# Geothermal/Water Source Heat Pump Installer's Guide

- R-410A Refrigerant
- 2 6 Tons

\*1GC (First letter may be A or T)



## **Table of Contents**

| Model Nomenclature                                |
|---------------------------------------------------|
| General Installation Information                  |
| Water Quality                                     |
| Freeze Detection                                  |
| Condensate Drain                                  |
| Closed Loop Ground Source Systems 10              |
| Open Loop Ground Water Systems11                  |
| Hot Water Generator Connections12-13              |
| Electrical Connections                            |
| Electronic Thermostat Installation 14             |
| Antifreeze Corrections                            |
| Auxiliary Heat Ratings                            |
| Electrical Data                                   |
| Blower Performance Data                           |
| X13 ECM Constant Torque Motors 20                 |
| Dimensional Data                                  |
| Physical Data                                     |
| Wiring Schematics                                 |
| Controls                                          |
| Unit Startup                                      |
| Troubleshooting                                   |
| Startup/Troubleshooting Form                      |
| Operating Parameters                              |
| Operating Limits                                  |
| Pressure Drop                                     |
| Compressor and Thermistor Resistance 34           |
| Troubleshooting Guideline for Refrigerant Circuit |
| Reference Calculations                            |
| Legend and Notes                                  |
| Preventive Maintenance and Replacement Procedures |
| Service Parts                                     |
|                                                   |

## **Model Nomenclature**



R = Right

## **General Installation Information**

### **Safety Considerations**



WARNING: Before performing service or maintenance operations on a system, turn off main power switches to the indoor unit. If applicable, turn off the accessory heater power switch. Electrical shock could cause personal injury.

Installing and servicing heating and air conditioning equipment can be hazardous due to system pressure and electrical components. Only trained and qualified service personnel should install, repair or service heating and air conditioning equipment. Untrained personnel can perform the basic maintenance functions of cleaning coils and cleaning and replacing filters. All other operations should be performed by trained service personnel. When working on heating and air conditioning equipment, observe precautions in the literature, tags and labels attached to the unit and other safety precautions that may apply.

Follow all safety codes. Wear safety glasses and work gloves. Use a quenching cloth for brazing operations and have a fire extinguisher available.

### **Moving and Storage**

Move units in the normal "up" orientation. Horizontal units may be moved and stored per the information on the packaging. Do not stack more than three units in total height. Vertical units may be stored one upon another to a maximum height of two units. Do not attempt to move units while stacked. When the equipment is received, all items should be carefully checked against the bill of lading to be sure all crates and cartons have been received. Examine units for shipping damage, removing the units from the packaging if necessary. Units in question should also be internally inspected. If any damage is noted, the carrier should make the proper notation on the delivery receipt, acknowledging the damage.

### **Unit Location**

Locate the unit in an indoor area that allows for easy removal of the filter and access panels. Location should have enough space for service personnel to perform maintenance or repair. Provide sufficient room to make water, electrical and duct connection(s). If the unit is located in a confined space, such as a closet, provisions must be made for return air to freely enter the space by means of a louvered door, etc. Any access panel screws that would be difficult to remove after the unit is installed should be removed prior to setting the unit. On horizontal units, allow adequate room below the unit for a condensate drain trap and do not locate the unit above supply piping. Care should be taken when units are located in unconditioned spaces to prevent damage from frozen water lines and excessive heat that could damage electrical components.

### Installing Vertical Units

Prior to setting the unit in place, remove and discard the compressor hold down shipping bolt located at the front of the compressor mounting bracket.

Vertical units are available in left or right air return configurations. Top air discharge vertical units should be mounted level on a vibration absorbing pad slightly larger than the base to provide isolation between the unit and the floor. It is not necessary to anchor the unit to the floor.

> 2" Extruded Polystyrene

#### Vertical Unit Mounting

## **General Installation Information cont.**

### **Installing Horizontal Units**

Remove and discard the compressor hold down shipping bolt located at the front of the compressor mounting bracket prior to setting the unit in place. Horizontal units are available with side or end discharge. Horizontal units are normally suspended from a ceiling by four or six 3/8-inch diameter threaded rods. The rods are usually attached to the unit by hanger bracket kits furnished with each unit.

Lay out the threaded rods per the Hanger Dimensions table. Assemble the hangers to the unit as shown on page 7. Securely tighten the brackets to the unit using the weld nuts located on the underside of the bottom panel. When attaching the hanger rods to the bracket, a double nut is required since vibration could loosen a single nut. To allow filter access, one bracket on the filter side should be installed 180° from the position shown in the figure on page 7. The unit should be pitched approximately 1/4-inch towards the drain in both directions to facilitate the removal of condensate. Use only the bolts provided in the kit to attach hanger brackets. The use of longer bolts could damage internal parts. Some residential applications require the installation of horizontal units on an attic floor. In this case, the unit should be set in a full size secondary drain pan on top of a vibration absorbing pad. The secondary drain pan prevents possible condensate overflow or water leakage damage to the ceiling. The secondary drain pan is usually placed on a plywood base isolated from the ceiling joists by additional layers of vibration absorbing material.



CAUTION: Do not use rods smaller than 3/8-inch diameter since they may not be strong enough to support the unit. The rods must be securely anchored to the ceiling.

#### Horizontal Unit Mounting



## **General Installation Information cont.**

Unit Hanger Dimensions



| Horizon | tal |                                                                    | Unit Hanger | Dimensions |      |
|---------|-----|--------------------------------------------------------------------|-------------|------------|------|
| Models  | 6   | A                                                                  | В           | С          | D    |
| 024.026 | in. | 21.1                                                               | 63.4        | 24.8       | -    |
| 024-036 | cm. | 53.6                                                               | 161.0       | 63.0       | -    |
| 042.049 | in. | 53.6   161.0   63.0     24.1   43.1   27.8     61.2   100.5   70.6 |             | 29.3       |      |
| 042-048 | cm. | 61.2                                                               | 109.5       | 70.6       | 74.4 |
| 060     | in. | 24.1                                                               | 48.1        | 27.8       | 29.3 |
| 000     | cm. | 61.2                                                               | 122.2       | 70.6       | 74.4 |
| 070     | in. | 24.1                                                               | 53.1        | 27.8       | 29.3 |
| 0/0     | cm. | 61.2                                                               | 134.9       | 70.6       | 74.4 |

#### **Corner Weight Locations**

| Ма   | طما |         | Horizo  | ntal Corner V | Veights |          |
|------|-----|---------|---------|---------------|---------|----------|
|      | aei | Post #1 | Post #2 | Post #3       | Post #4 | Total    |
| 024  | lb  | 35      | 119     | 81            | 33      | 268      |
| 024  | kg  | [16]    | [54]    | [37]          | [15]    | [122]    |
| 020  | lb  | 38      | 122     | 86            | 33      | 279      |
| 030  | kg  | [17]    | [55]    | [39]          | [15]    | [127]    |
| 0.26 | lb  | 40      | 124     | 88            | 35      | 287      |
| 036  | kg  | [18]    | [56]    | [40]          | [16]    | [130]    |
| 0.42 | lb  | 63      | 147     | 87            | 52      | 349      |
| 042  | kg  | [29]    | [67]    | [39]          | [24]    | [158]    |
| 040  | lb  | 64      | 152     | 89            | 53      | 358      |
| 040  | kg  | [29]    | [69]    | [40]          | [24]    | [162]    |
| 000  | lb  | 93      | 156     | 81            | 73      | 403      |
| 060  | kg  | [42]    | [71]    | [37]          | [33]    | [183]    |
| 070  | lb  | 143     | 137     | 124           | 34      | 438      |
| 0/0  | kg  | [65]    | [62]    | [56]          | [15]    | [199]    |
|      |     |         |         |               |         | 10/28/09 |



## **General Installation Information cont.**

### **Duct System**

An air outlet collar is provided on vertical top air discharge units and all horizontal units to facilitate a duct connection. A flexible connector is recommended for discharge and return air duct connections on metal duct systems. Uninsulated duct should be insulated with a minimum of 1-inch duct insulation. Application of the unit to uninsulated ductwork in an unconditioned space is not recommended as the unit's performance will be adversely affected.

If the unit is connected to existing ductwork, check the duct system to ensure that it has the capacity to accommodate the air required for the unit application. If the duct is too small, as in the replacement of heating only systems, larger ductwork should be installed. All existing ductwork should be checked for leaks and repaired if necessary.

The duct system should be sized to handle the design airflow quietly and efficiently. To maximize sound attenuation of the unit blower, the supply and return plenums should include an internal duct liner of fiberglass or constructed of ductboard for the first few feet. On systems employing a sheet metal duct system, canvas connectors should be used between the unit and the ductwork. If air noise or excessive airflow is a problem, the blower speed can be changed. connector and tighten in the same manner as noted above. The open and closed loop piping system should include pressure/ temperature taps for serviceability.

Never use flexible hoses smaller than 1-inch inside diameter on the unit. Limit hose length to 10 feet per connection. Check carefully for water leaks.

#### Swivel Connections



### Water Piping

The proper water flow must be provided to each unit whenever the unit operates. To assure proper flow, use pressure/temperature ports to determine the flow rate. These ports should be located at the supply and return water connections on the unit. The proper flow rate cannot be accurately set without measuring the water pressure drop through the refrigerant-to-water heat exchanger.

All source water connections on residential units are swivel piping fittings (see Swivel Connections figure) that accept a 1-inch male pipe thread (MPT). The swivel connector has a rubber gasket seal similar to a rubber hose gasket, which when mated to the flush end of any 1-inch threaded pipe provides a leak-free seal without the need for thread sealing tape or compound. Check to ensure that the rubber seal is in the swivel connector prior to attempting any connection. The rubber seals are shipped attached to the waterline. To make the connection to a ground loop system, mate the brass connector (supplied in CK4L connector kit) against the rubber gasket in the swivel connector and thread the female locking ring onto the pipe threads, while maintaining the brass connector in the desired direction. Tighten the connectors by hand, then gently snug the fitting with pliers to provide a leak-proof joint. When connecting to an open loop (ground water) system, thread any 1-inch MPT fitting (SCH80 PVC or copper) into the swivel

### **Water Quality**

In ground water situations where scaling could be heavy or where biological growth such as iron bacteria will be present, a closed loop system is recommended. The heat exchanger coils in ground water systems may, over a period of time, lose heat exchange capabilities due to a buildup of mineral deposits inside. These can be cleaned, but only by a qualified service mechanic, as special solutions and pumping equipment are required. Hot water generator coils can likewise become scaled and possibly plugged. In areas with extremely hard water, the owner should be informed that the heat exchanger may require occasional flushing.

Units with cupronickel heat exchangers are recommended for open loop applications due to the increased resistance to build-up and corrosion, along with reduced wear caused by acid cleaning. Failure to adhere to the guidelines in the water quality table could result in loss of warranty.

| Material            |                                                               | Copper                                                      | 90/10 Cupro-Nickel                                          | 316 Stainless Steel                                         |
|---------------------|---------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| рН                  | Acidity/Alkalinity                                            | 7-9                                                         | 7 - 9                                                       | 7 - 9                                                       |
| Scaling             | Calcium and Magnesium Carbonate                               | (Total Hardness) less than 350 ppm                          | (Total Hardness) less than 350 ppm                          | (Total Hardness) less than 350 ppm                          |
|                     | Hydrogen Sulfide                                              | Less than .5 ppm (rotten egg smell<br>appears at 0.5 PPM)   | 10 - 50 ppm                                                 | Less than 1 ppm                                             |
|                     | Sulfates                                                      | Less than 125 ppm                                           | Less than 125 ppm                                           | Less than 200 ppm                                           |
|                     | Chlorine                                                      | Less than .5 ppm                                            | Less than .5 ppm                                            | Less than .5 ppm                                            |
|                     | Chlorides                                                     | Less than 20 ppm                                            | Less than125 ppm                                            | Less than 300 ppm                                           |
|                     | Carbon Dioxide                                                | Less than 50 ppm                                            | 10 - 50 ppm                                                 | 10- 50 ppm                                                  |
|                     | Ammonia                                                       | Less than 2 ppm                                             | Less than 2 ppm                                             | Less than 20 ppm                                            |
| Corrosion           | Ammonia Chloride                                              | Less than .5 ppm                                            | Less than .5 ppm                                            | Less than .5 ppm                                            |
|                     | Ammonia Nitrate                                               | Less than .5 ppm                                            | Less than .5 ppm                                            | Less than .5 ppm                                            |
|                     | Ammonia Hydroxide                                             | Less than .5 ppm                                            | Less than .5 ppm                                            | Less than .5 ppm                                            |
|                     | Ammonia Sulfate                                               | Less than .5 ppm                                            | Less than .5 ppm                                            | Less than .5 ppm                                            |
|                     | Total Dissolved Solids (TDS)                                  | Less than 1000 ppm                                          | 1000-1500 ppm                                               | 1000-1500 ppm                                               |
|                     | LSI Index                                                     | *0.5 to <sup>-</sup> .05                                    | <sup>+</sup> 0.5 to <sup>-</sup> .05                        | <sup>+</sup> 0.5 to <sup>-</sup> .05                        |
| Iron Fouling        | Iron, Fe <sup>2</sup> + (Ferrous)<br>Bacterial Iron Potential | < .2ppm                                                     | < .2 ppm                                                    | < .2 ppm                                                    |
| (Biological Growth) | Iron Oxide                                                    | Less than 1 ppm. Above this level<br>deposition will occur. | Less than 1 ppm. Above this level<br>deposition will occur. | Less than 1 ppm. Above this level<br>deposition will occur. |
| Erosion             | Suspended Solids                                              | Less than 10 ppm and filtered for max of<br>600 micron size | Less than 10 ppm and filtered for max of<br>600 micron size | Less than 10 ppm and filtered for max of<br>600 micron size |
|                     | Threshold Velocity (Fresh Water)                              | < 6 ft/sec                                                  | < 6 ft/sec                                                  | <6 ft/sec                                                   |

Note:

Grains = PPM divided by 17 mg/l is equivalent to PPM

## **Freeze Detection**

Set SW1-2 on the printed circuit board for applications using a closed loop antifreeze solution to "LOOP" (15°F) [-9.4°C]. On applications using an open loop/ground water system (or closed loop no antifreeze), set this dip switch to "WELL" (30°F) [-1.1°C], the factory default setting. (Refer to the Dip Switch Field Selection table).

### **Condensate Drain**

On vertical units, the internal condensate drain assembly consists of a drain tube which is connected to the drain pan, a 3/4 in. PVC female adapter and a flexible connecting hose. The female adapter may exit either the front or the side of the cabinet. The adapter should be glued to the field-installed PVC condensate piping. On vertical units, a condensate hose is inside all cabinets as a trapping loop; therefore, an external trap is not necessary. On horizontal units, a PVC stub is provided for condensate drain piping connection. An external trap is required (see below). If a vent is necessary, an open stand pipe may be applied to a tee in the field-installed condensate piping.

#### Horizontal Drain Connection (Composite Drain Pan)



Unit Pitch for Drain



## **Closed Loop Ground Source Systems**

**NOTE:** For closed loop systems with antifreeze protection, set SW1-2 to the "loop" position.

Once piping is completed between the unit, pumps and the ground loop, final purging and charging of the loop is required. A flush cart (or a 1.5 HP pump minimum) is needed to achieve adequate flow velocity in the loop to purge air and dirt particles from the loop itself. Antifreeze solution is used in most areas to prevent freezing. Flush the system adequately to remove as much air as possible then pressurize the loop to a static pressure of 40-50 PSI (summer) or 50-75 PSI (winter). This is normally adequate for good system operation. Loop static pressure will fluctuate with the seasons. Pressures will be higher in the winter months than during the cooling season. This fluctuation is normal and should be considered when initially charging the system.

After pressurization, be sure to turn the venting (burping) screw in the center of the pump two (2) turns open (water will drip out), wait until all air is purged from the pump, then tighten the plug. Ensure that the loop pumps provide adequate flow through the unit(s) by checking the pressure drop across the heat exchanger and comparing it to the unit capacity data in the specification catalog. 2.5 to 3 GPM of flow per ton of cooling capacity is recommended in earth loop applications.

#### **Closed Loop Ground Source Application**



**NOTE:** Additional information can be found in Flow Center installation manual and Flush Cart manual.

## **Open Loop Ground Water Systems**

Typical open loop piping is shown below. Always maintain water pressure in the heat exchanger by placing water control valves at the outlet of the unit to prevent mineral precipitation. Use a closed, bladder-type expansion tank to minimize mineral formation due to air exposure. Insure proper water flow through the unit by checking pressure drop across the heat exchanger and comparing it to the figures in unit capacity data tables in the specification catalog. 1.5-2 GPM of flow per ton of cooling capacity is recommended in open loop applications. Discharge water from the unit is not contaminated in any manner and can be disposed of in various ways, depending on local codes, i.e. recharge well, storm sewer, drain field, adjacent stream or pond, etc. Most local codes forbid the use of sanitary sewer for disposal. Consult your local building and zoning departments to assure compliance in your area.

**NOTE:** For open loop/groundwater systems or systems that do not contain an antifreeze solution, set SW1-Switch #2 to the "WELL" position. Slow opening/closing solenoid valves (type VM) are recommended to eliminate water hammer.

#### **Open Loop Solenoid Valve Connection Option**

Typical slow operating external 24V water solenoid valve (type VM) wiring and one (1) quick operating valve.



**Open Loop Solenoid Valve Connection Option** 

Typical quick operating external 24V water solenoid valve (type PPV100 or BPV100) wiring.



**Open System - Groundwater Application** 



### **Hot Water Generator Connections**

The heat reclaiming hot water generator coil is vented double-wall copper construction and is suitable for potable water.

To maximize the benefits of the hot water generator a minimum 50-gallon water heater is recommended For higher demand applications, use an 80-gallon water heater or two 50-gallon water heaters connected in a series as shown below. Electric water heaters are recommended. Make sure all local electrical and plumbing codes are met for installing a hot water generator. Residential units with hot water generators contain an internal circulator and fittings. A water softener is recommended with hard water (greater than 10 grains or 170 total hardness). Once air has been purged from the water piping circuit, connect the blue wire from the hot water generator pump to T1 on the contactor (unit ships with this wire disconnected). The hot water generator pump will not operate until this wire is connected to the contactor.

#### Water Tank Preparation

To install a unit with a hot water generator, follow these installation guidelines.

- 1. Turn off the power to the water heater.
- 2. Attach a water hose to the water tank drain connection and run the other end of the hose to an open drain or outdoors.
- 3. Close the cold water inlet valve to the water heater tank.
- 4. Drain the tank by opening the valve on the bottom of the tank, then open the pressure relief valve or hot water faucet.
- Flush the tank by opening the cold water inlet valve to the water heater to free the tank of sediments. Close when draining water is clear.
- 6. Disconnect the garden hose and remove the drain valve from the water heater.
- 7. Refer to Plumbing Installation and Hot Water Generator Startup.



#### CAUTION: Elements will burn out if energized dry.

# Typical Hot Water Generator Installation



#### Hot Water Generator Installation In Preheat Tank



**NOTE:** This configuration maximizes hot water generator capability.

## **Hot Water Generator Connections cont.**

### **Plumbing Installation**

- Inspect the dip tube in the water heater cold inlet for a check valve. If a check valve is present it must be removed or damage to the hot water generator circulator will occur.
- 2. Remove drain valve and fitting.
- 3. Thread the 3/4-inch NPT x 3-1/2-inch brass nipple into the water heater drain port.
- 4. Attach the center port of the 3/4-inch FPT tee to the opposite end of the brass nipple.
- 5. Attach the 1/2-inch copper to 3/4-inch NPT adaptor to the side of the tee closest to the unit.
- 6. Install the drain valve on the tee opposite the adaptor.
- 7. Run interconnecting tubing from the tee to DHW water out.
- 8. Cut the cold water "IN" line going to the water heater.
- 9. Insert the reducing solder tee in line with cold water "IN" line as shown.
- 10. Run interconnecting copper tubing between the unit DHW water "IN" and the tee (1/2-inch nominal). The recommended maximum distance is 50 feet.
- 11. To prevent air entrapment in the system, install a vent coupling at the highest point of the interconnecting lines.
- 12. Insulate all exposed surfaces of both connecting water lines with 3/8-inch wall closed cell insulation.

**NOTE:** All plumbing and piping connections must comply with local plumbing codes.

### Hot Water Generator Startup

- Make sure the power is off to the heat pump. Connect the blue wire from the hot water generator pump to T1 on the contactor (unit ships with this wire disconnected). The hot water generator pump will not operate until this wire is connected to the contactor.
- 2. Close the drain valve to the water heater.
- 3. Open the cold water supply to the tank.
- 4. Open a hot water faucet in the building to bleed air from the system. Close when full.
- 5. Open the pressure relief valve to bleed any remaining air from the tank, then close.
- 6. If so equipped, turn the venting (burping) screw in the center of the pump two (2) turns open (water will drip out), wait until all air is purged from the pump, then tighten the plug. Use vent couplings to bleed air from the lines.
- 7. Carefully inspect all plumbing for water leaks and correct as required.
- 8. Before restoring electrical supply to the water heater, adjust the temperature setting on the tank.
  - On tanks with both upper and lower elements, the lower element should be turned down to the lowest setting, approximately 100°F. The upper element should be adjusted to 120°F to 130°F. Depending upon the specific needs of the customer, you may want to adjust the upper element differently.
  - On tanks with a single element, lower the thermostat setting to 120°F.
- 9. After the thermostat(s) is adjusted, replace the access cover and restore electrical supply to the water heater.
- 10. Make sure that any valves in the hot water generator circuit are open.
- 11. Turn on the unit to heating.
- 12. The DHW pump should be running. When the pump is first started, turn the venting (burping) screw (if equipped) in the center of the pump two (2) turns open until water dribbles out, then replace. Allow the pump to run for at least five minutes to ensure that water has filled the circulator properly.
- The temperature difference between the water entering and leaving the hot water generator should be 5°F to 15°F. The water flow should be approximately 0.4 GPM per ton of nominal cooling.
- 14. Allow the unit to heat water for 15 to 20 minutes to be sure operation is normal.



CAUTION: Never operate the DHW circulating pump while dry. If the unit is placed in operation before the hot water generator piping is connected, be sure that the pump wires are disconnected from the contactor.

## **Electrical Connections**

### General

Be sure the available power is the same voltage and phase as that shown on the unit serial plate. Line and low voltage wiring must be done in accordance with local codes or the National Electric Code, whichever is applicable.

### **Unit Power Connection**

Connect the incoming line voltage wires to L1 and L2 of the contactor as shown below for single-phase unit. Consult the unit's Electrical Data for correct fuse sizes.

Open lower front access panel. Insert power wires through knockouts on lower left side of cabinet. Route wires through left side of control box and connect to contactor and ground. Close lower front access panel before unit start-up.

#### Line Voltage 208-230/60/1 Control Box



### 208 Volt Operation

All \*1GC Series 208/230 units are factory wired for 230 volt operation. For 208 volt operation, the red and blue transformer wires must be switched on terminal strip PS.

### Pump Wiring

See Pump Wiring figure below for electrical connections from control box to pumps.

#### Pump Wiring 208-230/60/1



## **Electronic Thermostat Installation**

Position the thermostat subbase against the wall so that it is level and the thermostat wires protrude through the middle of the subbase. Mark the position of the subbase mounting holes and drill holes with a 3/16-inch bit. Install supplied anchors and secure base to the wall. Thermostat wire must be 8-conductor, 18-AWG wire. Strip the wires back 1/4-inch (longer strip lengths may cause shorts) and insert the thermostat wires into the connector as shown. Tighten the screws to insure secure connections. The thermostat has the same type connectors, requiring the same wiring. See instructions enclosed in the thermostat for detailed installation and operation information.

#### Thermostat Wiring



### **Antifreeze Corrections**

Catalog performance can be corrected for antifreeze use. Please use the following table and note the example given.

#### **Antifreeze Correction Example**

Antifreeze solution is Propylene Glycol 20% by weight. Determine the corrected heating and cooling performance at 30°F and 90°F respectively as well as pressure drop at 30°F for a \*1GC024-PSC.

The corrected cooling capacity at 90°F would be: 24,500 MBtuh x 0.969 = 23,741 MBtuh

The corrected heating capacity at  $30^{\circ}$ F would be: 19,000 MBtuh x 0.913 = 17,347 MBtuh

The corrected pressure drop at 30°F and 6 GPM would be: 10.5 feet of head x 1.270 = 13.34 feet of head

(\*First letter may be A or T)

| Antifreeze Type   | Antifreeze<br>% by wt | Cooling<br>Capacity | Heating<br>Capacity | Pressure Drop |
|-------------------|-----------------------|---------------------|---------------------|---------------|
| EWT - degF [DegC] |                       | 90 [32.2]           | 30 [-1.1]           | 30 [-1.1]     |
| Water             | 0                     | 1.000               | 1.000               | 1.000         |
|                   | 10                    | 0.991               | 0.973               | 1.075         |
|                   | 20                    | 0.979               | 0.943               | 1.163         |
| Ethylene Glycol   | 30                    | 0.965               | 0.917               | 1.225         |
|                   | 40                    | 0.955               | 0.890               | 1.324         |
|                   | 50                    | 0.943               | 0.865               | 1.419         |
|                   | 10                    | 0.981               | 0.958               | 1.130         |
|                   | 20                    | 0.969               | 0.913               | 1.270         |
| Propylene Glycol  | 30                    | 0.950               | 0.854               | 1.433         |
|                   | 40                    | 0.937               | 0.813               | 1.614         |
|                   | 50                    | 0.922               | 0.770               | 1.816         |
|                   | 10                    | 0.991               | 0.927               | 1.242         |
|                   | 20                    | 0.972               | 0.887               | 1.343         |
| Ethanol           | 30                    | 0.947               | 0.856               | 1.383         |
|                   | 40                    | 0.930               | 0.815               | 1.523         |
|                   | 50                    | 0.911               | 0.779               | 1.639         |
|                   | 10                    | 0.986               | 0.957               | 1.127         |
|                   | 20                    | 0.970               | 0.924               | 1.197         |
| Methanol          | 30                    | 0.951               | 0.895               | 1.235         |
|                   | 40                    | 0.936               | 0.863               | 1.323         |
|                   | 50                    | 0.920               | 0.833               | 1.399         |

Warning: Gray area represents antifreeze concentrations greater than 35% by weight and should be avoided due to the extreme performance penalty they represent.

## **Auxiliary Heat Ratings**

| Model    |      | KW   |        | BTU    | I/HR   | Min  | *1GC S    | eries Compa | tibility  |
|----------|------|------|--------|--------|--------|------|-----------|-------------|-----------|
| Model    | 208V | 230V | Stages | 208V   | 230V   | CFM  | 024 - 036 | 042         | 048 - 070 |
| EAM(H)5  | 3.6  | 4.8  | 1      | 12,300 | 16,300 | 450  | •         |             |           |
| EAM(H)8  | 5.7  | 7.6  | 1      | 19,400 | 25,900 | 550  | •         |             |           |
| EAM(H)10 | 7.2  | 9.6  | 1      | 24,600 | 32,700 | 650  | •         |             |           |
| EAL(H)10 | 7.2  | 9.6  | 1      | 24,600 | 32,700 | 1100 |           | •           | •         |
| EAL(H)15 | 10.8 | 14.4 | 1      | 36,900 | 49,100 | 1250 |           | •           | •         |
| EAL(H)20 | 14.4 | 19.2 | 1      | 49,200 | 65,500 | 1500 |           |             | •         |

9/18/09

| Madal             | Supply     | Heater | Amps            | Min Circ  | cuit Amp | Max Fus | se (USA) | Max Fus | se (CAN) | Max Cł | KT BRK  |
|-------------------|------------|--------|-----------------|-----------|----------|---------|----------|---------|----------|--------|---------|
| wodei             | Circuit    | 208 V  | 240 V           | 208 V     | 240 V    | 208 V   | 240 V    | 208 V   | 240 V    | 208 V  | 240 V   |
| EAM(H)5           | Single     | 17.3   | 20              | 26.7      | 30       | 30      | 30       | 30      | 30       | 30     | 30      |
| EAM(H)8           | Single     | 27.5   | 31.7            | 39.3      | 44.6     | 40      | 45       | 40      | 45       | 40     | 50      |
| EAM(H)10          | Single     | 34.7   | 40              | 48.3      | 55       | 50      | 60       | 50      | 60       | 50     | 60      |
| EAL(H)10          | Single     | 34.7   | 40              | 53.3      | 60       | 60      | 60       | 60      | 60       | 60     | 60      |
|                   | Single     | 52.0   | 60              | 75        | 85       | 80      | 90       | 80      | 90       | 70     | 100     |
| EAL(H)15          | L1/L2      | 34.7   | 40              | 53.3      | 60       | 60      | 60       | 60      | 60       | 60     | 60      |
|                   | L3/L4      | 17.3   | 20              | 21.7      | 25       | 25      | 25       | 25      | 25       | 20     | 30      |
|                   | Single     | 69.3   | 80              | 96.7      | 110      | 100     | 110      | 100     | 110      | 100    | 100     |
| EAL(H)20          | L1/L2      | 34.7   | 40              | 53.3      | 60       | 60      | 60       | 60      | 60       | 60     | 60      |
| L3/L4             |            | 34.7   | 40              | 43.3      | 50       | 45      | 50       | 45      | 50       | 40     | 50      |
| All heaters rated | L3/L4 34.7 |        | include unit bl | ower load |          |         |          |         |          |        | 9/18/09 |

All heaters rated single phase 60 cycle and include unit blower load. All fuses type "D" time delay (or HACR circuit breaker in USA) Wire length based on one-way measurement with 2% voltage drop Wire size based on 60°C (\*90°C) copper conductor "H" is used in part numbers for horizontal units

## **Electrical Data**

### **PSC Motor**

|           | Compressor           | Rated        | Voltage |      | Comp | ressor |       | HWG         | Ext         | Blower       | Total       | Min         | Max           |
|-----------|----------------------|--------------|---------|------|------|--------|-------|-------------|-------------|--------------|-------------|-------------|---------------|
| Model     | Model No.            | Voltage      | Min/Max | мсс  | RLA  | LRA    | LRA** | Pump<br>FLA | Loop<br>FLA | Motor<br>FLA | Unit<br>FLA | Circ<br>Amp | Fuse/<br>HACR |
| 024       | ZP20K5E-PFV          | 208-230/60/1 | 187/253 | 21.0 | 13.5 | 58.3   | 21.0  | 0.4         | 5.4         | 1.2          | 20.5        | 23.9        | 35            |
| 024*      | ZP20K5E-PFV          | 208-230/60/1 | 187/253 | 21.0 | 13.5 | 58.3   | 21.0  | 0.4         | 5.4         | 1.5          | 20.8        | 24.2        | 35            |
| 030       | ZP25K5E-PFV          | 208-230/60/1 | 187/253 | 22.0 | 14.1 | 73.0   | 26.0  | 0.4         | 5.4         | 1.5          | 21.4        | 24.9        | 35            |
| 030*      | ZP25K5E-PFV          | 208-230/60/1 | 187/253 | 22.0 | 14.1 | 73.0   | 26.0  | 0.4         | 5.4         | 2.2          | 22.1        | 25.6        | 35            |
| 036       | HRH029U1LP6          | 208-230/60/1 | 187/253 | 27.0 | 17.3 | 96.7   | 34.0  | 0.4         | 5.4         | 2.2          | 25.3        | 29.6        | 45            |
| 042       | HRH034U1LP6          | 208-230/60/1 | 187/253 | 31.0 | 20.0 | 115.0  | 41.0  | 0.4         | 5.4         | 3.5          | 29.3        | 34.3        | 50            |
| 042*      | HRH034U1LP6          | 208-230/60/1 | 187/253 | 31.0 | 20.0 | 115.0  | 41.0  | 0.4         | 5.4         | 4.6          | 30.4        | 35.4        | 50            |
| 048       | HRH040U1LP6          | 208-230/60/1 | 187/253 | 32.0 | 21.0 | 115.0  | 41.0  | 0.4         | 5.4         | 3.5          | 30.3        | 35.6        | 50            |
| 048*      | HRH040U1LP6          | 208-230/60/1 | 187/253 | 32.0 | 21.0 | 115.0  | 41.0  | 0.4         | 5.4         | 4.6          | 31.4        | 36.7        | 50            |
| 060       | HRH051U1LP6          | 208-230/60/1 | 187/253 | 41.0 | 26.3 | 150.0  | 53.0  | 0.4         | 5.4         | 5.9          | 38.0        | 44.6        | 70            |
| 070       | HRH056U1LP6          | 208-230/60/1 | 187/253 | 47.0 | 30.1 | 145.0  | 51.0  | 0.4         | 5.4         | 5.9          | 41.8        | 49.3        | 70            |
| HACR circ | uit breaker in USA o | only         |         |      |      |        |       |             |             |              |             |             | 1/12/10       |

HACR circuit breaker in USA only \* With optional high-static PSC motor \*\* With optional GeoStart™, only available on 208-230/60/1

NOTE: High-static option not available on 036, 060, and 070 model sizes.

### X13 ECM Motor

|       | Compressor  | Rated        | Voltage |      | Comp | ressor |       | HWG         | Ext         | Blower       | Total       | Min         | Max           |
|-------|-------------|--------------|---------|------|------|--------|-------|-------------|-------------|--------------|-------------|-------------|---------------|
| Model | Model No.   | Voltage      | Min/Max | мсс  | RLA  | LRA    | LRA** | Pump<br>FLA | Loop<br>FLA | Motor<br>FLA | Unit<br>FLA | Circ<br>Amp | Fuse/<br>HACR |
| 024   | ZP20K5E-PFV | 208-230/60/1 | 187/253 | 21.0 | 13.5 | 58.3   | 21.0  | 0.4         | 5.4         | 4.1          | 23.4        | 26.8        | 40            |
| 030   | ZP25K5E-PFV | 208-230/60/1 | 187/253 | 22.0 | 14.1 | 73.0   | 26.0  | 0.4         | 5.4         | 4.1          | 24.0        | 27.5        | 40            |
| 036   | HRH029U1LP6 | 208-230/60/1 | 187/253 | 27.0 | 17.3 | 96.7   | 34.0  | 0.4         | 5.4         | 4.1          | 27.2        | 31.5        | 45            |
| 042   | HRH034U1LP6 | 208-230/60/1 | 187/253 | 31.0 | 20.0 | 115.0  | 41.0  | 0.4         | 5.4         | 7.6          | 33.4        | 38.4        | 50            |
| 048   | HRH040U1LP6 | 208-230/60/1 | 187/253 | 32.0 | 21.0 | 115.0  | 41.0  | 0.4         | 5.4         | 7.6          | 34.4        | 39.7        | 60            |
| 060   | HRH051U1LP6 | 208-230/60/1 | 187/253 | 41.0 | 26.3 | 150.0  | 53.0  | 0.4         | 5.4         | 7.6          | 39.7        | 46.3        | 70            |
| 070   | HRH056U1LP6 | 208-230/60/1 | 187/253 | 47.0 | 30.1 | 145.0  | 51.0  | 0.4         | 5.4         | 7.6          | 43.5        | 51.0        | 80            |

HACR circuit breaker in USA only \*\* With optional GeoStart™, only available on 208-230/60/1

10/20/09

## **Blower Performance Data - PSC**

#### Standard PSC Motor

|            | Blower   | Blower    | Motor |      |      |      |      | Α    | irflow (o | cfm) at E | Externa | Static | Pressur | e (in. w | g)   |      |      |      |         |
|------------|----------|-----------|-------|------|------|------|------|------|-----------|-----------|---------|--------|---------|----------|------|------|------|------|---------|
| Model      | Spd      | Size      | HP    | 0.00 | 0.05 | 0.10 | 0.15 | 0.20 | 0.25      | 0.30      | 0.35    | 0.40   | 0.45    | 0.50     | 0.60 | 0.70 | 0.80 | 0.90 | 1.00    |
|            | Н        |           |       | 1065 | 1045 | 1030 | 1005 | 975  | 950       | 925       | 900     | 870    | 835     | 800      | -    | -    | -    | -    | -       |
| 024        | М        | 9 x 7     | 1/5   | 880  | 865  | 850  | 830  | 815  | 795       | 775       | 750     | 725    | 700     | 670      | -    | -    | -    | -    | -       |
|            | L        |           |       | 805  | 790  | 780  | 765  | 745  | 725       | 710       | 685     | 660    | 630     | 600      | -    | -    | -    | -    | -       |
|            | н        |           |       | 1120 | 1100 | 1070 | 1050 | 1040 | 1030      | 1020      | 1010    | 1000   | 980     | 830      | -    | -    | -    | -    | -       |
| 030        | М        | 9 x 7     | 1/3   | 1020 | 1000 | 980  | 960  | 920  | 880       | 860       | 840     | 820    | 790     | -        | -    | -    | -    | -    | -       |
|            | L        |           |       | 860  | 850  | 840  | 830  | 810  | 800       | 780       | 760     | 740    | 710     | -        | -    | -    | -    | -    | -       |
|            | н        |           |       | 1360 | 1340 | 1320 | 1290 | 1260 | 1220      | 1185      | 1130    | 1080   | 1045    | 1010     | 910  | 855  | -    | -    | -       |
| 036        | М        | 9 x 7     | 1/2   | 1205 | 1190 | 1170 | 1145 | 1120 | 1085      | 1050      | 1015    | 980    | 940     | 900      | 845  | -    | -    | -    | -       |
|            | L        |           |       | 1070 | 1060 | 1050 | 1035 | 1020 | 995       | 970       | 940     | 910    | 875     | 840      | 780  | -    | -    | -    | -       |
|            | н        |           |       | 1705 | 1685 | 1665 | 1645 | 1625 | 1595      | 1565      | 1530    | 1500   | 1450    | 1405     | 1260 | 1140 | -    | -    | -       |
| 042        | М        | 10 x 10   | 1/2   | 1485 | 1475 | 1465 | 1445 | 1430 | 1410      | 1390      | 1350    | 1315   | 1260    | 1210     | 1110 | 1010 | -    | -    | -       |
|            | L        |           |       | 1180 | 1165 | 1150 | 1135 | 1120 | 1090      | 1060      | 1030    | 1000   | 965     | 920      | 855  | -    | -    | -    | -       |
|            | н        |           |       | 1930 | 1910 | 1885 | 1860 | 1830 | 1790      | 1750      | 1710    | 1665   | 1620    | 1580     | 1280 | 1235 | -    | -    | -       |
| 048        | М        | 10 x 10   | 1/2   | 1580 | 1565 | 1550 | 1535 | 1525 | 1505      | 1485      | 1445    | 1410   | 1310    | 1215     | 1130 | 1030 | -    | -    | -       |
|            | L        | 1         |       | 1180 | 1170 | 1160 | 1140 | 1120 | 1100      | 1080      | 1050    | 1020   | 970     | 930      | 875  | -    | -    | -    | -       |
|            | н        |           |       | 2360 | 2330 | 2300 | 2270 | 2240 | 2215      | 2190      | 2160    | 2130   | 2095    | 2060     | 1985 | 1920 | 1855 | -    | -       |
| 060        | м        | 11 x 10   | 1     | 2165 | 2130 | 2095 | 2070 | 2050 | 2030      | 2010      | 1985    | 1965   | 1930    | 1900     | 1850 | 1775 | 1700 | -    | -       |
|            | L        |           |       | 1965 | 1940 | 1920 | 1900 | 1885 | 1870      | 1855      | 1825    | 1800   | 1780    | 1760     | 1720 | 1625 | 1530 | -    | -       |
|            | н        |           |       | 2450 | 2435 | 2420 | 2395 | 2370 | 2340      | 2310      | 2280    | 2250   | 2225    | 2200     | 2040 | 2000 | 1950 | -    | -       |
| 070        | М        | 11 x 10   | 1     | 2215 | 2190 | 2170 | 2155 | 2140 | 2120      | 2095      | 2070    | 2045   | 2015    | 1990     | 1940 | 1876 | 1795 | -    | -       |
|            | L        |           |       | 2005 | 1990 | 1975 | 1960 | 1950 | 1940      | 1925      | 1910    | 1890   | 1865    | 1845     | 1780 | 1710 | 1565 | -    | -       |
| Easton/ as | ttinge o | n in Pold |       |      |      |      |      |      |           |           |         |        |         |          |      |      |      | 1    | 1/13/09 |

Factory settings are in Bold

Air flow values are with dry coil and standard filter

For wet coil performance first calculate the face velocity of the air coil (Face Velocity [fpm] = Airflow [cfm] / Face Area [sq ft]).

Then for velocities of 200 fpm reduce the static capability by 0.03 in. wg, 300 fpm by 0.08 in. wg, 400 fpm by 0.12 in. wg. and 500 fpm by 0.16 in. wg.

|                                                | Blower | Blower  | Motor |      |      |      |      | Α    | irflow (o | fm) at E | xternal | Static | Pressur | e (in. w | g)   |      |      |      |         |
|------------------------------------------------|--------|---------|-------|------|------|------|------|------|-----------|----------|---------|--------|---------|----------|------|------|------|------|---------|
| Model                                          | Spd    | Size    | HP    | 0.00 | 0.05 | 0.10 | 0.15 | 0.20 | 0.25      | 0.30     | 0.35    | 0.40   | 0.45    | 0.50     | 0.60 | 0.70 | 0.80 | 0.90 | 1.00    |
|                                                | Н      |         |       | 1120 | 1100 | 1070 | 1050 | 1040 | 1030      | 1020     | 1010    | 1000   | 980     | 830      | -    | -    | -    | -    | -       |
| 024                                            | М      | 9 x 7   | 1/3   | 1020 | 1000 | 980  | 960  | 920  | 880       | 860      | 840     | 820    | 790     | -        | -    | -    | -    | -    | -       |
|                                                | L      |         |       | 860  | 850  | 840  | 830  | 810  | 800       | 780      | 760     | 740    | 710     | -        | -    | -    | -    | -    | -       |
|                                                | Н      |         |       | 1340 | 1320 | 1300 | 1270 | 1240 | 1200      | 1160     | 1115    | 1070   | 1025    | 985      | 880  | -    | -    | -    | -       |
| 030                                            | М      | 9 x 7   | 1/2   | 1185 | 1175 | 1165 | 1130 | 1095 | 1065      | 1035     | 1000    | 965    | 920     | 880      | 795  | -    | -    | -    | -       |
|                                                | L      |         |       | 1050 | 1040 | 1030 | 1015 | 1000 | 980       | 960      | 925     | 895    | 855     | 815      | -    | -    | -    | -    | -       |
|                                                | Н      |         |       | 2095 | 2080 | 2060 | 2020 | 1980 | 1950      | 1920     | 1880    | 1840   | 1780    | 1725     | 1550 | 1335 | 1120 | -    | -       |
| 042                                            | М      | 10 x 10 | 3/4   | 1960 | 1940 | 1920 | 1890 | 1865 | 1830      | 1800     | 1760    | 1725   | 1670    | 1620     | 1435 | 1300 | -    | -    | -       |
|                                                | L      |         |       | 1800 | 1780 | 1760 | 1740 | 1725 | 1695      | 1670     | 1625    | 1585   | 1525    | 1465     | 1300 | 1200 | -    | -    | -       |
|                                                | Н      |         |       | 2095 | 2080 | 2060 | 2020 | 1980 | 1950      | 1920     | 1880    | 1840   | 1780    | 1725     | 1550 | 1335 | 1120 | -    | -       |
| 048                                            | М      | 10 x 10 | 3/4   | 1960 | 1940 | 1920 | 1890 | 1865 | 1830      | 1800     | 1760    | 1725   | 1670    | 1620     | 1435 | 1300 | -    | -    | -       |
|                                                | L      |         |       | 1800 | 1780 | 1760 | 1740 | 1725 | 1695      | 1670     | 1625    | 1585   | 1525    | 1465     | 1300 | 1200 | -    | -    | -       |
| <b>F</b> = + + + + + + + + + + + + + + + + + + |        | Dala    |       |      |      |      |      |      |           |          |         |        |         |          |      |      |      |      | 11/4/09 |

### **Optional High Static PSC Motor**

Factory settings are in Bold

Air flow values are with dry coil and standard filter

For wet coil performance first calculate the face velocity of the air coil (Face Velocity [fpm] = Airflow [cfm] / Face Area [sq ft]).

Then for velocities of 200 fpm reduce the static capability by 0.03 in. wg, 300 fpm by 0.08 in. wg, 400 fpm by 0.12 in. wg. and 500 fpm by 0.16 in. wg.

## **Setting Blower Speed - PSC**



CAUTION: Disconnect all power before performing this operation.



## **Blower Performance Data - X13 ECM**

| Madal   | Motor    | Motor  | Blower  | Motor |      |      |      |      | Air  | flow (cf | m) at E | xterna | Static | Pressu | re (in. | wg)  |      |      |      |         |
|---------|----------|--------|---------|-------|------|------|------|------|------|----------|---------|--------|--------|--------|---------|------|------|------|------|---------|
| wodei   | Spd      | Тар    | Size    | HP    | 0.00 | 0.05 | 0.10 | 0.15 | 0.20 | 0.25     | 0.30    | 0.35   | 0.40   | 0.45   | 0.50    | 0.60 | 0.70 | 0.80 | 0.90 | 1.00    |
|         | High     | 5      |         |       | 980  | 960  | 940  | 930  | 920  | 905      | 890     | 875    | 860    | 840    | 820     | 800  | 745  | -    | -    | -       |
|         | Med High | 4      |         |       | 890  | 878  | 865  | 845  | 825  | 813      | 800     | 785    | 770    | 753    | 735     | 710  | 665  | -    | -    | -       |
| 024     | Med      | 3      | 9 x 7   | 1/2   | 830  | 815  | 800  | 788  | 775  | 755      | 735     | 723    | 710    | 690    | 670     | 640  | 600  | -    | -    | -       |
|         | Med Low  | 2      |         |       | 780  | 760  | 740  | 703  | 665  | 653      | 640     | 620    | 600    | 585    | 570     | -    | -    | -    | -    | -       |
|         | Low      | 1      |         |       | 625  | 593  | 560  | 535  | 510  | 495      | 480     | 455    | 430    | 410    | 390     | -    | -    | -    | -    | -       |
|         | High     | 5      |         |       | 1340 | 1310 | 1280 | 1240 | 1200 | 1170     | 1140    | 1095   | 1050   | 1015   | 980     | 900  | 800  | -    | -    | -       |
|         | Med High | 4      |         |       | 1130 | 1115 | 1100 | 1085 | 1070 | 1057     | 1044    | 1022   | 1000   | 970    | 940     | 870  | 780  | -    | -    | -       |
| 030     | Med      | 3      | 9 x 7   | 1/2   | 1030 | 1005 | 980  | 965  | 950  | 935      | 920     | 900    | 880    | 870    | 860     | 830  | 750  | -    | -    | -       |
|         | Med Low  | 2      | ]       |       | 960  | 945  | 930  | 915  | 900  | 885      | 870     | 855    | 840    | 825    | 810     | 790  | 740  | -    | -    | -       |
|         | Low      | 1      |         |       | 790  | 765  | 740  | 725  | 710  | 690      | 670     | 660    | 650    | 630    | 610     | 580  | 500  | -    | -    | -       |
|         | High     | 5      |         |       | 1370 | 1345 | 1320 | 1285 | 1250 | 1220     | 1190    | 1158   | 1125   | 1085   | 1045    | 960  | -    | -    | -    | -       |
|         | Med High | 4      | ]       |       | 1265 | 1253 | 1240 | 1220 | 1200 | 1175     | 1150    | 1120   | 1090   | 1053   | 1015    | -    | -    | -    | -    | -       |
| 036     | Med      | 3      | 9 x 7   | 1/2   | 1160 | 1143 | 1125 | 1113 | 1100 | 1085     | 1070    | 1055   | 1040   | 1020   | 1000    | -    | -    | -    | -    | -       |
|         | Med Low  | 2      | ]       |       | 1110 | 1095 | 1080 | 1065 | 1050 | 1038     | 1025    | 1008   | 990    | 980    | 970     | -    | -    | -    | -    | -       |
|         | Low      | 1      |         |       | 825  | 803  | 780  | 770  | 760  | 740      | 720     | 705    | 690    | 670    | 650     | -    | -    | -    | -    | -       |
|         | High     | 5      |         |       | 1840 | 1825 | 1810 | 1790 | 1770 | 1745     | 1720    | 1700   | 1680   | 1660   | 1640    | 1600 | 1570 | 1530 | 1480 | -       |
|         | Med High | 4      | ]       |       | 1730 | 1713 | 1695 | 1670 | 1645 | 1623     | 1600    | 1575   | 1550   | 1535   | 1520    | 1480 | 1440 | 1390 | 1350 | -       |
| 042     | Med      | 3      | 11 x 10 | 1     | 1630 | 1610 | 1590 | 1563 | 1535 | 1513     | 1490    | 1470   | 1450   | 1425   | 1400    | 1370 | 1330 | 1290 | -    | -       |
|         | Med Low  | 2      | ]       |       | 1550 | 1520 | 1490 | 1465 | 1440 | 1415     | 1390    | 1370   | 1350   | 1330   | 1310    | 1260 | 1220 | 1180 | -    | -       |
|         | Low      | 1      |         |       | 1380 | 1340 | 1300 | 1275 | 1250 | 1225     | 1200    | 1175   | 1150   | 1125   | 1100    | 1030 | 980  | 820  | -    | -       |
|         | High     | 5      |         |       | 2060 | 2045 | 2030 | 2015 | 2000 | 1970     | 1940    | 1925   | 1910   | 1890   | 1870    | 1830 | 1800 | 1750 | 1740 | -       |
|         | Med High | 4      | ]       |       | 1880 | 1860 | 1840 | 1825 | 1810 | 1785     | 1760    | 1740   | 1720   | 1705   | 1690    | 1640 | 1610 | 1570 | 1535 | -       |
| 048     | Med      | 3      | 11 x 10 | 1     | 1790 | 1770 | 1750 | 1730 | 1710 | 1685     | 1660    | 1640   | 1620   | 1600   | 1580    | 1550 | 1510 | 1460 | -    | -       |
|         | Med Low  | 2      |         |       | 1670 | 1650 | 1630 | 1605 | 1580 | 1555     | 1530    | 1510   | 1490   | 1470   | 1450    | 1410 | 1370 | 1340 | -    | -       |
|         | Low      | 1      |         |       | 1430 | 1405 | 1380 | 1353 | 1325 | 1303     | 1280    | 1255   | 1230   | 1210   | 1190    | 1130 | 1070 | 925  | -    | -       |
|         | High     | 5      |         |       | 2400 | 2360 | 2330 | 2315 | 2300 | 2290     | 2285    | 2275   | 2265   | 2250   | 2230    | 2200 | 2165 | 2110 | 2080 | 2030    |
|         | Med High | 4      |         |       | 2180 | 2160 | 2140 | 2130 | 2120 | 2105     | 2090    | 2075   | 2060   | 2045   | 2030    | 2000 | 1960 | 1930 | 1890 | 1850    |
| 060     | Med      | 3      | 11 x 10 | 1     | 2080 | 2050 | 2020 | 2010 | 2000 | 1985     | 1970    | 1955   | 1940   | 1925   | 1910    | 1870 | 1840 | 1800 | 1760 | 1720    |
|         | Med Low  | 2      |         |       | 1930 | 1920 | 1910 | 1893 | 1875 | 1863     | 1850    | 1833   | 1815   | 1798   | 1780    | 1740 | 1700 | 1660 | 1620 | 1590    |
|         | Low      | 1      |         |       | 1750 | 1735 | 1720 | 1698 | 1675 | 1658     | 1640    | 1620   | 1600   | 1583   | 1565    | 1525 | 1490 | 1450 | 1410 | 1350    |
|         | High     | 5      |         |       | 2400 | 2360 | 2330 | 2315 | 2300 | 2290     | 2285    | 2275   | 2265   | 2250   | 2230    | 2200 | 2165 | 2110 | 2080 | 2030    |
|         | Med High | 4      |         |       | 2180 | 2160 | 2140 | 2130 | 2120 | 2105     | 2090    | 2075   | 2060   | 2045   | 2030    | 2000 | 1960 | 1930 | 1890 | 1850    |
| 070     | Med      | 3      | 11 x 10 | 1     | 2080 | 2050 | 2020 | 2010 | 2000 | 1985     | 1970    | 1955   | 1940   | 1925   | 1910    | 1870 | 1840 | 1800 | 1760 | 1720    |
|         | Med Low  | 2      | ]       |       | 1930 | 1920 | 1910 | 1893 | 1875 | 1863     | 1850    | 1833   | 1815   | 1798   | 1780    | 1740 | 1700 | 1660 | 1620 | 1590    |
|         | Low      | 1      |         |       | 1750 | 1735 | 1720 | 1698 | 1675 | 1658     | 1640    | 1620   | 1600   | 1583   | 1565    | 1525 | 1490 | 1450 | 1410 | 1350    |
| Eastory |          | n Dald |         |       |      |      |      |      |      |          |         |        |        |        |         |      |      |      | 11   | 1/13/09 |

Factory settings are in Bold

Air flow values are with dry coil and standard filter

For we coil performance first calculate the face velocity of the air coil (Face Velocity [fpm] = Airflow [cfm] / Face Area [sq ft]). Then for velocities of 200 fpm reduce the static capability by 0.03 in. wg, 300 fpm by 0.08 in. wg, 400 fpm by 0.12 in. wg. and 500 fpm by 0.16 in. wg. ISO/AHRI rating point on the \*1GC070 (\*may b A or T) will require moving the red wire on the motor to high speed (tap 5) and disconnecting the tan wire from tap 5.

## **X13 ECM Constant Torque Motors**

The X13 is a 'Constant Torque' ECM motor and delivers air flow similar to a PSC but operates as efficiently as an ECM Variable Speed Motor. Because it's an ECM Motor, the X13 can ramp slowly up or down like the ECM Variable Speed Motor. There are 5 possible speed taps available on the X13 motor with #1 being the lowest airflow and #5 being the highest airflow. These speed selections are preset at the time of manufacture and are easily changed in the field if necessary. The G, Y1 and W signals are wired to the motor at the factory. A gray wire is tied to the motor wire bundle for the Y2 signal and can be field connected to the motor if desired.

X13 Benefits:

- High efficiency
- Soft start
- 5 speeds with up to 4 speeds on-line
- Built in logic allows air flow to change with G, Y1, Y2 and W signals
- Super efficient low airflow continuous blower setting (G)

If more than one tap are energized at the same time, built in logic gives precedence to the highest tap number and allows air flow to change with G, Y1, Y2 and W signals. Each of those 5 speeds has a specific 'Torque' value programmed into the motor for each speed selection. As static pressure increases, airflow decreases resulting in less torque on the rotor. The motor responds only to changes in torque and adjusts its speed accordingly.

The X13 motor is powered by 208-230VAC but the motor speed is energized by 24VAC.

X13 ECM Motor Connections



Power Connection - 3/16 in. quick connects - Line 1 (orange wire) to L, Ground (green wire) to G, Line 2 (for 208V-230V units) to N (brown wire).

Signal Connection - 1/4 in. quick connects - Common to C, 24VAC to Taps #1-5.

Applying 24VAC power between any of the motor taps 1-5 (1/4 in. quick connects) and common will signal the motor to run and regulate torque at the programmed level. The tap input voltage must be in the range 12-33VAC. The X13 will have less variation over the operating static pressure range versus a PSC motor as well as a significant watts reduction due to the high motor efficiency.

Thermal protection - Motor is electronically protected. Locked Rotor Amps - If motor speed decreases below a programmed stall speed, the motor will shut down and after a delay period, the control will attempt to restart the motor.

The X13 speed tap selections are as follows: The blue wire should be placed on the speed tap desired for the (G) continuous blower setting – factory wired to Tap 1.

The red wire should be placed on the speed tap desired during compressor operation (Y1 signal) – factory wired to Tap 3 or 4.

The gray wire is not factory wired to the motor and is tied to the wire harness. It is field connected and can be used with 3ht/2cl thermostats or IntelliZone to deliver the required air flow for the Y2 signal.

The tan wire should be placed on the speed tap desired for auxiliary heat (W signal) – factory wired to Tap 5.

### **Vertical Dimensional Data**



Left Return







۰S



10/22/09

С

| Vort | iool | Ov         | erall Cabi | net    |      |      | Wate | r Connec | tions  |        |        |         | Electri | cal Conne | ctions |     |
|------|------|------------|------------|--------|------|------|------|----------|--------|--------|--------|---------|---------|-----------|--------|-----|
| Tom  | flow | ^          | Б          | 6      | D    | E    | F    | G        | Н      | Loop   | HWG    | J       | K       | L         | М      | N   |
|      | del  | A<br>Width | Danth      | Usinht | Loop | Loop | HWG  | HWG      | Cond-  | Water  | Sweat  | Low     | Ext     | Power     |        |     |
| INIO | dei  | width      | Depth      | Height | In   | Out  | In   | Out      | ensate | FPT    | (I.D)  | Voltage | Pump    | Supply    |        |     |
| 024  | in.  | 22.3       | 26.3       | 44.4   | 1.9  | 6.9  | 13.5 | 16.4     | 10.2   | 1"     | 1/2"   | 5.1     | 10.8    | 16.5      | 5.9    | 3.3 |
| 024  | cm.  | 56.6       | 66.8       | 112.8  | 4.8  | 17.5 | 34.3 | 41.7     | 25.9   | Swivel | Female | 13.0    | 27.4    | 41.9      | 15.0   | 8.4 |
| 020  | in.  | 22.3       | 26.3       | 44.4   | 1.9  | 6.9  | 13.5 | 16.4     | 10.2   | 1"     | 1/2"   | 5.1     | 10.8    | 16.5      | 5.9    | 3.3 |
| 030  | cm.  | 56.6       | 66.8       | 112.8  | 4.8  | 17.5 | 34.3 | 41.7     | 25.9   | Swivel | Female | 13.0    | 27.4    | 41.9      | 15.0   | 8.4 |
| 0.26 | in.  | 22.3       | 26.3       | 48.4   | 1.9  | 6.9  | 13.5 | 16.4     | 10.2   | 1"     | 1/2"   | 5.1     | 10.8    | 16.5      | 5.9    | 3.3 |
| 030  | cm.  | 56.6       | 66.8       | 122.9  | 4.8  | 17.5 | 34.3 | 41.7     | 25.9   | Swivel | Female | 13.0    | 27.4    | 41.9      | 15.0   | 8.4 |
| 042  | in.  | 25.4       | 31.4       | 50.4   | 2.3  | 7.3  | 15.9 | 18.9     | 10.6   | 1"     | 1/2"   | 6.5     | 12.2    | 17.9      | 5.9    | 3.3 |
| 042  | cm.  | 64.5       | 79.8       | 128.0  | 5.8  | 18.5 | 40.4 | 48.0     | 26.9   | Swivel | Female | 16.5    | 31.0    | 45.5      | 15.0   | 8.4 |
| 040  | in.  | 25.4       | 31.4       | 50.4   | 2.3  | 7.3  | 15.9 | 18.9     | 10.6   | 1"     | 1/2"   | 6.5     | 12.2    | 17.9      | 5.9    | 3.3 |
| 040  | cm.  | 64.5       | 79.8       | 128.0  | 5.8  | 18.5 | 40.4 | 48.0     | 26.9   | Swivel | Female | 16.5    | 31.0    | 45.5      | 15.0   | 8.4 |
| 060  | in.  | 25.4       | 31.4       | 54.4   | 2.3  | 7.3  | 15.9 | 18.9     | 10.6   | 1"     | 1/2"   | 6.5     | 12.2    | 17.9      | 5.9    | 3.3 |
| 000  | cm.  | 64.5       | 79.8       | 138.2  | 5.8  | 18.5 | 40.4 | 48.0     | 26.9   | Swivel | Female | 16.5    | 31.0    | 45.5      | 15.0   | 8.4 |
| 070  | in.  | 25.4       | 31.4       | 58.4   | 2.3  | 7.3  | 15.9 | 18.9     | 10.6   | 1"     | 1/2"   | 6.5     | 12.2    | 17.9      | 5.9    | 3.3 |
| 0/0  | cm.  | 64.5       | 79.8       | 148.3  | 5.8  | 18.5 | 40.4 | 48.0     | 26.9   | Swivel | Female | 16.5    | 31.0    | 45.5      | 15.0   | 8.4 |

| Vor  | inal  | Discha          | rge Connectio   | on - duct flang | ge installed (± | 0.10 in) | R   | eturn Connec    | tion - using s   | td deluxe filte | r rack (±0.10 | in)  |
|------|-------|-----------------|-----------------|-----------------|-----------------|----------|-----|-----------------|------------------|-----------------|---------------|------|
| ver  | lical | Р               | Q               | R               | S               | Т        | U   | V               | W                | Х               | Y             | Z    |
| Mo   | del   | Supply<br>Width | Supply<br>Depth |                 |                 |          |     | Return<br>Depth | Return<br>Height |                 |               |      |
| 024  | in.   | 14.0            | 14.0            | 6.2             | 0.8             | 2.7      | 2.3 | 22.0            | 22.0             | 2.0             | 1.0           | 25.7 |
| 024  | cm.   | 35.6            | 35.6            | 15.7            | 2.0             | 6.9      | 5.8 | 55.9            | 55.9             | 5.1             | 2.5           | 65.3 |
| 020  | in.   | 14.0            | 14.0            | 6.2             | 0.8             | 2.7      | 2.3 | 22.0            | 22.0             | 2.0             | 1.0           | 25.7 |
| 030  | cm.   | 35.6            | 35.6            | 15.7            | 2.0             | 6.9      | 5.8 | 55.9            | 55.9             | 5.1             | 2.5           | 65.3 |
| 0.26 | in.   | 14.0            | 14.0            | 6.2             | 0.8             | 2.7      | 2.3 | 22.1            | 26.1             | 2.0             | 1.0           | 25.7 |
| 030  | cm.   | 35.6            | 35.6            | 15.7            | 2.0             | 6.9      | 5.8 | 56.1            | 66.3             | 5.1             | 2.5           | 65.3 |
| 042  | in.   | 18.0            | 18.0            | 6.9             | 1.1             | 3.8      | 1.7 | 28.1            | 26.0             | 2.0             | 1.0           | 28.7 |
| 042  | cm.   | 45.7            | 45.7            | 17.5            | 2.8             | 9.7      | 4.3 | 71.4            | 66.0             | 5.1             | 2.5           | 72.9 |
| 040  | in.   | 18.0            | 18.0            | 6.9             | 1.1             | 3.8      | 1.7 | 28.1            | 26.0             | 2.0             | 1.0           | 28.7 |
| 040  | cm.   | 45.7            | 45.7            | 17.5            | 2.8             | 9.7      | 4.3 | 71.4            | 66.0             | 5.1             | 2.5           | 72.9 |
| 000  | in.   | 18.0            | 18.0            | 6.9             | 1.1             | 3.8      | 1.7 | 28.1            | 30.0             | 2.0             | 1.0           | 28.7 |
| 000  | cm.   | 45.7            | 45.7            | 17.5            | 2.8             | 9.7      | 4.3 | 71.4            | 76.2             | 5.1             | 2.5           | 72.9 |
| 070  | in.   | 18.0            | 18.0            | 6.9             | 1.1             | 3.8      | 1.7 | 28.1            | 34.0             | 2.0             | 1.0           | 28.7 |
| 0/0  | cm    | 45.7            | 45.7            | 17.5            | 2.8             | 97       | 43  | 71.4            | 86.4             | 51              | 25            | 72.9 |

Condensate is 3/4 in. PVC female glue socket and is switchable from side to front

Unit shipped with deluxe 1 in. (field adjustable to 2 in.) duct collar/filter rack extending from unit 3.25 in. and is suitable for duct connection.

Discharge flange is field installed and extends 1 in. [25.4 mm] from cabinet

### **Horizontal Dimensional Data**



|        |       | Ove   | erall Cab | inet    |      |      | Wate | r Connec | ctions |        |        |         |      | Electr | ical Knoo | ckouts |        |       |
|--------|-------|-------|-----------|---------|------|------|------|----------|--------|--------|--------|---------|------|--------|-----------|--------|--------|-------|
| Horizo | ontal | Α     | В         | С       | D    | E    | F    | G        | Н      | Loop   | HWG    | J       | K    | L      | М         | N      | Р      | Q     |
| Mod    | els   | Width | Depth     | Height* | Loop | Loop | HWG  | HWG      | Cond-  | Water  | Sweat  | Low     | Ext  | Power  | Low       | Ext    | Power  | Elec. |
|        |       |       |           | Ŭ       | In   | Out  | In   | Out      | ensate | FPT    | (I.D.) | voitage | Pump | Supply | voitage   | Pump   | Supply | Heat  |
| 024-   | in.   | 22.5  | 63.0      | 19.2    | 2.4  | 7.4  | 13.4 | 16.4     | 1.1    | 1"     | 1/2"   | 5.9     | 13.7 | 15.7   | 5.9       | 11.6   | 13.6   | 2.5   |
| 036    | cm.   | 57.2  | 160.0     | 48.8    | 6.1  | 18.8 | 34.0 | 41.7     | 2.8    | Swivel | Female | 15.0    | 34.8 | 39.9   | 15.0      | 29.5   | 34.5   | 6.4   |
| 042-   | in.   | 25.5  | 72.0      | 21.2    | 2.2  | 7.2  | 15.8 | 18.8     | 1.1    | 1"     | 1/2"   | 5.9     | 13.7 | 15.7   | 5.9       | 13.7   | 15.7   | 2.5   |
| 048    | cm.   | 64.8  | 182.9     | 53.8    | 5.6  | 18.3 | 40.1 | 47.8     | 2.8    | Swivel | Female | 15.0    | 34.8 | 39.9   | 15.0      | 34.8   | 39.9   | 6.4   |
| 000    | in.   | 25.5  | 77.0      | 21.2    | 2.2  | 7.2  | 15.8 | 18.8     | 1.1    | 1"     | 1/2"   | 5.9     | 13.7 | 15.7   | 5.9       | 13.7   | 15.7   | 2.5   |
| 000    | cm.   | 64.8  | 195.6     | 53.8    | 5.6  | 18.3 | 40.1 | 47.8     | 2.8    | Swivel | Female | 15.0    | 34.8 | 39.9   | 15.0      | 34.8   | 39.9   | 6.4   |
| 070    | in.   | 25.5  | 82.0      | 21.2    | 2.2  | 7.2  | 15.8 | 18.8     | 1.1    | 1"     | 1/2"   | 5.9     | 13.7 | 15.7   | 5.9       | 13.7   | 15.7   | 2.5   |
| 0/0    | cm.   | 64.8  | 208.3     | 53.8    | 5.6  | 18.3 | 40.1 | 47.8     | 2.8    | Swivel | Female | 15.0    | 34.8 | 39.9   | 15.0      | 34.8   | 39.9   | 6.4   |

| Discharge Connection<br>duct flange installed (±0.10 in.) |     |      |                  |                 | usin | R<br>Ig deluxe | eturn Co<br>e filter ra | onnectic<br>ack optic | on<br>on (±0.10  | ) in.)          | Unit Hanger Dimensions |     |     |     | PVC<br>Drain |       |      |      |      |
|-----------------------------------------------------------|-----|------|------------------|-----------------|------|----------------|-------------------------|-----------------------|------------------|-----------------|------------------------|-----|-----|-----|--------------|-------|------|------|------|
| Horizo                                                    |     | R    | S                | Т               | U    | V              | W                       | Х                     | Y                | Z               | AA                     | BB  | CC  | DD  | EE           | FF    | GG   | HH   | Size |
| widd                                                      | eis |      | Supply<br>Height | Supply<br>Depth |      |                |                         |                       | Return<br>Height | Return<br>Depth |                        |     |     |     |              |       |      |      |      |
| 024-                                                      | in. | 6.5  | 9.4              | 10.5            | 6.5  | 2.3            | 5.7                     | 6.5                   | 16.9             | 30.5            | 2.2                    | 2.8 | 1.0 | 1.0 | 21.1         | 63.4  | 24.8 | n/a  | 3/4  |
| 036                                                       | cm. | 16.5 | 23.9             | 26.7            | 16.5 | 5.8            | 14.5                    | 16.5                  | 42.9             | 77.5            | 5.6                    | 7.1 | 2.5 | 2.5 | 53.6         | 161.0 | 63.0 | n/a  | 1.9  |
| 042-                                                      | in. | 4.5  | 13.4             | 13.7            | 4.8  | 2.8            | 6.8                     | 7.5                   | 18.7             | 35.5            | 2.2                    | 2.8 | 1.0 | 1.0 | 24.1         | 43.1  | 27.8 | 29.3 | 3/4  |
| 048                                                       | cm. | 11.4 | 34.0             | 34.8            | 12.2 | 7.1            | 17.3                    | 19.1                  | 47.5             | 90.2            | 5.6                    | 7.1 | 2.5 | 2.5 | 61.2         | 109.5 | 70.6 | 74.4 | 1.9  |
| 060                                                       | in. | 4.5  | 13.4             | 13.7            | 4.8  | 2.8            | 6.8                     | 7.5                   | 18.7             | 40.5            | 2.2                    | 2.8 | 1.0 | 1.0 | 24.1         | 48.1  | 27.8 | 29.3 | 3/4  |
| 000                                                       | cm. | 11.4 | 34.0             | 34.8            | 12.2 | 7.1            | 17.3                    | 19.1                  | 47.5             | 102.9           | 5.6                    | 7.1 | 2.5 | 2.5 | 61.2         | 122.2 | 70.6 | 74.4 | 1.9  |
| 070                                                       | in. | 4.5  | 13.4             | 13.7            | 4.8  | 2.8            | 6.8                     | 7.5                   | 18.7             | 45.5            | 2.2                    | 2.8 | 1.0 | 1.0 | 24.1         | 53.1  | 27.8 | 29.3 | 3/4  |
| 0/0                                                       | cm. | 11.4 | 34.0             | 34.8            | 12.2 | 7.1            | 17.3                    | 19.1                  | 47.5             | 115.6           | 5.6                    | 7.1 | 2.5 | 2.5 | 61.2         | 134.9 | 70.6 | 74.4 | 1.9  |

Condensate is 3/4" PVC stub extends from cabinet approximately 1-1/2" [38.1 mm].

Unit is shipped with 1 in. filter. The deluxe duct collar/filter fack is field adjustable to accept a 2 in. filter. The duct collar/filter rack extends 3.2 in. from unit, and is suitable for duct connections.

Discharge flange extends 1 in. [25.4 mm] from cabinet.

# **Physical Data**

| Model                                                              |                            | 024                        | 030                        | 036                        | 042                        | 048                                                      | 060                                                      | 070                    |
|--------------------------------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------|
| Compressor (1 each)                                                | — i                        |                            |                            |                            | Single Speed Scrol         | I                                                        |                                                          |                        |
| Factory Charge R-410A, oz [kg] Vertical                            | i                          | 52 [1.47]                  | 56 [1.58]                  | 60 [1.70]                  | 74 [2.09]                  | 84 [2.38]                                                | 100 [2.83]                                               | 104 [2.94]             |
| Factory Charge R-410A, oz [kg] Horizontal                          |                            | 52 [1.47]                  | 56 [1.58]                  | 60 [1.70]                  | 74 [2.09]                  | 84 [2.38]                                                | 100 [2.83]                                               | 104 [2.94]             |
| Blower Motor & Blower                                              |                            |                            |                            | ·                          |                            |                                                          |                                                          |                        |
| Player Mater Type/Cheede                                           | X13                        |                            |                            | ×                          | (13 ECM - 5 Speed          | s                                                        |                                                          |                        |
| Blower Motor Type/Speeds                                           | PSC                        |                            |                            |                            | PSC - 3 Speeds             |                                                          |                                                          |                        |
| Diewer Meter, hn DM                                                | X13                        | 1/2 [373]                  | 1/2 [373]                  | 1/2 [373]                  | 1 [746]                    | 1 [746]                                                  | 1 [746]                                                  | 1 [746]                |
| Blower Motor - np [vv]                                             | PSC                        | 1/5 [149]                  | 1/3 [249]                  | 1/2 [373]                  | 1/2 [373]                  | 1/2 [373]                                                | 1 [746]                                                  | 1 [746]                |
| Ontional Oversized Blaver Meter, bp BM                             | X13                        |                            |                            |                            | Not Available              |                                                          |                                                          |                        |
| Optional - Oversized Blower Motor - np [vv]                        | PSC                        | 1/3 [249]                  | 1/2 [373]                  | Not Available              | 3/4 [560]                  | 3/4 [560]                                                | Not Available                                            | Not Available          |
|                                                                    | ¥13                        | 9 x 7                      | 9 x 7                      | 9 x 7                      | 11 x 10                    | 11 x 10                                                  | 11 x 10                                                  | 11 x 10                |
| Blower Wheel Size (Dia x W) in [mm]                                | ^13                        | [229 x 178]                | [229 x 178]                | [229 x 178]                | [279 x 254]                | [279 x 254]                                              | [279 x 254]                                              | [279 x 254]            |
|                                                                    | PSC                        | 9 x 7                      | 9 x 7                      | 9 x 7                      | 10 x 10                    | 10 x 10                                                  | 11 x 10                                                  | 11 x 10                |
|                                                                    |                            | [229 x 178]                | [229 x 178]                | [229 x 178]                | [254 x 254]                | [254 x 254]                                              | [279 x 254]                                              | [279 x 254]            |
| Coax and Water Piping                                              |                            |                            |                            |                            |                            |                                                          |                                                          |                        |
| Water Connections Size - Swivel - in [mm]                          |                            | 1 [25.4]                   | 1 [25.4]                   | 1 [25.4]                   | 1 [25.4]                   | 1 [25.4]                                                 | 1 [25.4]                                                 | 1 [25.4]               |
| HWG Connection Size - Female Sweat (I.D.) - in [mm]                | 1/2 [12.7]                 | 1/2 [12.7]                 | 1/2 [12.7]                 | 1/2 [12.7]                 | 1/2 [12.7]                 | 1/2 [12.7]                                               | 1/2 [12.7]                                               |                        |
| Coax & Piping Water Volume - gal [I]                               |                            | .4 [1.4]                   | 0.7 [2.6]                  | .7 [2.6]                   | .7 [2.7]                   | 1.0 [3.8]                                                | 1.3 [4.9]                                                | 1.6 [6.1]              |
| Vertical                                                           |                            |                            |                            |                            |                            |                                                          |                                                          |                        |
| Air Coil Dimensions (H x W), in. [mm]                              |                            | 24 x 20<br>[610 x 542]     | 24 x 20<br>[610 x 542]     | 28 x 20<br>[711 x 542]     | 28 x 25<br>[711 x 635]     | 28 x 25<br>[711 x 635]                                   | 32 x 25<br>[813 x 635]                                   | 36 x 25<br>[914 x 635] |
| Air Coil Total Face Area, ft <sup>2</sup> [m <sup>2</sup> ]        |                            | 3.3 [0.310]                | 3.3 [0.310]                | 3.9 [0.362]                | 4.9 [0.451]                | 4.9 [0.451]                                              | 5.6 [0.516]                                              | 6.3 [0.581]            |
| Air Coil Tube Size, in [mm]                                        |                            | 3/8 [9.5]                  | 3/8 [9.5]                  | 3/8 [9.5]                  | 3/8 [9.5]                  | 3/8 [9.5]                                                | 3/8 [9.5]                                                | 3/8 [9.5]              |
| Air Coil Number of rows                                            |                            | 3                          | 3                          | 3                          | 3                          | 3                                                        | 3                                                        | 3                      |
| Filter Standard - 1" [24mm] Pleated MERV8                          |                            | 24 x 24                    | 24 x 24                    | 28 x 24                    | 28 x 30                    | 28 x 30                                                  | 32 x 30                                                  | 36 x 30                |
| Throwaway, in [mm]                                                 |                            | [610 x 610]                | [610 x 610]                | [712 x 610]                | [711 x 762]                | [711 x 762]                                              | [813 x 762]                                              | [914 x 762]            |
| Weight - Operating, Ib [kg]                                        |                            | 258 [117]                  | 273 [124]                  | 308 [140]                  | 333 [151]                  | 360 [163]                                                | 421 [191]                                                | 435 [197]              |
| Weight - Packaged, lb [kg]                                         |                            | 278 [126]                  | 293 [133]                  | 328 [149]                  | 353 [160]                  | 380 [172]                                                | 441 [200]                                                | 455 [206]              |
| Horizontal                                                         |                            |                            |                            |                            |                            |                                                          |                                                          |                        |
| Air Coil Dimensions (H x W), in, [mm]                              |                            | 18 x 27                    | 18 x 27                    | 18 x 30                    | 20 x 35                    | 20 x 35                                                  | 20 x 40                                                  | 20 x 45                |
|                                                                    |                            | [457 x 686]                | [457 x 686]                | [457 x 762]                | [508 x 889]                | [508 x 889]                                              | [508 x 1016]                                             | [508 x 1143]           |
| Air Coil Total Face Area, ft <sup>2</sup> [m <sup>2</sup> ]        |                            | 3.4 [0.316]                | 3.4 [0.316]                | 3.9 [0.362]                | 4.9 [0.451]                | 4.9 [0.451]                                              | 5.6 [0.516]                                              | 6.3 [0.581]            |
| Air Coil Tube Size, in [mm]                                        |                            | 3/8 [9.5]                  | 3/8 [9.5]                  | 3/8 [9.5]                  | 3/8 [9.5]                  | 3/8 [9.5]                                                | 3/8 [9.5]                                                | 3/8 [9.5]              |
| Air Coil Number of rows                                            |                            | 3                          | 3                          | 3                          | 3                          | 3                                                        | 3                                                        | 3                      |
| Filter Standard - 1 in. [25mm] Pleated MERV8<br>Throwaway, in [mm] | 1 - 18 x 32<br>[457 x 813] | 1 - 18 x 32<br>[457 x 813] | 1 - 18 x 32<br>[457 x 813] | 1 - 20 x 37<br>[686 x 940] | 1 - 20 x 37<br>[686 x 940] | 1 - 20 x 20<br>[508 x 508]<br>1 - 20 x 22<br>[508 x 559] | 1 - 20 x 25<br>[508 x 635]<br>1 - 20 x 22<br>[508 x 559] |                        |
| Weight - Operating, lb [kg]                                        |                            | 268 [122]                  | 279 [127]                  | 287 [130]                  | 349 [158]                  | 358 [162]                                                | 403 [183]                                                | 438 [199]              |
| Weight - Packaged, lb [kg]                                         |                            | 288 [131]                  | 299 [136]                  | 307 [139]                  | 379 [172]                  | 388 [176]                                                | 448 [203]                                                | 483 [219]              |

3/23/11

## **Wiring Schematics**

### 208-230/60/1 PSC



## Wiring Schematics cont.

### 208-230/60/1 PSC cont.



| Normal Mode Cont                                 | rol Timing Table  |                    |
|--------------------------------------------------|-------------------|--------------------|
| Event                                            | Normal Mode       | Test Mode          |
| Power On Delay                                   | 5 minutes         | 15 seconds         |
| Compressor On Delay                              | 10 seconds        | 2 seconds          |
| Compressor Minimum On Time                       | 2 minutes         | 5 seconds          |
| Compressor Short Cycle Delay                     | 5 minutes         | 15 seconds         |
| Blower Off Delay                                 | 30 seconds        | 5 seconds          |
| Fault Recognition Delay- High Pressure           | Less than1 second | Less than 1 second |
| Start-Up Bypass – Low Pressure                   | 2 minutes         | 0 seconds          |
| Fault Recognition Delay – Low Pressure           | 30 seconds        | 30 seconds         |
| Start-Up Bypass – Freeze Detection Limit         | 2 minutes         | 0 seconds          |
| Fault Recognition Delay – Freeze Detection Limit | 30 seconds        | 30 seconds         |
| Fault Recognition Delay – Condensate Overflow    | 30 seconds        | 30 seconds         |

|                | Factory Setup DIP Switches (SW1) |                                                                                                                                                                                                                                                                                            |                                  |                                            |  |  |  |  |  |  |
|----------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------|--|--|--|--|--|--|
| DIP Sw<br>Numl | vitch<br>ber                     | Description                                                                                                                                                                                                                                                                                | "OFF"<br>Position                | "ON" Position                              |  |  |  |  |  |  |
| SW1-           | 1                                | Service Test Mode<br>On the control, allows field selection of "NORMAL" or "TEST" operational modes, Test<br>mode accelerates most timing functions 16 times to allow faster troubleshooting fest<br>mode also allows viewing the "CURRENT" status of the fault inputs on the LED display. | Test Mode                        | Normal Speed<br>Operation                  |  |  |  |  |  |  |
| SW1-           | 2                                | $\label{eq:Freeze Detection Setting} \\ This DIP switch allows field selection of low source water thermistor fault sensing for  "WELL" water(30°F) or "LOOP" (15°F) for antifreeze protected earth loops.$                                                                                | "LOOP"<br>(15°F)                 | "WELL"<br>(30°F)                           |  |  |  |  |  |  |
| SW1-           | 3                                | Not Available                                                                                                                                                                                                                                                                              | N/A                              | Normal Operation                           |  |  |  |  |  |  |
| SW1-           | 4                                | I/O Display Mode<br>This DIP switch enables Input/Output Display or Status/Current Fault on LED Board .<br>Refer to SW2 for operation and positioning.                                                                                                                                     | Input/Output<br>Display Mode     | Status/Current<br>Fault Display Mode       |  |  |  |  |  |  |
| SW1-           | 5                                | Not Available                                                                                                                                                                                                                                                                              | N/A                              | Normal Operation                           |  |  |  |  |  |  |
| SW2            |                                  | LED Display (On LED Board)<br>This DIP switch enables Normal Status or Input display mode in the "OFF" position and<br>Current Fault or Output display mode in the "ON" position.                                                                                                          | Status or Inputs<br>Display Mode | Current Fault or<br>Output Display<br>Mode |  |  |  |  |  |  |

|               | LED Display                                       | Mode Table                   |                          |  |  |  |  |
|---------------|---------------------------------------------------|------------------------------|--------------------------|--|--|--|--|
|               | Status Dis                                        | play Mode                    |                          |  |  |  |  |
| LED           | SW1-4 On, SW2 Off                                 |                              |                          |  |  |  |  |
| Drain         | Drain Pan Overflow Lockout                        |                              |                          |  |  |  |  |
| Water Flow    | Freeze Detection (Loop <= 15°F, Well <= 30°F)     |                              |                          |  |  |  |  |
| High Press    | High Pressure Lockout                             |                              |                          |  |  |  |  |
| Low Press     | Low Pressure Lockout                              |                              |                          |  |  |  |  |
| Air Flow      | Not Used                                          |                              |                          |  |  |  |  |
| Status        | Microprocessor Malfunction*                       |                              |                          |  |  |  |  |
| HW Limit      | t Not Used                                        |                              |                          |  |  |  |  |
| HW            | HW SW2 Status (Off=Down Position, On=Up Position) |                              |                          |  |  |  |  |
|               | Diagnostic Di                                     | splay Modes                  |                          |  |  |  |  |
|               | Current Fault Display Mode                        | Inputs Display Mode          | Outputs Display Mode     |  |  |  |  |
| LED           | SWI-4 On, SW2 On                                  | SW1-4 Off, SW2 Off           | SW1-4 Off, SW2 On        |  |  |  |  |
| Drain         | Drain Pan Overflow Lockout                        | Y                            | Compressor               |  |  |  |  |
| Water Flow    | Freeze Detection Lockout                          | G                            | Fan                      |  |  |  |  |
| High Press.   | High Pressure Lockout                             | 0                            | Reversing Valve          |  |  |  |  |
| Low Press     | Low Pressure Lockout                              | ES                           | ES                       |  |  |  |  |
| Air Flow      | Air Flow Not Used NS NS                           |                              |                          |  |  |  |  |
| Status        | is Not Used LS LS                                 |                              |                          |  |  |  |  |
| HW Limit      | Not Used Not Used Not Used                        |                              |                          |  |  |  |  |
| HW            | SW2 = On                                          | SW2 = Off                    | SW2 =On                  |  |  |  |  |
| * Flashing St | atus Light Indicates the Board is Functioning     | Properly A Solid "On" Indica | tes a Board Malfunction. |  |  |  |  |

| Le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | gend |                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Factory Low Voltage Wiring   Factory Line Voltage Wiring   Field Line Voltage Wiring   Field Line Voltage Wiring   Field Line Voltage Wiring   Field Zone Sensor Wiring   Internal Junction   Quite Connect Terminal   ⊥   Field Wiring Lug   ⊥   Ground   I+J+F   Relay Contacts-N.O., N.C.   C8 - Cincuit Breaker   C0 - condenset Overflow Sensor   E3 - Emergeny Shutdown   HP - High Pressure Switch   P - Low Pressure Switch   P - Low Pressure Switch   Re - Blower Relay   RV- Reversing Valve Coil |      | Thermistor<br>Relay Coil<br>Switch - Condensate Overflow<br>Switch - High pressure<br>Switch - Low pressure<br>Polarized connector<br>Capacitor<br>Circuit Breaker<br>Jumper Wire<br>tergency Shutdown<br>ght Setback |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 070  | 0002 01 1/02/10                                                                                                                                                                                                       |

| 97P803-01 | 1/22/10 |
|-----------|---------|
|-----------|---------|

| Niode    | Inputs | Fan  | Comp | RV  |  |
|----------|--------|------|------|-----|--|
| Htg      | Y      | Auto | ON   | OFF |  |
| Clg      | Y, O   | Auto | ON   | ON  |  |
| Fan Only | G/Y2   | ON   | OFF  | OFF |  |
|          |        |      |      |     |  |
|          |        |      |      |     |  |
|          |        |      |      |     |  |
|          |        |      |      |     |  |
|          |        |      |      |     |  |

Operational Logic Table

| PSC Blov | wer Motor Factor | y Settings |
|----------|------------------|------------|
| Model    | Vertical         | Horizontal |
| 024      | Med              | Med        |
| 030      | Med              | Med        |
| 036      | High             | High       |
| 042      | Med              | Med        |
| 048      | High             | High       |
| 060      | Med              | Med        |
| 070      | High             | High       |



| 1 - | Swap blue and red leads for 208V operation                 |     |
|-----|------------------------------------------------------------|-----|
| 2 - | Requires common connection or 24 VAC for activation        |     |
| 3 - | Wires are removed when Auxiliary Heat is installed.        |     |
| 4 - | Field supplied Square D part number QOU141100JBAF          |     |
|     | (jumper bar assembly) should be used for single source pow | er. |
| 5 - | Wires are provided with the unit but not connected.        |     |
| 6 - | Wire not connected at factory, connect to T1 for HW        |     |
|     | pump operation.                                            |     |
| -   |                                                            | _   |

## Wiring Schematics cont.

### 208-230/60/1 X13 ECM



### Wiring Schematics cont.

#### 208-230/60/1 X13 ECM cont.



## Controls

### **Standard Microprocessor**



#### **Flexible Control Options**

The standard control system is a microprocessor-based printed circuit board, (PCB), conveniently located in the unit control box for accessibility. The microprocessor control is specifically designed for geothermal water source heat pumps to integrate compressors and advanced features needed in geothermal water source heat pump applications. The microprocessor provides control of the entire unit as well as outputs for status modes, faults, and diagnostics. Low voltage thermostat terminal strips provide convenient field connections. LEDs are located in the corner post to assist the technician when servicing the unit.

#### Startup

The unit will not operate until all the inputs and safety controls are checked for normal conditions. At first powerup, a five minute delay is employed before the compressor is energized.

#### **Component Sequencing Delays**

Components are sequenced and delayed for optimum space conditioning performance.

#### **Short Cycle Protection**

The control allows a minimum on time of 2 minutes and a minimum off time of 4 minutes for short cycle protection.

#### **Condensate Overflow Protection**

The control board incorporates an impedance sensing liquid sensor at the top of the drain pan. Upon a continuous 30-second sensing of the condensate, compressor operation is suspended (see Fault Retry), and the condensate overflow lockout LED begins flashing.

#### **Safety Controls**

The control receives separate signals for a high pressure switch for safety, a low pressure switch to prevent loss of charge damage, and a low suction temperature thermistor for freeze sensing. Upon a continuous 30-second measurement of the fault (immediate for high pressure), compressor operation is suspended, the appropriate lockout LED begins flashing. (Refer to the "Fault Retry" section).

#### Testing

The control allows service personnel to shorten most timing delays for faster diagnostics.

#### **Fault Retry**

All faults are retried twice before finally locking the unit out. An output signal is made available for a fault LED at the thermostat. The "Fault Retry" feature is designed to prevent nuisance service calls.

#### **Diagnostics**

The control board allows all inputs and outputs to be displayed on the LEDs for fast and simple control board diagnosis.

#### **Emergency Shutdown**

A grounded signal to common or connecting 24 VAC to the ES terminal places the controller into the emergency shutdown mode. The compressor and blower operation are suspended while in the emergency shutdown mode.

### Heating Operation

#### Heating (Y1)

The blower motor is started immediately after the "Y1" input is received, and the compressor is energized 10 seconds after the "Y1" input.

#### Heat, 2<sup>nd</sup> Stage (Y1, Y2) X13 ECM

When the gray wire is connected to the motor (Y2 is field connected) the blower speed will increase.

#### Heat, 3<sup>rd</sup> Stage (Y1, Y2, W) X13 ECM

When a "W" input is received the blower speed will increase and all stages of resistance heat will be energized along with the compressor operation.

#### **Emergency Heat (W only)**

The blower is started on high speed and all stages of resistance heat are energized.

### **Cooling Operation**

In all cooling operations, the reversing valve directly tracks the "O" input. Thus, anytime the "O" input is present, the reversing valve will be energized.

## **Controls cont.**

#### Cooling (Y1,O)

The blower motor is started immediately after the "Y1" input is received, and the compressor is energized 10 seconds after the "Y1" input.

#### Cool, 2<sup>nd</sup> Stage (Y1, Y2, 0)

When the gray wire is connected to the motor (Y2 is field connected) the blower speed will increase.

#### Blower (G only)

The blower motor is started immediately after the "G" input is received; and it will remain on for 30 seconds at the end of each heating or cooling cycle.

#### **Lockout Conditions**

During lockout mode, the appropriate unit and thermostat lockout LEDs will illuminate. The compressor, loop pump(s), and hot water generator pump outputs are de-energized. If the thermostat calls for heating, emergency heat operation will occur. All lockout modes can be reset at the thermostat after turning the unit off, and then on, which restores normal operation but keeps the unit lockout LED illuminated. Interruption of power to the unit will reset lockout without a waiting period and clear all lockout LEDs.

#### **High Pressure**

This lockout mode occurs when the normally closed safety switch is opened momentarily (set at 600 PSI).

#### Low Pressure

This lockout mode occurs when the normally closed low pressure switch is opened for 30 continuous seconds (set at 40 PSI).

#### Freeze Detection (Water Flow)

This lockout mode occurs when the freeze thermistor temperature is at or below the selected freeze detection point (well  $30^{\circ}F$  or loop  $15^{\circ}F$ ) for 30 continuous seconds.

#### **Condensate Overflow**

This lockout mode occurs when the condensate overflow level has been reached for 30 continuous seconds.

### **DIP Switch Settings**

Prior to powering unit, ensure that all DIP switches on SW1 are set properly according to the table below.

|                      | FACTORY SETUP DIP SWITCHES (SW1) |                                                                                                                                                                                                                                                                                             |                                  |                                         |  |  |  |  |
|----------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------|--|--|--|--|
| Dip Switch<br>Number |                                  | Description                                                                                                                                                                                                                                                                                 | "OFF" Position                   | "ON" Position                           |  |  |  |  |
| SW1-                 | 1                                | Service Test Mode<br>On the control, allows field selection of "NORMAL" or "TEST" operational modes, Test mode<br>accelerates most timing functions 16 times to allow faster troubleshooting. Test mode also allows<br>viewing the "CURRENT" status of the fault inputs on the LED display. | Test Mode                        | Normal Speed Operation                  |  |  |  |  |
| SW1-                 | 2                                | Freeze Detection Setting<br>This DIP switch allows field selection of low source water thermistor fault sensing for "WELL" water<br>(30°F) or "LOOP" (15°F) for antifreeze protected earth loops.                                                                                           | "LOOP" (15°F)                    | "WELL" (30°F)                           |  |  |  |  |
| SW1-                 | 3                                | Not Available                                                                                                                                                                                                                                                                               | N/A                              | Normal Operation                        |  |  |  |  |
| SW1-                 | 4                                | I/O Display Mode<br>This DIP switch enables Input/Output Display or Status/Current Fault on LED Board. Refer to<br>SW2 for operation and positioning.                                                                                                                                       | Input/Output Display<br>Mode     | Status/Current Fault<br>Display Mode    |  |  |  |  |
| SW1-                 | 5                                | Not Available                                                                                                                                                                                                                                                                               | N/A                              | Normal Operation                        |  |  |  |  |
| SW2-                 |                                  | LED Display (On LED Board)<br>This DIP switch enables Normal Status or Input display mode in the "OFF" position and Current<br>Fault or Output display mode in the "ON" position.                                                                                                           | Status or Inputs Display<br>Mode | Current Fault or Output<br>Display Mode |  |  |  |  |

11/13/09

#### **Operation Logic Data Table**

| Mode          | Inputs     | Blower | Comp | RV  |
|---------------|------------|--------|------|-----|
| Htg           | Htg Y Auto |        | ON   | OFF |
| Clg Y, O Auto |            | ON     | ON   |     |
| Blower Only   | G/Y2       | ON     | OFF  | OFF |

## **Unit Startup**

### Before Powering Unit, Check the Following:

**NOTE:** Remove and discard the compressor shipping bolt located at the front of the compressor mounting bracket.

- High voltage is correct and matches nameplate.
- Fuses, breakers and wire size correct.
- Low voltage wiring complete.
- · Piping completed and water system cleaned and flushed.
- · Air is purged from closed loop system.
- Isolation valves are open, water control valves or loop pumps wired.
- Condensate line open and correctly pitched.
- Transformer switched to 208V if applicable.
- Dip switches are set correctly.
- Hot water generator pump wires are disconnected unless piping is completed and air has been purged.
- Blower rotates freely foam shipping support has been removed.
- · Blower speed correct.
- · Air filter/cleaner is clean and in position.
- Service/access panels are in place.
- Return air temperature is between 50-80°F heating and 60-95°F cooling.
- Check air coil cleanliness to insure optimum performance. Clean as needed according to maintenance guidelines. To obtain maximum performance the air coil should be cleaned before startup. A 10-percent solution of dishwasher detergent and water is recommended for both sides of coil, a thorough water rinse should follow.

### **Startup Steps**

**NOTE:** Complete the Equipment Start-Up/Commissioning Check Sheet during this procedure. Refer to thermostat operating instructions and complete the startup procedure.

- 1. Initiate a control signal to energize the blower motor. Check blower operation.
- 2. Initiate a control signal to place the unit in the cooling mode. Cooling setpoint must be set below room temperature.
- 3. Cooling will energize after a time delay.
- 4. Be sure that the compressor and water control valve or loop pump(s) are activated.
- 5. Verify that the water flow rate is correct by measuring the pressure drop through the heat exchanger using the P/T plugs and comparing to the pressure drop table.
- Check the temperature of both the supply and discharge water (Refer to Unit Operating Parameters tables).
- Check for an air temperature drop of 15°F to 25°F across the air coil, depending on the blower speed and entering water temperature.
- Adjust the cooling setpoint above the room temperature and verify that the compressor and water valve or loop pumps deactivate.
- 9. Initiate a control signal to place the unit in the heating mode. Heating set point must be set above room temperature.
- 10. Heating will energize after a time delay.
- 11. Check the temperature of both the supply and discharge water (Refer to Unit Operating Parameters tables).
- Check for an air temperature rise of 20°F to 35°F across the air coil, depending on the blower speed and entering water temperature.
- If auxiliary electric heaters are installed, increase the heating setpoint until the electric heat banks are sequenced on. All stages of the auxiliary heater should be sequenced on when the thermostat is in the Emergency Heat mode. Check amperage of each element.
- 14. Adjust the heating setpoint below room temperature and verify that the compressor and water valve or loop pumps deactivate.
- 15. During all testing, check for excessive vibration, noise or water leaks. Correct or repair as required.
- 16. Set system to desired normal operating mode and set temperature to maintain desired comfort level.
- 17. Instruct the owner/operator in the proper operation of the thermostat and system maintenance.

**NOTE:** Be certain to fill out and forward all warranty registration papers.

## Troubleshooting

### **Standard Microprocessor Controls**

To check the unit control board for proper operation:

- 1) Disconnect thermostat wires at the control board.
- 2) Jumper the desired test input (Y1, W, O, or G) to the R terminal to simulate a thermostat signal.
- 3) If control functions properly:
  - Check for thermostat and field control wiring (use the diagnostic inputs mode).
- 4) If control responds improperly:
  - Ensure that component being controlled is functioning (compressor, blower, reversing valve, etc.).
  - Ensure that wiring from control to the component is functioning (refer to the LED Definition table below and use the diagnostic outputs mode).
  - If steps above check properly, replace unit control.

#### LED Definitions and Diagnostics Microprocessor

#### **Status Display Mode**

| LED                                 | SW1-4 On, SW2 Off                                          |  |
|-------------------------------------|------------------------------------------------------------|--|
| Drain                               | Drain Pan Overflow Lockout                                 |  |
| Water Flow                          | Water Flow   Freeze Detection (Loop <= 15°F, Well <= 30°F) |  |
| High Pressure High Pressure Lockout |                                                            |  |
| Low Pressure                        | Low Pressure Lockout                                       |  |
| Air Flow Not Used                   |                                                            |  |
| Status                              | Micoprocessor Malfunction*                                 |  |
| DHW Limit                           | Not Used                                                   |  |
| DHW                                 | SW2 Status (On=Down Position, Off=Up Position)             |  |

#### **Diagnostic Display Modes**

|             | Current Fault Display Mode | Inputs Display Mode | Outputs Display Mode |
|-------------|----------------------------|---------------------|----------------------|
| LED         | SW1-4 On, SW2 On           | SW1-4 Off, SP2 Off  | SW1-4 Off, SW2 On    |
| Drain       | Drain Pan Overflow Lockout | Y                   | Compressor           |
| Water Flow  | Freeze Detection Lockout   | G                   | Blower               |
| High Press. | High Pressure Lockout      | 0                   | Reversing Valve      |
| Low Press.  | Low Pressure Lockout       | ES                  | ES                   |
| Air Flow    | Not Used                   | NS                  | NS                   |
| Status      | Not Used                   | LS                  | LS                   |
| DHW Limit   | Not Used                   | Not Used            | Not Used             |
| DHW         | SW2 = On                   | SW2 = Off           | SW2 = On             |

\* Flashing Status Light Indicates the Board is Functioning Properly.

A Solid "On" Indicates a Board Malfunction.

### **Refrigerant Systems**

To maintain sealed circuit integrity, do not install service gauges unless unit operation appears abnormal. Compare the change in temperature on the air side as well as the water side to the Unit Operating Parameters tables. If the unit's performance is not within the ranges listed, and the airflow and water flow are known to be correct, gauges should then be installed and superheat and subcooling numbers calculated. If superheat and subcooling are outside recommended ranges, an adjustment to the refrigerant charge may be necessary.

**NOTE:** Refrigerant tests must be made with hot water generator pump power disconnected. Verify that air and water flow rates are at proper levels before servicing the refrigerant circuit.

| DEALER: _ |       |                              |
|-----------|-------|------------------------------|
| PHONE #:  | DATE: |                              |
| PROBLEM:  |       |                              |
| MODEL #:  |       |                              |
| SERIAL #: |       | Startup/Troubleshooting Form |

### **COOLING CYCLE ANALYSIS**



#### Heat of Extraction/Rejection = GPM x 500 (485 for water/antifreeze) x $\Delta$ T

Note: DO NOT hook up pressure gauges unless there appears to be a performance problem.

### **HEATING CYCLE ANALYSIS**



| Entering Woter | Water Flow CDM/ | Cooling No Hot Water Generation |                            |           |            |                       |                        |
|----------------|-----------------|---------------------------------|----------------------------|-----------|------------|-----------------------|------------------------|
| Temp °F        | Ton             | Suction<br>Pressure PSIG        | Discharge<br>Pressure PSIG | Superheat | Subcooling | Water Temp<br>Rise °F | Air Temp Drop<br>°F DB |
| 20             | 1.5             | 100-115                         | 170-190                    | 17 - 26   | 10 - 14    | 18 - 22               | 18 - 22                |
| 30             | 3.0             | 95-110                          | 150-170                    | 20 - 29   | 7 - 11     | 8 - 10                | 18 - 22                |
|                | 1.5             | 133 - 148                       | 205 - 225                  | 17 - 26   | 10 - 14    | 18 - 22               | 18 - 22                |
| 50             | 3.0             | 129 - 144                       | 185 - 205                  | 20 - 29   | 7 - 11     | 8 - 10                | 18 - 22                |
|                | 1.5             | 139 - 154                       | 280 - 300                  | 8 - 11    | 8 -12      | 18 - 22               | 18 - 22                |
| 70             | 3.0             | 137 - 152                       | 250 - 270                  | 9 - 12    | 7 - 11     | 8 - 10                | 18 - 22                |
|                | 1.5             | 143 - 158                       | 360 - 380                  | 8 - 11    | 9 - 13     | 18 - 22               | 16 - 20                |
| 90             | 3.0             | 141 - 156                       | 330 - 350                  | 9 - 12    | 8 - 12     | 8 - 10                | 16 - 20                |
| 110            | 2.3             | 143 - 158                       | 360 - 380                  | 8 - 11    | 9 - 13     | 18 - 22               | 16 - 20                |
| 110            | 3.0             | 141 - 156                       | 440-460                    | 9 - 12    | 8 - 12     | 8 - 10                | 16 - 20                |

## **Operating Parameters**

|         | Water Flow CDM/ | Heating No Hot Water Generation |                            |           |            |                       |                        |
|---------|-----------------|---------------------------------|----------------------------|-----------|------------|-----------------------|------------------------|
| Temp °F | Ton             | Suction<br>Pressure PSIG        | Discharge<br>Pressure PSIG | Superheat | Subcooling | Water Temp<br>Drop °F | Air Temp Rise<br>°F DB |
| 20      | 1.5             | 73 - 79                         | 279 - 304                  | 7 - 13    | 2 - 6      | 7 -10                 | 18 - 24                |
|         | 3.0             | 79 - 85                         | 285 - 310                  | 8 - 14    | 2 - 6      | 3 - 6                 | 20 - 26                |
| 50      | 1.5             | 103 - 109                       | 308 - 333                  | 8 - 12    | 4 - 8      | 8 - 11                | 20 - 26                |
| 50      | 3.0             | 110 - 116                       | 315 - 340                  | 9 - 13    | 4 - 8      | 4 - 7                 | 22 - 28                |
| 70      | 1.5             | 140 - 146                       | 330 - 365                  | 10 - 14   | 7 - 11     | 11 - 14               | 26 - 32                |
| 70      | 3.0             | 146 - 153                       | 340 - 375                  | 10 - 14   | 7 - 11     | 7 - 10                | 28 - 34                |
|         | 1.5             | 170-177                         | 425-460                    | 14-18     | 12-16      | 8-11                  | 42-50                  |
| 90      | 3.0             | 174-181                         | 435-470                    | 14-18     | 12-16      | 8-11                  | 42-50                  |
| 110     | 2.3             |                                 |                            |           |            |                       |                        |
| 110     | 3.0             |                                 |                            |           |            |                       |                        |

**NOTES:** Cooling performance based on entering air temperatures of 80°F DB, 67°F WB. Heating performance based on entering air temperature of 70°F DB.

### **Operating Limits**

| One resting Limite       | Coc       | oling   | Heating |      |
|--------------------------|-----------|---------|---------|------|
| Operating Limits         | (°F)      | (°C)    | (°F)    | (°C) |
| Air Limits               |           |         |         |      |
| Min. Ambient Air         | 45        | 7.2     | 45      | 7.2  |
| Rated Ambient Air        | 80        | 26.7    | 70      | 21.1 |
| Max. Ambient Air         | 100       | 37.8    | 85      | 29.4 |
| Min. Entering Air        | 50        | 10.0    | 40      | 4.4  |
| Rated Entering Air db/wb | 80.6/66.2 | 27/19   | 68      | 20.0 |
| Max. Entering Air db/wb  | 110/83    | 43/28.3 | 80      | 26.7 |
| Water Limits             |           |         |         |      |
| Min. Entering Water      | 30        | -1.1    | 20      | -6.7 |
| Normal Entering Water    | 50-110    | 10-43.3 | 30-70   | -1.1 |
| Max. Entering Water      | 120       | 48.9    | 90      | 32.2 |

**NOTE:** Minimum/maximum limits are only for start-up conditions, and are meant for bringing the space up to occupancy temperature. Units are not designed to operate at the minimum/maximum conditions on a regular basis. The operating limits are dependant upon three primary factors: 1) water temperature, 2) return air temperature, and 3) ambient temperature. When any of the factors are at the minimum or maximum levels, the other two factors must be at the normal level for proper and reliable unit operation.

11/10/09

### **Pressure Drop**

| Model   | GPM  | Pressure Drop (psi) |      |      |      |       |  |
|---------|------|---------------------|------|------|------|-------|--|
| Woder   | OF M | 30°F                | 50°F | 70°F | 90°F | 110°F |  |
|         | 3.0  | 1.1                 | 1.0  | 0.9  | 0.8  | 0.6   |  |
| 024     | 4.5  | 2.4                 | 2.2  | 2.1  | 2.0  | 1.9   |  |
| 024     | 6.0  | 4.5                 | 4.4  | 4.3  | 4.1  | 4.0   |  |
|         | 8.0  | 6.7                 | 6.6  | 6.5  | 6.3  | 6.2   |  |
|         | 4.0  | 0.9                 | 0.8  | 0.7  | 0.6  | 0.5   |  |
| 020     | 6.0  | 1.9                 | 1.8  | 1.7  | 1.6  | 1.5   |  |
| 030     | 8.0  | 3.7                 | 3.6  | 3.5  | 3.4  | 3.3   |  |
|         | 10.0 | 4.8                 | 4.7  | 4.6  | 4.5  | 4.4   |  |
|         | 5.0  | 1.4                 | 1.1  | 0.9  | 0.7  | 0.5   |  |
| 026     | 7.0  | 2.5                 | 2.3  | 2.1  | 1.8  | 1.6   |  |
| 030     | 9.0  | 6.0                 | 5.8  | 5.5  | 5.3  | 5.1   |  |
|         | 12.0 | 6.6                 | 6.4  | 6.2  | 6.0  | 5.7   |  |
|         | 5.0  | 1.5                 | 1.2  | 0.9  | 0.5  | 0.4   |  |
| 042     | 8.0  | 3.4                 | 3.1  | 2.8  | 2.5  | 2.1   |  |
| 042     | 11.0 | 7.9                 | 7.5  | 7.2  | 6.9  | 6.6   |  |
|         | 14.0 | 9.1                 | 8.8  | 8.5  | 8.2  | 7.9   |  |
|         | 6.0  | 2.8                 | 2.6  | 2.4  | 2.2  | 2.0   |  |
| 048     | 9.0  | 6.5                 | 6.3  | 6.0  | 5.8  | 5.5   |  |
| 040     | 12.0 | 10.2                | 9.9  | 9.6  | 9.3  | 9.0   |  |
|         | 16.0 | 12.9                | 12.6 | 12.2 | 11.8 | 11.4  |  |
|         | 9.0  | 4.1                 | 3.8  | 3.6  | 3.4  | 3.1   |  |
| 060     | 12.0 | 7.1                 | 6.7  | 6.3  | 5.9  | 5.6   |  |
| 060     | 15.0 | 9.6                 | 9.2  | 8.9  | 8.6  | 8.3   |  |
|         | 20.0 | 15.5                | 14.5 | 13.3 | 12.0 | 10.7  |  |
|         | 12.0 | 4.0                 | 3.6  | 3.2  | 3.0  | 2.7   |  |
| 070     | 15.0 | 6.4                 | 6.0  | 5.6  | 5.2  | 4.8   |  |
| 0/0     | 18.0 | 8.8                 | 8.4  | 7.9  | 7.5  | 7.1   |  |
|         | 24.0 | 13.6                | 13.2 | 12.6 | 12.0 | 11.5  |  |
| 4/22/11 |      |                     |      |      |      |       |  |

## **Compressor Resistance**

| Model      | Run<br>Winding | Start<br>Winding |  |  |
|------------|----------------|------------------|--|--|
| 024        | 1.14 - 1.32    | 1.37 - 1.57      |  |  |
| 030        | 0.95 - 1.09    | 1.81 - 2.09      |  |  |
| 036        | 0.62 - 0.72    | 1.46 - 1.65      |  |  |
| 042        | 0.49 - 1.03    | 1.29 - 1.49      |  |  |
| 048        | 0.51 - 0.58    | 1.36 - 1.57      |  |  |
| 060        | 0.29 - 0.34    | 0.76 - 0.87      |  |  |
| 070        | 0.26 - 0.29    | 0.76 - 0.87      |  |  |
| 11/10/2000 |                |                  |  |  |

11/10/2009

## **Thermistor Resistance**

| Thermistor Temperature (°F) | Resistance         |
|-----------------------------|--------------------|
| 78.5                        | 9230 - 10007 Ohms  |
| 77.5                        | 9460 - 10032 Ohms  |
| 76.5                        | 9690 - 10580 Ohms  |
| 75.5                        | 9930 - 10840 Ohms  |
| 33.5                        | 30490 - 32080 Ohms |
| 32.5                        | 31370 - 33010 Ohms |
| 31.5                        | 32270 - 33690 Ohms |
| 30.5                        | 33190 - 34940 Ohms |
| 1.5                         | 79110 - 83750 Ohms |
| 0.5                         | 81860 - 86460 Ohms |
| 0.0                         | 82960 - 87860 Ohms |

| Symptom                                       | Head<br>Pressure                                            | Suction<br>Pressure | Compressor<br>Amp Draw | Superheat   | Subcooling  | Air Temp.<br>Differential | Water Temp.<br>Differential |
|-----------------------------------------------|-------------------------------------------------------------|---------------------|------------------------|-------------|-------------|---------------------------|-----------------------------|
| Under Charged System (Possible Leak)          | Low                                                         | Low                 | Low                    | High        | Low         | Low                       | Low                         |
| Over Charged System                           | High                                                        | High                | High                   | Normal      | High        | Normal/Low                | Normal                      |
| Low Air Flow Heating                          | High                                                        | High                | High                   | High/Normal | Low         | High                      | Low                         |
| Low Air Flow Cooling                          | Low                                                         | Low                 | Low                    | Low/Normal  | High        | High                      | Low                         |
| Low Water Flow Heating                        | Low/Normal                                                  | Low/Normal          | Low                    | Low         | High        | Low                       | High                        |
| Low Water Flow Cooling                        | High                                                        | High                | High                   | High        | Low         | Low                       | High                        |
| High Air Flow Heating                         | Low                                                         | Low                 | Low                    | Low         | High        | Low                       | Low                         |
| High Air Flow Cooling                         | Low                                                         | High                | Normal                 | High        | Low         | Low                       | Normal                      |
| High Water Flow Heating                       | Normal                                                      | Low                 | Normal                 | High        | Normal      | Normal                    | Low                         |
| High Water Flow Cooling                       | Low                                                         | Low                 | Low                    | Low         | High        | Normal                    | Low                         |
| Low Indoor Air Temperature Heating            | Low                                                         | Low                 | Low                    | Normal      | High        | Normal                    | Normal/High                 |
| Low Indoor Air Temperature Cooling            | Low                                                         | Low                 | Low                    | Normal/Low  | High        | Low                       | Low                         |
| High Indoor Air Temperature Heating           | High                                                        | High                | High                   | Normal/High | Normal/Low  | Low                       | Normal                      |
| High Indoor Air Temperature Cooling           | High                                                        | High                | High                   | High        | Low         | Low                       | High                        |
| Restricted TXV (Check Service Advisory)       | High                                                        | Low                 | Normal/Low             | High        | High        | Low                       | Low                         |
| Insufficient Compressor (Possible Bad Valves) | Low                                                         | High                | Low                    | High        | Normal/High | Low                       | Low                         |
| TXV - Bulb Loss of Charge                     | Low                                                         | Low                 | Low                    | High        | High        | Low                       | Low                         |
| Scaled Coaxial Heat Exchanger Heating         | Low                                                         | Low                 | Low                    | Normal/Low  | High        | Low                       | Low                         |
| Scaled Coaxial Heat Exchanger Cooling         | High                                                        | High                | High                   | Normal/Low  | Low         | Low                       | Low                         |
| Restricted Filter Drier                       | Check temperature difference (delta T) across filter drier. |                     |                        |             |             |                           |                             |

11/10/2009

### **Reference Calculations**

| Heating Calculations:                            | Cooling Calculations:                                 |  |  |  |  |  |
|--------------------------------------------------|-------------------------------------------------------|--|--|--|--|--|
| LWT = EWT - $\frac{\text{HE}}{\text{GPM x 500}}$ | LWT = EWT + $\frac{\text{HR}}{\text{GPM} \times 500}$ |  |  |  |  |  |
| $LAT = EAT + \frac{HC}{CFM \times 1.08}$         | LAT (DB) = EAT (DB) - <u>SC</u><br>CFM x 1.08         |  |  |  |  |  |
|                                                  | LC = TC - SC                                          |  |  |  |  |  |
| TH = HC + HWC                                    | $S/T = \underbrace{SC}{TC}$                           |  |  |  |  |  |

## **Legend and Notes**

#### ABBREVIATIONS AND DEFINITIONS:

- CFM = airflow, cubic feet/minute
- EWT = entering water temperature, Fahrenheit
- GPM = water flow in gallons/minute
- WPD = water pressure drop, PSI and feet of water
- EAT = entering air temperature, Fahrenheit (dry bulb/wet bulb)
- HC = air heating capacity, MBTUH
- TC = total cooling capacity, MBTUH
- SC = sensible cooling capacity, MBTUH
- KW = total power unit input, kilowatts
- HR = total heat of rejection, MBTUH

- HE = total heat of extraction, MBTUH
- HWC = hot water generator capacity, MBTUH
- EER = Energy Efficient Ratio
  - = BTU output/Watt input
- COP = Coefficient of Performance = BTU output/BTU input
- LWT = leaving water temperature, °F
- LAT = leaving air temperature, °F
- TH = total heating capacity, MBTUH
- LC = latent cooling capacity, MBTUH
- S/T = sensible to total cooling ratio

#### **HE/HR Table**

| Model | GPM  | Heat of Extraction |      |      | Heat of Rejection |      |      |      |      |       |
|-------|------|--------------------|------|------|-------------------|------|------|------|------|-------|
|       |      | 30°F               | 50°F | 70°F | 90°F              | 30°F | 50°F | 70°F | 90°F | 110°F |
| 024   | 3.0  |                    | 14.7 | 19.4 | 23.6              |      | 28.2 | 27.8 | 26.2 |       |
|       | 4.5  | 10.7               | 15.6 | 20.5 | 24.8              | 26.2 | 28.3 | 27.9 | 26.1 | 24.3  |
|       | 6.0  | 10.8               | 15.9 | 20.9 | 25.3              | 26.4 | 28.4 | 28.0 | 26.2 | 24.3  |
|       | 4.0  |                    | 14.7 | 19.4 | 23.6              |      | 28.2 | 27.8 | 26.2 |       |
| 030   | 6.0  | 10.7               | 15.6 | 20.5 | 24.8              | 26.2 | 28.3 | 27.9 | 26.1 | 24.3  |
|       | 8.0  | 10.8               | 15.9 | 20.9 | 25.3              | 26.4 | 28.4 | 28.0 | 26.2 | 24.3  |
|       | 5.0  |                    | 23.8 | 31.3 | 37.6              |      | 41.2 | 42.4 | 40.6 |       |
| 036   | 7.0  | 17.7               | 24.9 | 32.6 | 39.2              | 34.7 | 41.1 | 42.3 | 40.5 | 37.8  |
|       | 9.0  | 18.1               | 25.5 | 33.2 | 39.8              | 35.0 | 41.5 | 42.6 | 40.7 | 38.0  |
|       | 5.0  |                    | 27.2 | 33.7 | 40.0              |      | 50.3 | 51.4 | 48.9 |       |
| 042   | 8.0  | 21.0               | 28.5 | 35.5 | 42.4              | 47.0 | 50.5 | 51.7 | 49.3 | 46.1  |
|       | 11.0 | 21.4               | 29.3 | 36.6 | 43.9              | 47.3 | 50.8 | 51.9 | 49.4 | 46.1  |
| 048   | 6.0  |                    | 35.1 | 43.9 | 51.2              |      | 60.7 | 60.7 | 57.3 |       |
|       | 9.0  | 26.8               | 36.7 | 46.3 | 54.3              | 56.3 | 60.9 | 61.0 | 57.6 | 54.0  |
|       | 12.0 | 27.3               | 37.7 | 47.7 | 56.2              | 56.6 | 61.3 | 61.3 | 57.7 | 54.0  |
| 060   | 9.0  |                    | 43.1 | 55.1 | 63.7              |      | 84.6 | 82.7 | 77.7 |       |
|       | 12.0 | 30.8               | 44.4 | 56.2 | 67.6              | 80.2 | 84.4 | 83.0 | 77.5 | 73.0  |
|       | 15.0 | 31.8               | 45.3 | 58.6 | 68.5              | 80.8 | 84.7 | 82.6 | 77.7 | 73.1  |
|       | 12.0 |                    | 51.4 | 65.6 | 76.5              |      | 92.7 | 91.1 | 84.3 |       |
| 070   | 15.0 | 37.2               | 52.7 | 68.4 | 81.2              | 83.4 | 92.8 | 91.0 | 84.0 | 77.9  |
|       | 18.0 | 37.3               | 53.2 | 69.5 | 83.0              | 83.8 | 93.5 | 91.9 | 85.0 | 78.8  |

12/4/2009

## **Preventive Maintenance**

### Water Coil Maintenance

- Keep all air out of the water. An open loop system should be checked to ensure that the well head is not allowing air to infiltrate the water line. Lines should always be airtight.
- 2. Keep the system under pressure at all times. It is recommended in open loop systems that the water control valve be placed in the discharge line to prevent loss of pressure during off cycles. Closed loop systems must have positive static pressure.

**NOTE:** On open loop systems, if the installation is in an area with a known high mineral content (125 PPM or greater) in the water, it is best to establish with the owner a periodic maintenance schedule so the coil can be checked regularly. Should periodic coil cleaning be necessary, use standard coil cleaning procedures which are compatible with either the cupronickel or copper water lines. Generally, the more water flowing through the unit the less chance for scaling.

#### Other Maintenance Filters

Filters must be clean to obtain maximum performance. They should be inspected monthly under normal operating conditions and be replaced when necessary. Units should never be operated without a filter.

#### **Condensate Drain**

In areas where airborne bacteria produce a slime in the drain pan, it may be necessary to treat chemically to minimize the problem. The condensate drain can pick up lint and dirt, especially with dirty filters. Inspect twice a year to avoid the possibility of overflow.

#### **Blower Motors**

Blower motors are equipped with sealed ball bearings and require no periodic oiling.

#### Hot Water Generator Coil

See Water Coil Maintenance section above.

#### Air Coil

The air coil must be cleaned to obtain maximum performance. Check once a year under normal operating conditions and, if dirty, brush or vacuum (with a brush attachment) clean. Care must be taken not to damage the aluminum fins while cleaning.



CAUTION: Fin edges are sharp.

## **Replacement Procedures**

### **Obtaining Parts**

When ordering service or replacement parts, refer to the model number and serial number of the unit as stamped on the serial plate attached to the unit. If replacement parts are required, mention the date of installation of the unit and the date of failure, along with an explanation of the malfunctions and a description of the replacement parts required.

### **In-Warranty Material Return**

Material may not be returned except by permission of authorized warranty personnel. Contact your local distributor for warranty return authorization and assistance.

## **Service Parts**

|                          | Port Description                     | Vertical            |           |               |           |           |               |           |  |  |
|--------------------------|--------------------------------------|---------------------|-----------|---------------|-----------|-----------|---------------|-----------|--|--|
|                          | Part Description                     | 024                 | 030       | 036           | 042       | 048       | 060           | 070       |  |  |
| or                       | Compressor 208-230/60/1              | 34P624-01           | 34P583-01 | 34P625-01     | 34P621-01 | 34P623-01 | 34P613-01     | 34P616-01 |  |  |
| npress                   | Run Capacitor 208-230/60/1           | 16P002D19           | 16P002D20 | 16P002D21     | 16P002D36 | 16P002D23 | 16P002D25     | 16P002D24 |  |  |
|                          | Sound Jacket                         |                     | 1         | 92P504A05     | 1         | 1         | 92P519-02     |           |  |  |
| S                        | Power Harness                        | 11P7                | 81-01     |               | 11P781-03 |           |               |           |  |  |
|                          | ECM Motor                            | 14P5                | 15B01     | -             | 14P516B01 |           | 14P5          | 17B01     |  |  |
| ∑ ∞ ⊱                    | X13 Motor 208-230/60/1               | 14S536-01           | 14S536-02 | 14S536-03     | 14S537-01 | 14S537-02 | 14S5          | 37-03     |  |  |
| X13 EC<br>Motor<br>Blowe | X13 Blower Housing                   | 53P500B01 53P501B01 |           |               |           |           |               |           |  |  |
|                          | X13 Low Voltage Harness              | 11P811-02           |           |               |           |           |               |           |  |  |
|                          | X13 Power Harness                    | 11P8                |           |               |           | 1P810-02  |               |           |  |  |
| tor<br>ter               | PSC Motor 208-230/60/1               | 14P508B01           | 14P509B01 | 14P510B01     | 14P511B01 | 14P512B01 | 14P5          | 14B01     |  |  |
| anda<br>C Mo<br>Blow     | PSC Motor Capacitor                  | 16P00               | )2D04     |               | 16P002D06 | 16P002D06 |               | )2D12     |  |  |
| PS: St                   | PSC Blower & Housing                 |                     | 53P500B01 |               | 53P5      | 17-01     | 53P5          | )1B01     |  |  |
| tor<br>er                | High Static PSC Motor 208-230/60/1   | 14P509B01           | 14P510B01 | Not Available | 14P5      | 13B01     | Not Available |           |  |  |
| h Sta<br>C Mo<br>Blow    | High Static PSC Motor Capacitor      | 16P002D04           | 16P002D06 | Not Available | 16P002D12 |           | Not Available |           |  |  |
| Hig<br>PS ⊗              | High Static PSC Blower & Housing     | 53P5                | 12B01     | Not Available | 53P517-02 |           | Not Available |           |  |  |
| Ś                        | Air Coil (coated)                    | 61S50               | )3C02     | 61S548-02     | 61S50     | )5C02     | 61S506C02     | 61S507C02 |  |  |
| lent                     | Coax (Copper)                        | 621572-01           | 621566-01 | 62150         | 58-01     | 621573-01 | 621574-01     | 62P543B01 |  |  |
| lod                      | TXV                                  | 33P605-16           | 33P605-02 | 33P605-02     | 33P6      | 05-10     | 33P608-10     | 33P605-13 |  |  |
| E C                      | Desuperheater                        | 62I516-05 62I516-03 |           |               |           |           |               |           |  |  |
| U N                      | Desuperheater Pump                   | 24P501A01           |           |               |           |           |               |           |  |  |
| lajo                     | Reversing Valve                      |                     | 33P506-04 |               | 33P503-05 |           |               | 33P526-04 |  |  |
|                          | Filter Dryer                         | 36P500B01 36P508B   |           |               |           |           |               | )8B02     |  |  |
|                          | Contactor                            | 13P004A03           |           |               |           |           |               |           |  |  |
|                          | Transformer 208-230/60/1             | 15P501B01           |           |               |           |           |               |           |  |  |
| w                        | Pump Circuit Breaker - 250 vac/5 amp | 19P583-01           |           |               |           |           |               |           |  |  |
| ent                      | Ierminal Board - 12 position         | 12P528B01           |           |               |           |           |               |           |  |  |
| nod                      | 3 Pole Power Block                   | 12P503-10           |           |               |           |           |               |           |  |  |
| E E                      | 2 Pole Screw Term. Block             | 12P500A01           |           |               |           |           |               |           |  |  |
|                          | CooStort Modulo (024 042)            | 11P6//AU1           |           |               |           |           |               |           |  |  |
| Lice                     | GeoStart Module (024 - 042)          | 150005              |           |               |           |           |               |           |  |  |
| ect                      | GeoStart Power Block                 |                     |           |               |           |           |               |           |  |  |
| ш                        | Status Light Board                   | 12/040-01           |           |               |           |           |               |           |  |  |
|                          | Status Light Board Wire Harness      | 1/ 500-02           |           |               |           |           |               |           |  |  |
|                          | Microprocessor Board                 | 17050001            |           |               |           |           |               |           |  |  |
| ~                        | Freeze Protection Thermistor         | 122505801           |           |               |           |           |               |           |  |  |
| rs s                     | Thermo Switch 130°F (for HWG)        | 13P073B04           |           |               |           |           |               |           |  |  |
| nso                      | High Pressure Switch Service Kit     | SKHPE600            |           |               |           |           |               |           |  |  |
| S. S.                    | Low Pressure Switch Service Kit      | SKLPE40             |           |               |           |           |               |           |  |  |
| Miscellaneous            | 1" Pleated MERV 8 Filter             | 59P503B27           | 59P503B27 | 59P503B05     | 59P503B28 | 59P503B28 | 59P503B21     | 59P503B04 |  |  |
|                          | 2" Pleated MERV 13 Filter            | 59P511-17           | 59P511-17 | 59P511-04     | 59P511-08 | 59P511-08 | 59P511-07     | 59P511-06 |  |  |
| NOTE: Dart r             | numbers subject to change            |                     |           |               |           |           |               | 3/23/11   |  |  |

**NOTE:** Part numbers subject to change.

## **Service Parts cont.**

| Part Description   |                                               | Horizontal          |           |                      |                     |           |                 |               |  |  |
|--------------------|-----------------------------------------------|---------------------|-----------|----------------------|---------------------|-----------|-----------------|---------------|--|--|
|                    |                                               | 024                 | 030       | 036                  | 042                 | 048       | 060             | 070           |  |  |
| or                 | Compressor 208-230/60/1                       | 34P624-01           | 34P583-01 | 34P625-01            | 34P621-01           | 34P623-01 | 34P613-01       | 34P616-01     |  |  |
| less               | Run Capacitor 208-230/60/1                    | 16P002D19           | 16P002D20 | 16P002D21            | 16P002D36           | 16P002D23 | 16P002D25       | 16P002D24     |  |  |
| u br               | Sound Jacket                                  | 92P504A05           |           | 92P519-02            |                     |           |                 |               |  |  |
| Č                  | Power Harness                                 | 11P781-01 11P781-03 |           |                      |                     |           | I               |               |  |  |
| _                  | X13 Motor 208-230/60/1                        | 14S536-01           | 14S536-02 | 14S536-03            | 14S537-01           | 14S537-02 | 148537-03       |               |  |  |
| ver &              | X13 Blower Housing                            |                     | 53P500B01 |                      |                     | 53P5      | 01B01           |               |  |  |
| 13 E<br>loto       | X13 Low Voltage Harness                       | 11P811-02           |           |                      |                     |           |                 |               |  |  |
| ×≥ □               | X13 Power Harness                             | 11P810-02           |           |                      |                     |           |                 |               |  |  |
| PSC<br>ower        | PSC Motor 208-230/60/1                        | 14P508B01           | 14P509B01 | 14P510B01            | 14P511B01 14P512B01 |           | 14P514B01       |               |  |  |
| ndard<br>or & Bl   | PSC Motor Capacitor                           | 16P00               | )2D04     |                      | 16P002D06           |           | 16P00           | )2D12         |  |  |
| Star<br>Moto       | PSC Blower & Housing                          | 53P50               | 00B01     |                      | 53P517-01           |           | 53P501B01       |               |  |  |
| er tor             | High Static PSC Motor 208-230/60/1            | 14P509B01           | 14P510B01 | Not Available 14P513 |                     | 13B01     | )1 Not Availabl |               |  |  |
| Sta<br>No<br>Iow   | High Static PSC Motor Capacitor               | 16P002D04           | 16P002D06 | Not Available        | 16P00               | 02D12     | Not Available   |               |  |  |
| High<br>PSC<br>& B | High Static PSC Blower & Housing              | 53P5 <sup>-</sup>   | 12B01     | Not Available        | 53P5                | 53P517-02 |                 | Not Available |  |  |
| y,                 | Air Coil (coated)                             | 61S50               | )9C02     | 61S510C02            | 61S5                | 61S511C02 |                 | 61S513C02     |  |  |
| Jen 1              | Coax (Copper)                                 | 621572-01           | 621566-01 | 621568-01            | 621573-01           |           | 621574-01       | 62P543B01     |  |  |
| L DQ               | TXV                                           | 33P605-16           | 33P605-02 | 33P605-02            | 33P6                | 33P605-10 |                 | 33P605-13     |  |  |
| E E                | Desuperheater                                 | 621516-05 621516-03 |           |                      |                     |           |                 |               |  |  |
| Ŭ                  | Desuperheater Pump                            |                     |           |                      |                     |           |                 |               |  |  |
| lajo               | Reversing Valve                               | 33P506-04 33P503-05 |           |                      |                     | 03-05     | 33P526-04       |               |  |  |
| 2                  | Filter Dryer                                  | 36P500B01           |           |                      |                     |           | 36P50           | )8B02         |  |  |
|                    | Contactor                                     | 13P004A03           |           |                      |                     |           |                 |               |  |  |
|                    | Transformer 208-230/60/1                      | 15P501B01           |           |                      |                     |           |                 |               |  |  |
|                    | Pump Circuit Breaker - 250 vac/5 amp          | 19P583-01           |           |                      |                     |           |                 |               |  |  |
| ents               | Terminal Board - 12 position                  | 12P528B01           |           |                      |                     |           |                 |               |  |  |
| u ou               | 3 Pole Power Block                            | 12P503-10           |           |                      |                     |           |                 |               |  |  |
| du                 | 2 Pole Screw Term. Block                      | 12P500A01           |           |                      |                     |           |                 |               |  |  |
| ŭ                  | 3 Amp Fused Wire Lead - Blue                  | 11P677A01           |           |                      |                     |           |                 |               |  |  |
| ica                | GeoStart Module (024 - 042)                   | IS060S              |           |                      |                     |           |                 |               |  |  |
| ecti               | GeoStart Module (048 - 070)                   | IS060L              |           |                      |                     |           |                 |               |  |  |
| Ē                  | GeoStart Power Block                          |                     |           |                      | 12P546-01           |           |                 |               |  |  |
|                    | Status Light Board                            |                     |           |                      | 17P503-02           |           |                 |               |  |  |
|                    | Status Light Board Wire Harness               |                     |           |                      | 11P783-01           |           |                 |               |  |  |
|                    | Microprocessor Board                          | ļ                   |           |                      | 17P529A01           |           |                 |               |  |  |
| s so               | Freeze Protection Thermistor                  | 12P505B01           |           |                      |                     |           |                 |               |  |  |
| fetie              | Thermo Switch 130°F (for HWG)                 | 13P0/3B04           |           |                      |                     |           |                 |               |  |  |
| Sat                | High Pressure Switch Service Kit              | SKHPE600            |           |                      |                     |           |                 |               |  |  |
|                    | Low Pressure Switch Service Kit               |                     |           | 1                    | SKLPE40             |           |                 | <u></u>       |  |  |
| Miscellaneous      | 1" Pleated MERV 8 Filter                      | 59P503B23           | 59P503B23 | 59P503B23            | 59P503B08           | 59P503B08 | 59P503B02       | 59P503B24     |  |  |
|                    | 2nd Filter if needed                          | Not Needed          |           |                      |                     |           | 59P503B24       | 59P503B03     |  |  |
| NOTE: Part         | IOTE: Part numbers subject to change. 3/23/11 |                     |           |                      |                     |           |                 |               |  |  |

NOTE: Part numbers subject to change.



08/12

Trane www.trane.com

The manufacturer has a policy of continuous product and product data improvement and it reserves the right to change design and specifications without notice.