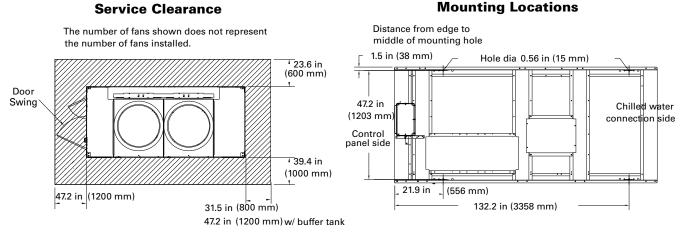

Total of four mounting locations.

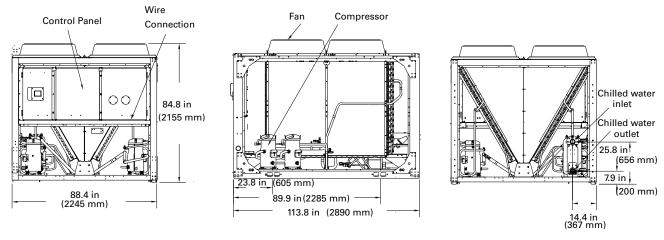
Figure 3. CGAM 30 and 35 ton



The number of fans shown does not represent the number of fans installed.

Water connections are 1.6 in (40 mm) from unit end.

Figure 4. CGAM 30 and 35 ton - service clearances and mounting locations

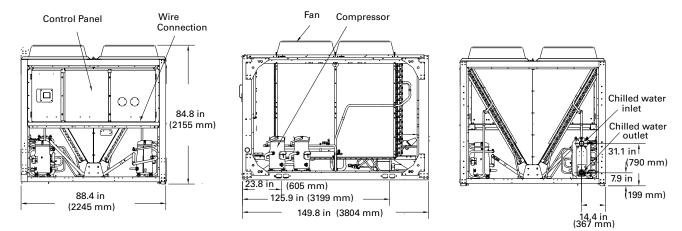


More clearance may be needed for airflow depending on the installation.

Total of four mounting locations.

Figure 5. CGAM 40 and 52 ton

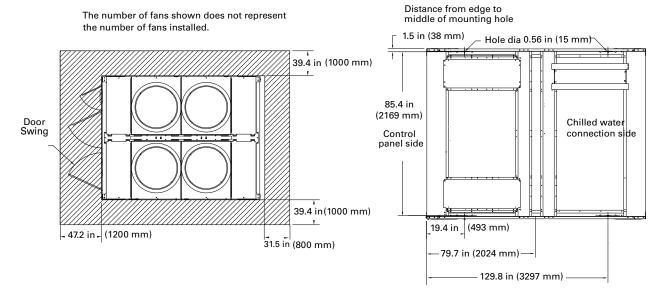
Water connections are 1.9 in (50 mm) outside unit end.



More clearance may be needed for airflow depending on the installation.

Total of four mounting locations.

Figure 7. CGAM 60 and 70 ton

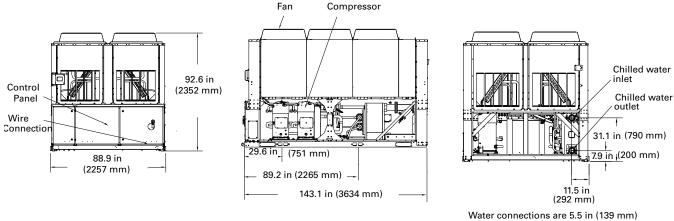

The number of fans shown does not represent the number of fans installed.

Water connections are even with unit end.

Figure 8. CGAM 60 and 70 ton - service clearances and mounting locations

Service Clearance

Mounting Locations



More clearance may be needed for airflow depending on the installation.

Total of six mounting locations.

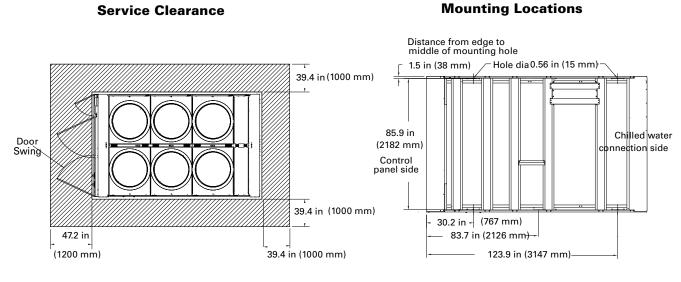
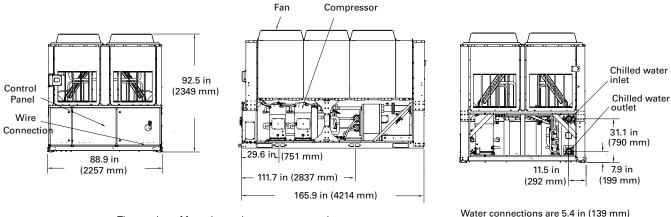


Figure 9. CGAM 80 and 90 ton

Water connections are 5.5 in (139 mm from unit end.

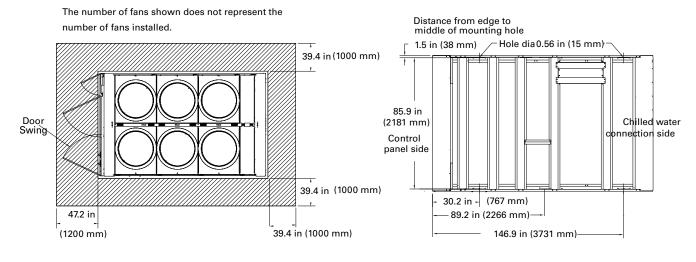
Figure 10. CGAM 80 and 90 ton - service clearances and mounting locations



More clearance may be need for airflow depending on the installation.

Total of six mounting location.

Figure 11. CGAM 100, 110 and 120 ton

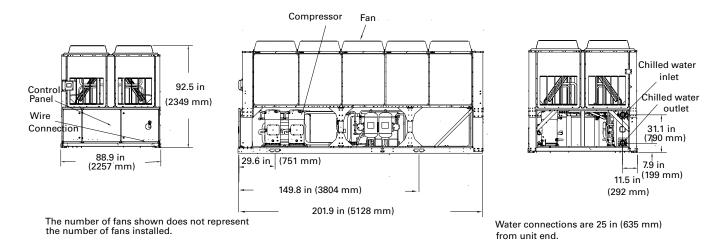

The number of fans shown does not represent the number of fans installed.

Water connections are 5.4 in (139 mm) from unit end.

Figure 12. CGAM 100, 110 and 120 ton - service clearances and mounting locations

Service Clearance

Mounting Locations



More clearance may be needed for airflow depending on the installation.

Total of six mounting locations.

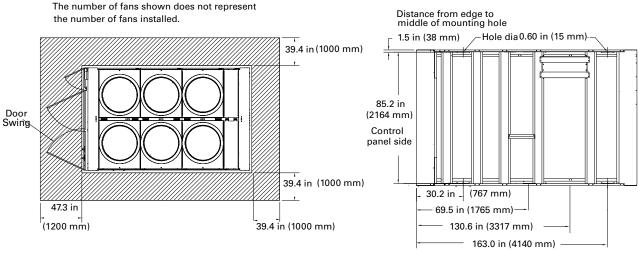

Figure 13. CGAM 130 ton

Figure 14. CGAM 130 ton - service clearances and mounting locations

Mounting Locations

More clearance may be needed for airflow depending on the installation.

Total of eight mounting locations.

Weights

		e Unit ht - kg		p Unit ht - kg	Pump and Buffer Tank Weight- kg		
Tons	Shipping	Operating	Shipping	Operating	Shipping	Operating	
20	896	924	1097	1137	1468	2043	
26	922	953	1122	1165	1494	2072	
30	1152	1183	1395	1438	1767	2344	
35	1168	1202	1410	1457	1782	2363	
40	1597	1629	1810	1854	2247	2796	
52	1638	1676	1851	1900	2287	2842	
60	2084	2125	2312	2365	2749	3307	
70	2117	2166	2345	2407	2782	3349	
80	2446	2494	2872	2949	3113	3770	
90	2560	2615	2986	3070	3226	3891	
100	2852	2912	3278	3367	3578	4411	
110	2887	2951	3313	3406	3613	4451	
120	2909	2973	3495	3588	3795	4633	
130	3389	3456	3997	4093	4297	5138	

Table 1. Weights - CGAM

Weights based on aluminum fins.
 Weights do not include: partial heat recovery, louvered panels, etc.
 All weights ±5%.

Trane optimizes the performance of homes and buildings around the world. A business of Ingersoll Rand, the leader in creating and sustaining safe, comfortable and energy efficient environments, Trane offers a broad portfolio of advanced controls and HVAC systems, comprehensive building services, and parts. For more information, visit www.Trane.com.

Trane has a policy of continuous product and product data improvement and reserves the right to change design and specifications without notice.

© 2011 Trane All rights reserved CG-PRC021-EN 15 Feb 2011 Supersedes: CG-PRC021-EN (01 Dec 2009)

