

Replacement of RLY00765 with KIT09437 using Tracer CH531 Components

Models: CVRD, KIT09437, CVHE

PART-SVN82C-EN

Table of Contents

Description Page
General Information3Warnings and Cautions.3Literature change history3About this manual3Main components4Field provided material4
Installation 5 Removal of existing components 5 Mounting and wiring of LLIDs on backpanel 6 Wiring from backpanel components to starter components 9 Mounting the DynaView human interface 12 Connecting LLIDs to the inter-processor communication bus 13 Current transformer (CT) work 13
Startup
Appendix A.15Typical original wiring diagrams15
Appendix B 18 New control system wiring diagrams 18
Appendix C
Appendix C

General Information

Warnings and Cautions

NOTICE: Warnings and Cautions appear at appropriate sections throughout this literature. Read these carefully.

WARNING: Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

CAUTION: Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury. It may also be used to alert against unsafe practices.

CAUTION: Indicates a situation that may result in equipment or propertydamage only accidents.

Literature Change History

PART-SVN82A-EN (March 2004)

Original issue of manual. Describes the installation procedures required to replace Trane motor protection module, RLY00765. This new KIT09437 uses a portion of the Tracer™ CH530 controls system.

PART-SVN82B-EN (July 2004)

Revisions to original issue of manual. Updated wiring diagrams and detailed wiring instructions. Updated to improve layout, content and diagrams.

PART-SVN82C-EN (September 2004)

Minor revisions to manual. Updated ship with list in Table 1 and wiring instructions found in Table 2. Added information in removal of components.

About this manual

RLY00765, the Trane Motor Protection Module (also called the Electronic Overload, A1), is no longer available.

KIT09437 is a functional replacement utilizing components used with Tracer CH531 control systems. It is not a complete CH531 controls package installation. It does not provide distribution fault protection. As configured this kit does not provide momentary power loss. It can provide phase loss and phase rotation protection along with standard motor protection features relating to currents and load. This kit will measure motor currents and provide an analog output to be used as input for existing temperature control device like the MOD00182.

To properly install this replacement, the technician must have a good, working knowledge of Tracer CH530 or CH531 control systems.

Three (3) new current transformers (CTs) are required to complete this installation. They are not included in this kit. They must be ordered separately based on unit RLA. See Table C4 or C5 in Appendix C for CT sizing details and part numbers.

General Information

Qty	PRIDE part #	Description
1	TRR01701	2T5, 120 Vac to 27 Vac transformer
1	BRD02102	2A50, CH531 Power supply
1	BRD02945	2A54, Dual Analog Input/Output (DAIO) LLID
1	BRD02944	2A56, Dual Relay Output (DRO) LLID
1	BRD02942	2A53, Dual Binary Input (DBI) LLID
1	MOD01404	2A55, DynaView human interface
1	BRD02950	2A1, Starter Module
1	TRR01860	2K40, Signal Conditioner [2-10 Vdc to 0-(-8.25) Vdc]
1	BLK00855	8 pin mounting base for Signal Conditioner, TRR01860
2	RLY02547	2K12, Relay, SPDT, 10 amp rating
1	RLY01710	2K11, Relay, DPDT, 12 amp rating
1	no part number	Terminal block on Din Rail
3	Not Included (see note 1)	Current Transformers (CTs)-See note 1

Table 1. Main components of KIT09437

Note 1: Three (3) new current transformers (CTs) are required to complete this installation. They are not included in this KIT. They must be ordered separately based on unit RLA. See Table C4 or C5 in Appendix C for CT sizing details and part numbers.

Field provided material

Some field provided material will be required to perform the replacement. This is a partial list in addition to normal tools and hardware.

- Wire-red #16 AWG control wire will be required to make the connections between LLIDs and between LLIDs and existing components.
- Computer and cable for CH530 system programming.
- Wire markers, wire nuts, cable ties, and wire splicers-wire markers will be required to identify field installed wiring. Wire nuts and splicers may be needed to splice wires to complete wiring runs. Cable ties may be needed to "clean up" wiring runs.
- Digital multi-meter, with phase detection capability.

Removal of Components

▲ WARNING Hazardous Voltage!

Disconnect all electric power, including remote disconnects before servicing. Follow proper lockout/tagout procedures to ensure the power can not be inadvertently energized. Failure to disconnect power before servicing could result in death or serious injury.

It is assumed that all work can be done inside the starter panel. No wiring should have to be done in the control panel. However, access to the control panel to verify wiring origins may be necessary.

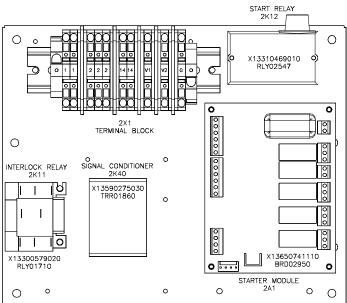
Removal of Motor Protection Module (A1 or MPM), and Circuit Breakers CB11 and CB15 $\,$

- 1. Before removing the MPM, mark wires landing on V1, V2, D1 (wire #125B) & D2 (wire #127A). These wires will be re-landed on CH531 components.
- 2. Remove wires from CTs that land on C1-C6. The existing CTs can be removed and discarded. New CTs will be used with CH531 components. The new CTs are not included in this KIT. They must be ordered separately. See Table 1 in Appendix C for details.
- 3. Remove wires (#130 and #131) for CB11 (Compressor Motor Current Overload) from F1 and F2. Remove wires (#132 and #133) for CB15 (Distribution Fault) from E3 and E4. These two circuit breakers, CB11 and CB15, in the starter panel door will have to be removed as they will no longer be required, the functions will be performed by the CH531 components.

See Appendix B for wiring details.

A sheet of black vinyl is included so that "patches" may be cut to fit and be placed over the holes in the starter door where these breakers were mounted.

The Starter Circuit Fault Indicator (CB13) can remain as wired.


Remove the remaining wires from the MPM and remove the module.

When complete the bottom bracket should be left attached to the starter backpanel. The new component sub-panel sent in this kit will attach to the tapped holes on the flanges of the existing bottom bracket.

Mounting and wiring of LLIDs on backpanels

Install the LLIDs and components on the backpanels provided as shown in Figure 1.

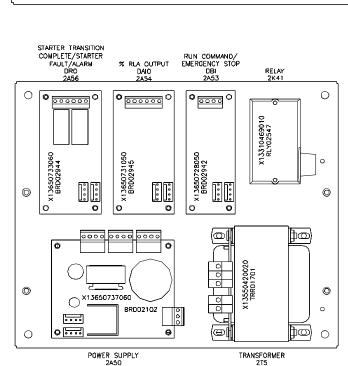
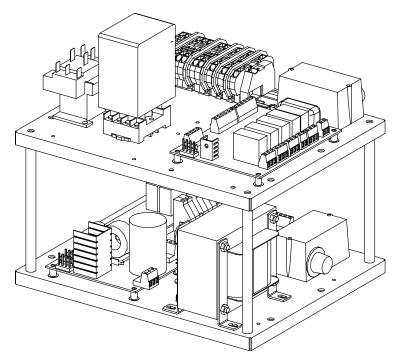



Figure 1. Component layout, top and bottom panels

Figure 2. Panel assembly detail

Assemble the two backpanels using the standoffs and screws provided. The standoffs must be attached to the bottom panel before it can be mounted in the starter panel.

First wire the connections between the LLIDs and components on the backpanels and the terminal block, 2X1 according to the following table. Note this wiring could be done prior to arrival on jobsite.

	From		То	
Wire Number	Component Number	Terminal Number (or Wire)	Component Number	Terminal Number (or Wire)
711	Power supply, 2A50	J2-2	Transformer, 2T5	X1
712	Power supply, 2A50	J2-1	Transformer, 2T5	X2
710	Power supply, 2A50	J2-3	2X1, terminal block	2X1-G
713	Transformer, 2T5	H1	2X1, terminal block	2X1-1
714	Transformer, 2T5	H3	2X1, terminal block	2X1-2
708	Signal conditioner, 2K40	1	2X1, terminal block	2X1-1
709	Signal conditioner, 2K40	3	2X1, terminal block	2X1-2
704	Signal conditioner, 2K40	6	Dual Analog Input/Output, 2A54	J2-3
705	Signal conditioner, 2K40	5	Dual Analog Input/Output, 2A54	J2-1
706	Signal conditioner, 2K40	8	2X1, terminal block	2X1-V2
707	Signal conditioner, 2K40	7	2X1, terminal block	2X1-V1
Yellow	Relay, 2K41	Yellow wire	Dual Binary Input, 2A53	J2-1
Orange	Relay, 2K41	Orange wire	Dual Binary Input, 2A53	J2-2
White/ Yellow	Relay, 2K41	White/Yellow wire	2X1, terminal block	2X1-2
White/ Black	Relay, 2K41	White/Black wire	2X1, terminal block	2X1-14
W2	Dual Binary Input, 2A53]2-3	Dual Binary Input, 2A53	J2-4 (See Note 1)
700	Starter Module, 2A1	J12-2	2X1, terminal block	2X1-2
702	Starter Module, 2A1	J10-3	2X1, terminal block	2X1-14
none	Starter Module, 2A1	J10-1	2K11 Interlock Relay	1
none	2K11 Interlock Relay	3	2K12 Start Relay	Yellow
none	2K12 Start Relay	Orange	2K11 Interlock Relay	Coil
none	2K11 Interlock Relay	Coil	2X1, terminal block	2X1-2
703	Starter Module, 2A1	J8-1	2K11 Interlock Relay	3
none	Starter Module, 2A1	J8-1	2K12 Start Relay	White/Black
none	2K12 Start Relay	White/Yellow	2X1, terminal block	2X1-2
,				

Table 1. Point to point wiring instructions for sub panel

Note 1: Jumper wire W2 required if Emergency Stop feature not used.

Wiring from backpanel components to starter components

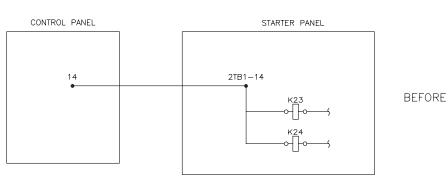
Wiring from the terminal block and starter module can be run to various existing starter terminals. The terminal numbers used for the starter panel assume a Traneprovided, unit-mounted wye-delta starter. Other starter types may use different terminal numbering. See Appendix A for a copy of existing wiring diagrams used for this replacement.

The Starter Module will not control the entire starting process. The original sequence of events of the existing starter will be preserved. The starter module will initiate the start signal, provide a transition signal (for wye-delta starters), and monitor motor currents just as the MPM did. CH531 requires a "transition complete" signal back from the starter, which the MPM did not.

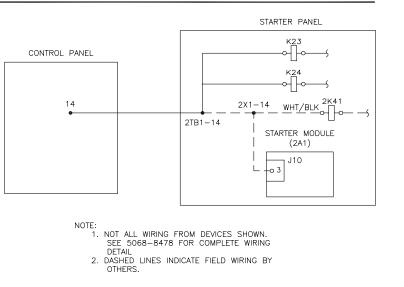
	From		То	
Wire #	Component #	Terminal # (or Wire)	Component #	Terminal # (or Wire)
715, 120 Vac "hot" in starter	2X1,Terminal block	2X1-1	2TB1, T. block	2TB1-H1 or F1
716, 120 Vac "neutral" in starter	2X1,Terminal block	2X1-2	2TB1, T. block	2TB1-N or 2
14	2X1,Terminal block	2X1-14	2TB1, T. block	2TB1-14 (see note 1)
V1	2X1,Terminal block	2X1-V1	2TB1, T. block	2TB1-V1 (see note 2)
V2	2X1,Terminal block	2X1-V2	2TB1, T. block	2TB1-V2 (see note 2)
125B	Starter Module, 2A1	J2-3	Wire #125B	See note 3
127A	Starter Module, 2A1	J2-1	Wire #127A	See note 3
701	Starter Module, 2A1	J12-1	2TB1-	2TB1-22 (see note 4)
101A-106A	Starter Module, 2A1	J7-16	CTs	See Appendix B for wiring details.
123	CB13	123	2K11	4
124	K28 contacts	124	2K11	6

Table 2. Point to point wiring for backpanel to starter components

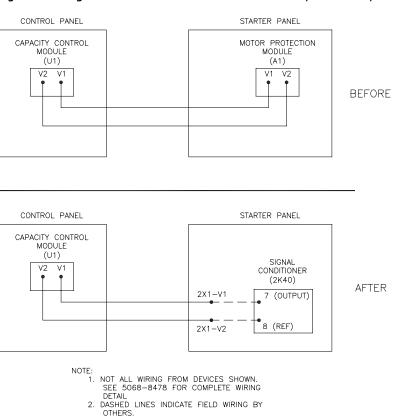
Note 1: See Figure 3 for details


Note 2: The V1 and V2 terminals refer to the terminals on the U1 Capacity Control Module located in the unit control panel. These wires were connected to the MPM terminals V1 and V2. Re-land these wires on terminal block 2X1-V1 and -V2. See Figure 4 for details.

Note 3: The J2-1 & -3 connections on the starter module are to initiate transition. This function was performed by the D1 and D2 terminals on the MPM. Wire #125 was previously connected to D1. Re-land this wire on J2-3. Wire #127 was previously connected to D2. Re-land this wire on J2-1.

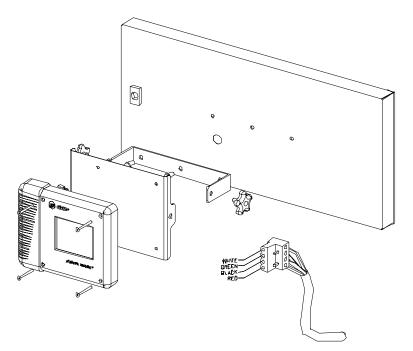

Note 4: The J12-1 input is indicating the starter has transitioned. It is wired on the NO contacts for the K28 Delta (run) contactor. On some starters, this is listed as

terminal 2TB1-7. On other starters this is shown as the terminal where the wire from the control panel terminal #22 is landed. It needs to be wired "downstream" of a set of the NO contacts of K28.



AFTER

Figure 4. Wiring detail for 2X1-V1 and 2X1-V2 connections, 5068-8480, revision B


▲ WARNING Live Electrical Components!

During installation, testing, servicing and troubleshooting of this product, it may be necessary to work with live electrical components. Have a qualified licensed electrician or other individual who has been properly trained in handling live electrical components perform these tasks. Failure to follow all electrical safety precautions when exposed to live electrical components may result in death or serious injury.

Mounting the DynaView (2A55) human interface

Figure 5. Installing the DynaView and tilt bracket

- 1. If the tilt bracket is not required (DynaView mounted directly to door) skip Steps 2, 3, 6, and 8.
- 2. Attach the grommet in the 1" hole in the flat mounting panel (tilt bracket).
- 3. Mount the tilt bracket base to the door using the two screws provided.
- 4. Attach the Phoenix connector to the three foot long DynaView cable.
- 5. Attach the Phoenix connector on the DynaView cable to the DynaView (red-1, black-2, green-3, and white-4).
- 6. Thread the other end of the DynaView cable through the hole in tilt bracket flat mounting panel.
- 7. Attach the DynaView to the flat panel using the four screws/nuts provided. Watch that the cable does not become pinched between DynaView and the flat mounting panel. Only tighten enough to slightly compress the gasket. Be careful to NOT bottom out the DynaView against the panel, only the gasket should touch the panel.
- 8. Attach the flat mounting panel to the tilt bracket brace using the two threaded adjustment wheels provided.
- 9. Thread the DynaView cable through the hole in door.
- 10. Attach the DynaView cable to the four pin connection on LLID 2A50, power supply. (Note: this cable can be attached to any LLID as all LLIDs will be connected together on IPC bus.)

Startup

Connecting LLIDs onto the inter-processor communication (IPC) bus

Starting at the power supply, connect all LLIDs together to form the IPC bus using the IPC bus cable with connectors. Either the J1 or the J11 connection on each LLID may be used. Cut off extra cable and seal ends using CAP00876 and ADH00023.

Current transformer (CT) work

Three new CTs must be installed to complete this installation. The new CTs are not included in this KIT. They must be ordered separately. See Table 1 in Appendix C for details.

Before installing these CTs use a digital multi-meter, with phase detection capability to identify and mark incoming power, L1, L2 and L3 or phase A, B, and C.

Install the new CTs as shown on the wiring diagram in Appendix B. Pay careful attention to the polarity dot and it's orientation.

Wire the leads from the spade connectors to the starter module as shown on the wiring diagram.

Startup

The following table describes the steps to take the controls from "installed" to "operational". Specific details on certain steps (configuration, binding, etc.) are contained in appendices referenced in the particular step.

▲ WARNING Live Electrical Components!

During installation, testing, servicing and troubleshooting of this product, it may be necessary to work with live electrical components. Have a qualified licensed electrician or other individual who has been properly trained in handling live electrical components perform these tasks. Failure to follow all electrical safety precautions when exposed to live electrical components may result in death or serious injury.

- Obtain CH530 Software: From http://www.trane.com/commercial/software/ tracerch530/, download the latest Java[™] runtime, TechView[™], and MP software. Select CVR software from drop-down list. After downloading be sure to install all files in the proper order following instruction provided on this website.
- 2. Run TechView on laptop and connect RS232 cable from laptop to DynaView.
- 3. Unplug the IPC bus (including DynaView) from the power supply LLID: this will isolate the power supply LLID.
- 4. "Power Up" the existing control panel using auxiliary power.
- 5. Re-connect IPC bus to power supply and DynaView.
- 6. From the Chiller Software tab in TechView, download "CVR" MP software onto DynaView.
- 7. Configure the software in TechView using the "Unit Type", "CH530", and "Starter"

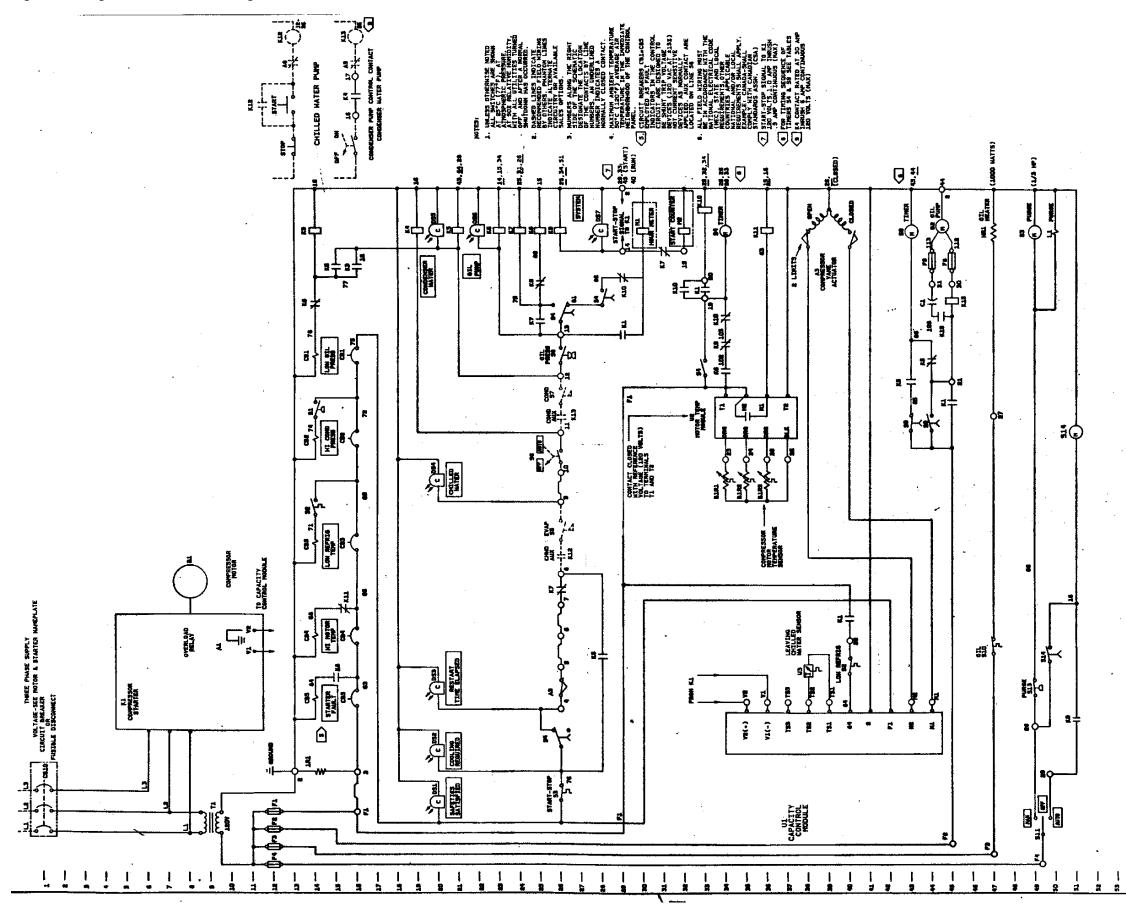
Startup

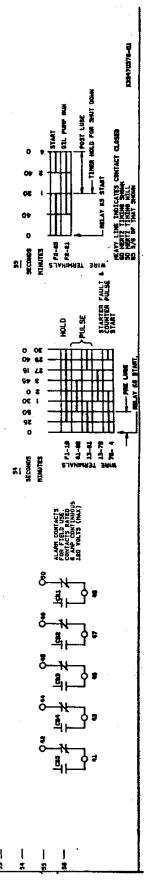
tabs in Configuration View: See Appendix C for details on configuration items. Write the selected values in the table provided in Appendix C for future reference.

- 8. Bind the LLIDs using Binding View: See Appendix D for binding details.
- 9. Adjust the setpoints using Setpoint view: See Appendix D for details on setpoint items. Record the entered values in the table in Appendix E.
- 10. Dry run the starter:
- Make sure starter disconnect is locked open
- Use the manual override view to initiate starter test mode
- Observe correct operation of (if applicable for starter type present):
- Start relay
- Transition relay
- Disable starter test mode
- 11. Power up chiller:
- Remove 115 V temporary power from starter.
- Replace fuse in CPT.
- Energize starter panel with line voltage by re-closing starter disconnect.
- 12. Place clamp on ammeter on one of the L1, L2 or L3 legs.
- 13. Start chiller:

Note: it may be desirable to put the Current Limit Setpoint to 40% initially to ensure items like CT Meter Scale are set correctly.

14. Observe startup:


Confirm that unit starts and loads as expected.


Note: If Contactor Integrity Test was enabled in Starter Configuration, contactors may be heard prior to actual start sequence in starter cabinet.

- 15. Check current and voltage readings: Verify that the current reading on the front panel matches that on the handheld ammeter. If it does not, the CT meter scale may be set wrong.
- Load Chiller: Adjust Current Limit Setpoint to 80% and ensure that front panel readings match handheld ammeter. Set final Current Limit Setpoint to desired operating level (typically 100%)
- 17. Additional information is contained in Appendix F including the unit view screen.

Appendix A

Figure A1. Original classic black wiring, X39470376 Rev. D

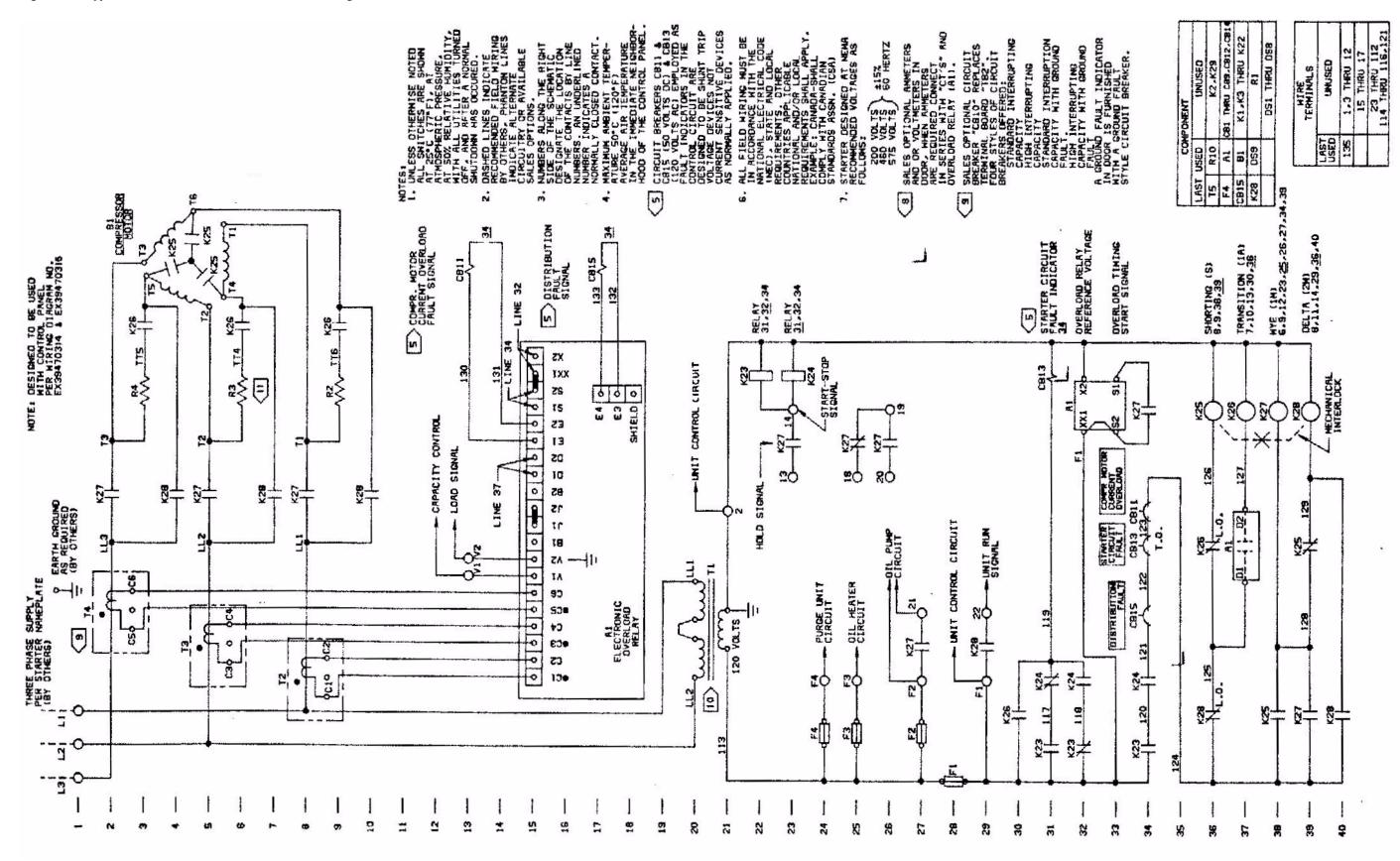
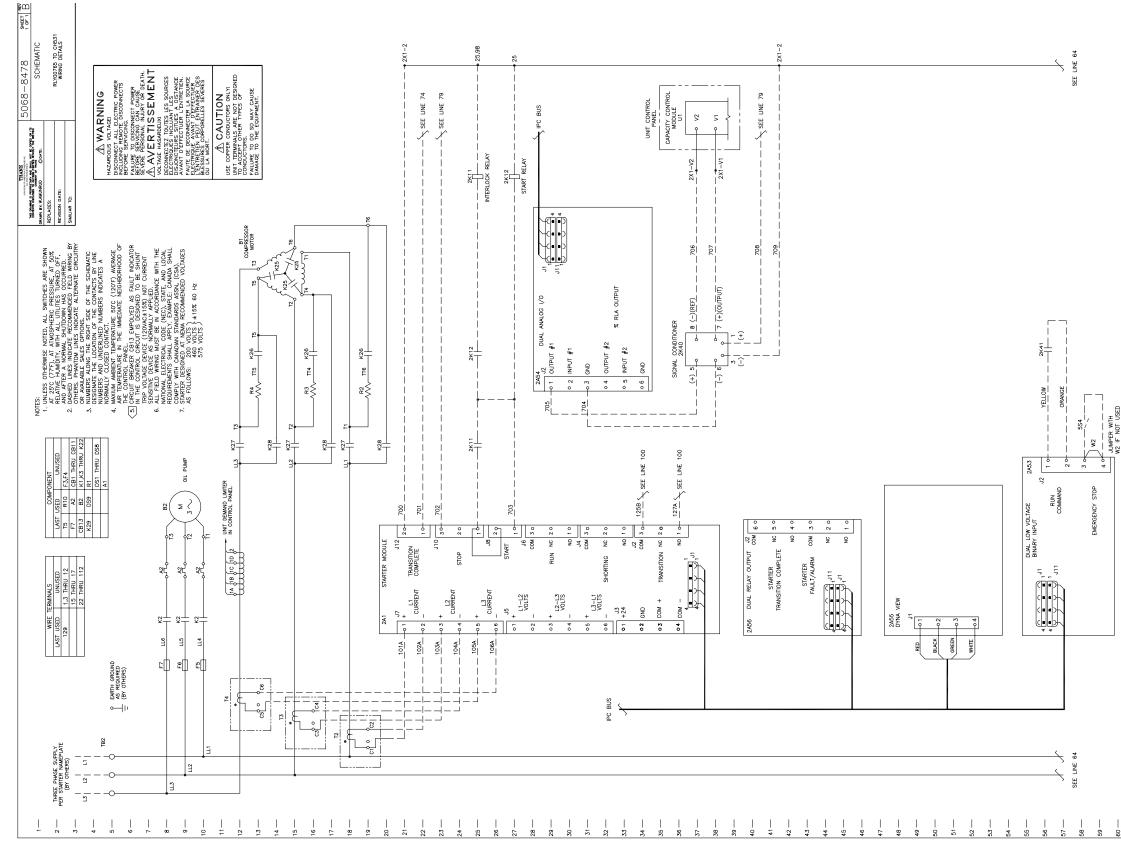

Appendix A

Figure A2. Wiring diagram legend

LEGEND

DESIGNATOR	DESCRIPTION	DESIGNATOR	DESCRIPTION
A1	Electronic Starter Overload	K7	Prevent Voltage Feedback/De-
			energize Start Counter/Starter
			Fault-Arming Ckt.
A3	Compressor Vane Actuator	K8	Starter Fault-Trip Ckt.
AB	Chilled Water Pump Overload	K9	Starter Fault-Arming Ckt./S4
	(Field-Supplied)		Timer De-energized Ckt./Auto-
			matic Purge Operation
A9	Condenser Water Pump Overload	K10	Start Pulse Signal/S4 Timer
	(Field-Supplied)		De-energized Ckt.
A12	Free-Cooling Liquid Line Valve	K11	Hi Motor Temp. Trip Ckt
	Actuator (Optional)		ta motor remp. mp GR
A13	Free-Cooling Gas Line Valve	K12	Chilled Water Pump Starter
•	Actuator (Optional)	1116	onneo water rump staner
A14	Hot Gas Bypass Valve Actuator	K13	Condenser Water Pume Starter
· · · · •	(Optional)	N IQ	Condenser Water Pump Starter
B1	Compressor Motor	K14	Oil Pump (Manual Pump Old)
B2	Oil Pump Motor	K14 K15	Oil Pump (Manual Purge Ckt.)
B3	Purge Compressor Motor	K16	Oil Pump Starter Relay
	ge worripresses metter	V10	Electric Hot Gas Bypass
B1R1	Motor Temp. Sensor	t 4	Control Relay (Optional)
B1R2	Motor Temp. Sensor	L1	Purge Solenoid
	motor rump, opnour	L3	Load Solenoid (Pneumatic
B1R3	Motor Temp. Sensor		Option)
	notor remp. censor	L4	Unload Solenoid (Pneumatic
C1	Oil Pump Start Capacitor	5.4×	Option)
CB1	Low Oil Pressure Fault	M1	Hour Meter
CB2	Hi Condenser Pressure Fault	M2	Start Counter
	Indicator	S	HGBP Valve Actuator Limit
CB3		•	Switch (Opt.)
000	Low Refrig. Temp. Fault Indicator	S1	Hi Condenser Pressure Switch
CB4		~~	
CB4 CB5	Hi Motor Temp. Fault Indicator Starter Fault Indicator	S2	Low Refrig. Temp. Switch
000	Stater Faut HOICEOF	S3	Start-Stop Chilled Water
CB10	Starter Main Cit Brook-	~ .	Demand Switch
DS1	Starter Main Ckt. Breaker SAFETIES SATISFIED Indicator	S4	Anti-Recycle Timer
5		S5	Evaporator Flow Switch
DS2	Light		
DS2 DS3	COOLING REQUIRED Indicator Light	S6	ON/OFF Switch
000	RESTART TIME ELAPSED Indicator	S7	Condenser Flow Switch
DS4	CHILLED WATER Flow Indicator		01 D 0 1
0.54		S8	Oil Pressure Switch
DS5	Light CONDENSER WATER Flow Indicator	••	
000		S9	Oil Pump Post-Lube Timer
DSE	Light Oll PLIMP Indicators Light	.	
DS6	OIL PUMP Indicator Light	S10	Oil Temp. (Heater) Switch
DS7	SYSTEM Operating Indicator Light	S11	Purge ON/OFF/AUTO Switch
F1	Control Power Fuse	S12	Guide Vane Linkage Limit
50			Switch (HGBP Opt.)
F2	Oil Pump Fuse	S13	Purge Hi Pressure Switch
F3	Oil Heater Fuse	S14	Purge Temp. (Heater) Switch
F4	Purge Unit Fuse	S15	Proof-of-Closure Switch
			(Pneumatic Opt.)
HR1	Oil Sump Heater	S22	Compressor Hi Discharge Temp.
			Switch (HGBP Opt.)
K1	Compressor Motor Starter	T1	Control Power Transformer
КЭ	Low Oil Pressure Arming Ckt.	Ut	Electronic Capacity Control
	-		Module
K4	Condenser Pump Control Relay	U3	Leaving Chilled Water Temp.
			Sensor
K5	Start Oil Pump Timer/Jump-Out		CONSUL
	Start Inhibit Circuit		
K6	Oil Pressure Arming Ckt./Start		
	S4 Timer Motor		

Figure A3. Typical unit mounted starter electrical diagram, X39470320


Appendix A

PART-SVN82C-EN

17

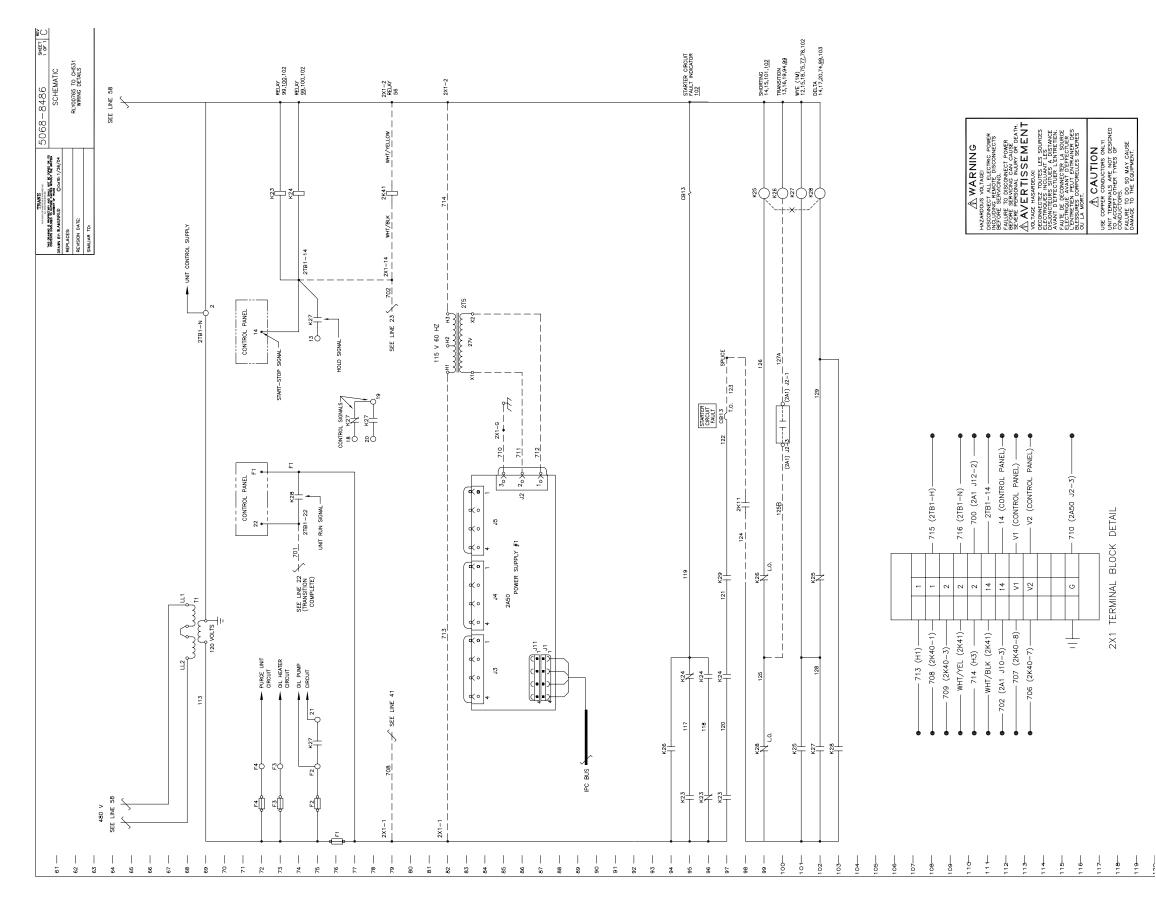

Appendix B

Figure B1. RLY00765 to CH531 wiring details, 5068-8478, Rev. B

Appendix B

Figure B2. RLY00765 to CH531 wiring details, 5068-8486, Rev. C

Configuration View Items

Unit type tab

The figure below shows the TechView[™] screen for selecting unit type. Default values for Starter Only control are shown in the accompanying table. Options for other selections are also shown in the table. Stand Alone Starter should be selected. Make note of selections in the space available here and in the following tables.

Figure C1. Unit type configuration tab screen

7 / T	ech¥iew	Service 1	'ool - Config	ıration			
File	View	Options	Language	Units	Reports	Help	
Uni	t Type	сн530∫ з	Starter				
	Unit T	/pe (MO	DL)				Stand Alone Starter
	Control Sequence						

Table C1. Unit type configuration choices

Parameter	Recommended value	Other options	Entered value
Unit Type (MODL)	Stand Alone Starter	CVRD	
Control Sequence	1	none	1

Note: Entered values may differ from the recommended value depending on the specific control scheme on your chiller. In most cases, the recommended value will be adequate.

CH530 Tab

The following information describes setting choices for the CH530 configuration.

Figure C2. CH530 configuration tab screen

VTechView Service Tool - Configuration	
File View Options Language Units Reports Help	
Unit Type CH530 Starter	
Starter Type	Wye-Delta
Oil Pump Control	Not Installed
%RLA Output	Installed
%RLA Output Maximum	120

Note: Recommended values are in parenthesis.

Table C2. CH530 configuration tab choices

Parameter	Recommended value	Other options	Entered value
Starter Type	Wye-Delta	Wye-Delta Across Line Primary Reactor Auto Transformer Non-Communicating Solid State	
Oil Pump Control	Not Installed	Installed	
%RLA Output	Installed	Not Installed	
%RLA Output	120%	100 to 140	

Figure C3. Starter tab configuration screen

t Type CH530 Starter		
Stop Delay Time (Contactor Interrupt Failure)	3	se
Unit Line Voltage	460	vo
Voltage Transformer Ratio	20	
Rated Load Amps	380	am
CT Meter Scale	400	am
Current Unbalance Trip Point	30	%
Current Unbalance Grace Period	90	se
Maximum Acceleration Setting	27	se
Acceleration Time Out Action	Shutdown	×
Overload Type	Linear	V
Phase Reversal Protection	Disable	×
Contactor Integrity Test	Disable	×
Phase Reversal Grace Period	300	ms
Surge Protection	Disable	×
Momentary Power Loss Protection	Disable	
Restart Inhibit Stop to Start Time	30	se
Surge Sensitivity	20	%

The various parameter choices are shown in Table C3.

Table C3. Starter tab configuration choices

	Recommended		
Parameter	value	Other options	Entered value
Stop Delay Time	3 seconds	1 to 30 seconds	
Unit Line Voltage	unit voltage	180 to 6,600 volts	
Voltage Transformer Ratio	use one of the five values shown, base on unit voltage	0 to 700 20 for <600 Vac 80 for 2300/2400 Vac 110 for 3300 Vac 140 for 4160 Vac 240 for 6600 Vac	
Rated Load Amps	unit design	0 to 2,500 amps	
CT Meter Scale	table C4 or C5	0 to 2,000 amps	
Current Unbalance Trip Point	30%	15 to 1,000%	
Current Unbalance Grace Period	90 seconds	15 to 225 seconds	
Maximum Acceleration Setting	choose from choices at right for starter type	6 - Across line 11 - Primary reactor 16 - Auto transformer 27 - Wye delta	
Acceleration Time Out Action	Shutdown	Transition	
Overload Type	Linear	Exponential	
Phase Reversal Protection	Enable	Disable	
Contactor Integrity Test	Disable	Enable	
Phase Reversal Grace Period	300 msec	20 to 1000 milliseconds	
Surge Protection	Enable	Disable	
Momentary Power Loss	Disable	Enable	
Restart Inhibit Stop to Start Time	30 seconds	0 to 255 seconds	
Surge Sensitivity	20%	0 to 100%	
Power Loss Reset Time	15 seconds	0 to 255 seconds	

CT meter scale setting

The CT Meter Scale is an especially critical factor and must be calculated correctly. One of two methods of calculation should be used. Typically applications of less than 600 Vac will have a single stage CT per phase connected to the starter module. Likewise, medium voltage applications greater than 600 Vac have a two stage CT per phase connection to the starter module. Select the correct method for this application from the two choices that follow.

Method 1. Single stage CT calculations, less than 600 Vac only

Motor current sensing using the single stage CT per phase arrangement. In this case only one CT is used per phase to achieve the necessary turn-down ratio of current measurement. The CT consists of either the X13580253 or X13580269 part. This CT reduces the 100% RLA signal input to a nominal 100 mA value for input to the starter module.

CT Meter Scale = CT Rating / (Number of Primary Turns x 1.00)

CT Meter Scales with decimals need to be truncated as appropriate so that the measured motor amps is less than the actual motor amps.

See Table C4 to select CT Rating and resulting CT meter scale. In many cases more than one selection is possible.

ry CT meter scale
8.3
10.0
12.5
16.6
25
37.5
50
75
100
150
200
275
400
500
700
1000
1400
1800

Table C4. Current transformer data for single stage CT per phase

Method 2. Dual stage CT calculations, for greater than 600 Vac

Motor current sensing using the two CT per phase arrangement. In this case two CT's are used per phase to either achieve the necessary turn-down or for metering convenience. The first stage consists of either the X13580047 or X13580048 CT (each of these CT's have a 5 amp secondary). The second stage consists of the X13580266-01 CT (takes 3.6 amps down to 100 ma).

CT Meter Scale = CT Rating / (Number of Primary Turns x 1.3889)

CT Meter Scales with decimals need to be truncated as appropriate so that the measured motor amps is less than the actual motor amps.

In this case the CT Rating should be picked to be in the range of 100% to 150% of Actual Motor RLA x Number of Primary Turns x 1.3889. See Table C5 to select CT Rating and resulting CT meter scale. In many cases more than one selection is possible.

Actual motor RLA (Amps)	Part number	Ext.	CT ratio (Amps:Amps)	CT rating (Amps)	Primary turns	CT meter scale
8.0 - 12.0	X13580272	-01	50:5	50	3	12
12.0 - 18.0	X13580272	-01	50:5	50	2	18
18.0 - 27.0	X13580272	-02	75:5	75	2	27
24.0 - 36.0	X13580272	-01	50:5	50	1	36
36.0 - 54.0	X13580272	-02	75:5	75	1	54
48.0 - 72.0	X13580271	-01	100:5	100	1	72
24.0 - 36.0	X13580048	-01	150:5	150	3	36
28.8 - 43.2	X13580048	-01	180:5	180	3	43.2
36.0 - 54.0	X13580048	-01	150:5	150	2	54
43.2 - 64.8	X13580048	-01	180:5	180	2	64.8
48.0 - 72.0	X13580048	-01	200:5	200	2	72
60.0 - 90.0	X13580048	-02	250:5	250	2	90
72.0 - 108.0	X13580048	-01	150:5	150	1	108
86.4 - 129.6	X13580048	-01	180:5	180	1	129.6
96.0 - 144.0	X13580048	-01	200:5	200	1	144
120 - 180	X13580048	-02	250:5	250	1	180
144 - 216	X13580048	-02	300:5	300	1	216
168 - 252	X13580048	-02	350:5	350	1	252
192 - 288	X13580048	-03	400:5	400	1	288
240 - 360	X13580048	-03	500:5	500	1	360
288 - 432	X13580048	-03	600:5	600	1	432

Table C5. Current transformers for dual stage CT per phase

When all the parameters are complete, click on the Load Configurations Button at the bottom of the Screen.

Additional CT equations

There are a number of equations and constraints that are used with CT selection. This section addresses these and their definitions.

First the definitions:

- 1. On a dual stage CT system, CT1 is the primary winding rating of the first stage (or line) CT with respect to the 5 amp secondary. For example, a first stage CT rating of 500:5 has a CT1 of 500.
- 2. On a dual stage CT system, CT2 is the primary winding rating of the second stage CT with respect to a 100 mA secondary. For example, a second stage CT of rating 3.6:0.1 has a CT2 of 3.6.
- 3. TVCTMS is the CT Meter Scale entered into TechView
- 4. TVRLA is the RLA entered into TV in amps.
- 5. Act %RLA is the actual %RLA the motor is drawing
- 6. Act RLA is the actual Running Load Amperage of the motor

- 7. NT1 is the number of primary turns on CT1
- 8. The current as displayed in TechView and DynaView is determined by the following equation:

$$Measured\%RLA = \left(\frac{TVCTMS}{TVRLA}\right) * \left(\frac{Act\%RLA * ActRLA}{CT1/(NT1*5)*CT2}\right)$$

9. The ratio of CTMS/RLA must meet the following:

$$0.87 \leq \left(\frac{CTMSAmps}{MotorRatedLoadAmps}\right) \leq 1.5$$

If CTMS/Motor Rated Load Amps is not in this range, then the ratio CTMS/Motor Rated Load Amps = 1.5 shall be used. Note that the limits on CTMS/RLA is 0.8 and 1.5 in the TechView product data base. However the Starter module limits this ratio to the 0.87 and 1.63.

10. To ensure that the proper current overload is in place, CT1 should be chosen such that:

for a two stage CT system:

 $CT1 \ge 140\% * RLA$

for a single CT system:

$$CT1 \ge RLA$$

Appendix D

Binding view

The following figure shows the binding view screen for this installation. Note that the LLIDs that show up on this list are dependent on selections made in previously in Configuration View.

Initially, the LLIDs will show up as Red frowning faces indicating they are unbound. Binding is a process by which a particular LLID is assigned to monitor or control a particular function or item.

Select the LLID to be bound, click on the Bind button in the task bar. A window will pop up asking "Particular LLID. Is the desired device alone selected?" Locate the LLID in the control panel or starter and place the Trane provided magnetic screwdriver near the LED under the SW1 arrow. The green LED will turn on. Click "YES" on the pop up window. The smile face will turn green next to that LLID on the binding view menu.

Continue for all LLIDs in the list.

Figure D4. Binding view screen

Tech¥iew Ser	rvice Tool - Binding View						
File View Opt	tions Language Units	s Reports Help					
Reconnect Rel	ebuild View Sequence	Reassign Bind Unbind	All LEDs On All LEDs Off	Check Out A	I Clear Checkouts ?		
	🙂 4 Build view with all devices connected and powered before sequencing and binding.						
Node		Device Na	ne		Device Type		Date Code
	2 External Auto/Stop an	d Emergency Stop Inputs		[Dual Binary Input 1022000021		
	3 %RLA Output and %F	RLA Input	[Dual Analog I/O 10219000			
	5 Transition Complete and Starter Fault Relay				Dual Relay Output 10220000		
	4 Starter Module		8	Starter Module		1030700150	

Appendix E

Setpoint view

The following information shows the selections available in setpoint view.

Figure E1. Settings view screen - chiller tab

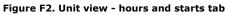
1	1/ Te	ch¥iew	Service 1	'ool - Setpoi	nt View					
	File	View	Options	Language	Units	Reports	Help			
	Chill	er Fe	ature Setti	ngs						
		Local	Stop De	lay				0	Default 0 sec	20

Figure E2. Settings view screen - feature settings tab

TechView Service Tool - Setpoint View		
File View Options Language Units Reports Help		
Chiller Feature Settings		
Phase Unbalance Limit Protection	Defat	itt.
Over/Under Voltage Protection	Defai	uit

Table E1. Settings view choices

Setting	Recommended values	Other options	Entered value
Local Stop	0	0 to 20 seconds	
Phase Unbalance	Enable	Disable	
Over/under Voltage	Disable	Enable	


Appendix F

Unit view

The following screens shows the available unit views.

Figure F1. Unit view - control panel tab

NTechView Service Tool - Unit View				
File View Options Language Units	s Reports Hel	q		
Control Panel Hours and Starts				
Unit Status				
Evaporator Leaving Water Temperature		Chiller Top Level Mode Stopped		Evaporator Water Flow Switch Status
Evaporator Entering Water Temperature				Condenser Water Flow Switch Status
Condenser Entering Water Temperature				Manual Override Exists
Chilled Water				
Active Chilled Water Setpoint Active Hot Water Setpoint	0.0	Front Panel Chilled Water Setpoint	BAS Chilled Water Setpoint	External Chilled Water Setpoint
Active Ice Termination Setpoint		10.0	Chilled Water Reset Type	
Current Limit		Front Panel Current Limit Setpoint	BAS Current Limit Setpoint	External Current Limit Setpoint
Average Line Current	0		External Current Limit Setpoint	C
0.0 % RLA	0	100		0
Compressor Status				
Oil Differential Pressure		Inlet Guide Vane Position First Stage	Frequency	
Purge Status				
		Purge Operating Mode		
				A
P				

Techniev	v Service Tool - Ur	it View			
File View	Options Langu	age Units Report	ts Help		
	net Hours and St				
Compresso		*10 J			
Compresso	•				
6	pressor Starts	Compressor Ru	oning Views		
Com					
	10	00:00	hrs:mins		
Purge					
Refr	igeration-Life	Pun	wout-Life		

Trane A business of American Standard Compaies www.trane.com

For more information, contact your local district office or e-mail us at comfort@trane.com.

Literature Order Number	PART-SVN82C-EN
File Number	SV-Controls-PART-SVN82C-EN-0904
Supersedes	SV-Controls-PART-SVN82B-EN-0704
Stocking Location	Electronic Only

Trane has a policy of continuous product data and product improvement and reserves the right to change design and specifications without notice. Only qualified technicians should perform the installation and servicing of equipment referred to in this bulletin.