


UNT-IOP-1

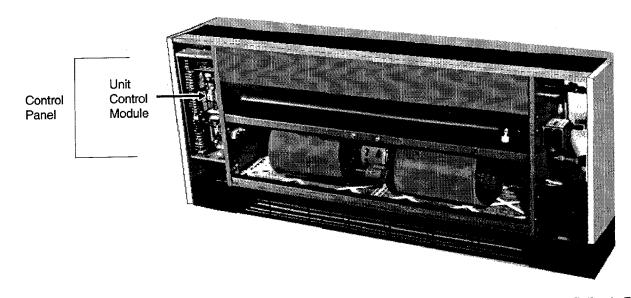
## Installation-Operation-Programming Guide

September 1993

# Fan Coil Air Conditioner Unit Control Module



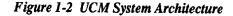
## **Table of Contents**

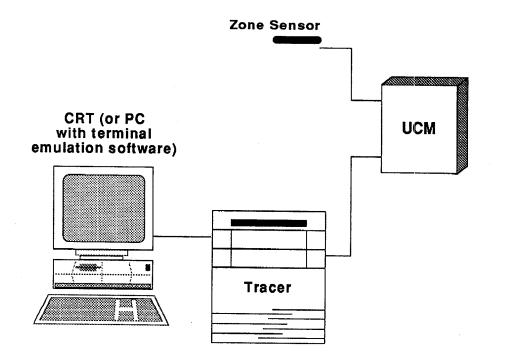

| General Information                   | 1  |
|---------------------------------------|----|
| Chapter Overview                      |    |
| Introduction                          |    |
| System Configurations                 |    |
| Specifications                        |    |
| Communication Interface 1-5           |    |
| Installation & Wiring 2-              | 1  |
| Chapter Overview                      |    |
| Connecting Power                      |    |
| Connecting Zone Sensors 2-1           |    |
| Connecting Communications 2-2         |    |
| Customer Connection Diagrams          |    |
| Programming & Operation 3-            | 1  |
| Chapter Overview                      |    |
| Introduction to Programming           |    |
| Setting Up the Terminal               |    |
| Setting Up the Modem                  |    |
| UCM Priorities and Default Values 3-7 |    |
| Sequence of Operations 4-             | 1  |
| Chapter Overview 4-1                  |    |
| UCM Operation                         |    |
| Zone Sensor Operation 4-2             |    |
| Checkout Procedures 5-                | -1 |
| Chapter Overview                      |    |
| Pre-Power Up Checkout                 |    |
| Operational Checkout                  |    |
| Zone Sensor Checkout 5-2              |    |
| Trouble Analysis 6-                   | -1 |
| Chapter Overview                      |    |
| Test Input                            |    |
| Binary Inputs and Outputs 6-4         |    |
| UCM Problems                          |    |
|                                       | -1 |

#### **Related Literature**

- Tracer 100 Series Programming Guide (Version 14): EMTB-PG-10
- Fan Coil/Unit Ventilator/Tracer 100 Series Engineering Bulletin: BAS-EB-50

## **General Information**


This chapter contains information about the following: **Chapter Overview** • Introduction to the Unit Control Module. UCM system configurations. UCM specifications and wiring. Communications Interface. The Unit Control Module (UCM) is a microprocessor-based Direct Digital Control-Introduction ler (DDC). It contains the control logic to properly temper the moving air through a Trane Fan Coil Air Conditioner in response to zone load requirements. The UCM controls unit valves, dampers, fans, etc., based on inputs from the operator and/or sensors that measure a variety of environmental conditions (temperature, etc.). Figure 1-1 shows the location of the UCM in a single duct Fan Coil Air Conditioner. Figure 1-1 UCM Location

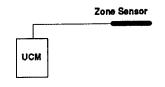



The Unit Control Module is located in the Control Panel of the Fan Coil unit. For Right Hand Piped Fan Coil units, as shown here, the Control Panel and UCM are on the left side. For Left Hand Piped Fan Coil units, the Control Panel and UCM are on the right side. The UCM system consists of the following physical components:

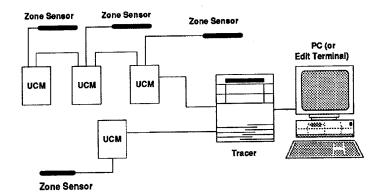
- 1. Unit Control Module Contains the sensor input circuits, service adjustments and microprocessor control electronics. Power is supplied by an externally mounted 24VAC transformer.
- 2. Zone Sensor Modules A variety of analog sensors that provide temperature sensing and an operator interface to the UCM for operating modes, status and temperature setpoints.
- 3. Tracer Interface Interface to Trane Building Automation System.

Figure 1-2 shows the architecture of a typical UCM system.









Standalone

Environmental systems can be configured to meet customer needs. The Unit Control Module can control one Fan Coil Air Conditioner standalone or be controlled by a centrally located Building Automation System.

A single thermostat / zone sensor controls a single UCM. A single unit failure affects only that unit.



Standalone and/or multiple UCMs can be controlled by a Tracer panel (version 14 or higher). UCMs can also interface (generically) to other vendors' automation systems. The UCM is linked to the Tracer panel over a twisted pair of wires.



Tracer

| Specifications         | The following list shows the Unit Control Module physical, electrical and environ-<br>mental specifications.                                                                                                                                                                                                                                        |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dimensions             | UCM board and mounting hardware:<br>Height: 7.9"<br>Width: 4.6"<br>Depth: 1.92" maximum                                                                                                                                                                                                                                                             |
| Power Requirements     | 400 mA (RMS) @ 24VAC 9.6VA<br>525 mA (RMS) @ 24VAC 12.6VA with option modules                                                                                                                                                                                                                                                                       |
| Operating Environments | -20 to 60 degrees C (-4 to 140 degrees F)<br>5 to 95% relative humidity (non-condensing)                                                                                                                                                                                                                                                            |
| Storage Environments   | -40 to 70 degrees C (-40 to 158 degrees F)<br>5 to 95% relative humidity (non-condensing)                                                                                                                                                                                                                                                           |
| Mounting               | The UCM printed circuit board should be mounted vertically (any orientation ex-<br>cept heat sink at the low end) on a sheet metal surface within the Fan Coil Air Con-<br>ditioner. Problems that might occur when the UCM printed circuit board (PCB) is<br>incorrectly mounted include:                                                          |
|                        | 1. Accumulation of dust and debris on the PCB surface.                                                                                                                                                                                                                                                                                              |
|                        | 2. Overheated power components on the PCB.                                                                                                                                                                                                                                                                                                          |
|                        | Option boards may be mounted in any vertical orientation. Option board electrical connections should be kept as short as possible and routed away from the power wiring.                                                                                                                                                                            |
| Wiring                 | Wires for temperature sensors, communication lines, 24VAC and contact closure<br>sensing inputs should NOT be bundled with or run near high voltage wiring.<br>Power wiring must be separated from the UCM and all low voltage wires. External<br>input wires should be run in separate conduits from high voltage wires.                           |
|                        | Wires connected to pin headers should be formed and routed so as to cause mini-<br>mum strain on the UCM connector. A minimum 1.5" clearance (from the pin cen-<br>terline) for wires up to 16 AWG is necessary for bending and forming wires. For<br>maximum noise immunity, triac output wires should NOT be routed with relay out-<br>put wires. |
|                        | All sensor and input circuits are normally at or near ground potential. Do NOT con-<br>nect any sensor or input circuit to an external ground connection. A close-coupled<br>ground connection is required for the UCM.                                                                                                                             |
|                        | The following table shows UCM wire types and lengths.                                                                                                                                                                                                                                                                                               |
|                        |                                                                                                                                                                                                                                                                                                                                                     |

| Wire            | Туре                         | Length         |
|-----------------|------------------------------|----------------|
| Contact Closure | 18 AWG                       | up to 1000 ft. |
| 24VAC           | 16 - 22 AWG                  | up to 1000 ft. |
| Thermostat      | 16 - 22 AWG                  | up to 1000 ft. |
| Zone Sensor     | 16 - 22 AWG                  | up to 200 ft.  |
| Communications  | Belden 8760 or<br>equivalent | up to 5000 ft. |

**NOTE:** Some connections to customer options may be made using bare solid or stranded wire on screw compression connectors. Provisions for fork or ring-tongue connections may be provided using a separately mounted terminal strip.

## Communication Interface

The Communication Interface is typically a personal computer running Building Management Network, PCL Edit, Tracer-Access or terminal emulation software. Communication with the Tracer may also be achieved by using an edit terminal, which could also be a PC using terminal emulation software. The RS-232 Interface refers to each UCM by the UCM's unique address on the system. To operate a system properly, each UCM must have a unique Tracer address between 33 and 96.

The Tracer system connected to the Communication Interface can:

- 1. Monitor UCM status, parameters, sensor data, diagnostic bits and some internal variables.
- 2. Monitor and change UCM configuration information.
- 3. Monitor and change UCM setpoints, operating modes or outputs.

Refer to the Tracer system manuals for more information on communications.

Notes

# Installation & Wiring

| <b>Chapter Overview</b>    | This section co                | ntains information about the following:                                                                                                                                                                                                                                      |
|----------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            | • Connecting                   | the UCM to 24VAC power.                                                                                                                                                                                                                                                      |
|                            | <ul> <li>Connecting</li> </ul> | the UCM to zone sensors.                                                                                                                                                                                                                                                     |
|                            | • Connecting                   | the UCM communication wiring.                                                                                                                                                                                                                                                |
|                            | • Setting the c                | configuration DIP switches.                                                                                                                                                                                                                                                  |
|                            | Customer co                    | onnections.                                                                                                                                                                                                                                                                  |
| Connecting Power           | WARNING!                       | Disconnect all power external to the unit to prevent injury or death<br>from electric shock. Use copper conductors only. The use of alumi-<br>num or other types of wire may result in overheating and equip-<br>ment damage. Connect the 24 VAC power plug to terminal TB1. |
| Connecting Zone<br>Sensors |                                |                                                                                                                                                                                                                                                                              |
| Location and Mounting      | the zone but N                 | in each control zone should be located in the most critical area of<br>OT in direct sunlight or in the zone supply air stream. It may be nec-<br>ivide the zone to ensure adequate control and comfort.                                                                      |
|                            | Avoid mountir                  | ng zone sensors in the following areas:                                                                                                                                                                                                                                      |
|                            | • Near drafts                  | or "dead spots" behind doors or corners                                                                                                                                                                                                                                      |
|                            | • Near hot or                  | cold air ducts                                                                                                                                                                                                                                                               |
|                            | • Near radian                  | at heat from appliances or the sun                                                                                                                                                                                                                                           |
|                            |                                | aled pipes or chimneys                                                                                                                                                                                                                                                       |
|                            |                                | walls or other unheated or uncooled surfaces                                                                                                                                                                                                                                 |
|                            | • In air flows                 | from adjacent zones or other units                                                                                                                                                                                                                                           |
| Wiring                     | Each UCM must meet the         | ust be controlled by a designated compatible sensor. Field wiring following requirements:                                                                                                                                                                                    |
|                            | feet long.                     | - 22 AWG, copper twisted shielded pair, and no more than 1000                                                                                                                                                                                                                |
|                            |                                | t be connected at the UCM and taped at the other end.                                                                                                                                                                                                                        |
|                            | stalled in c                   | les require enclosed conductors, the zone sensor wires should be in-<br>onduit. Do NOT install zone sensor wires in conduit that contains<br>other high power wires.                                                                                                         |
|                            | • Refer to se                  | nsor installation instructions for terminal connections.                                                                                                                                                                                                                     |
|                            |                                |                                                                                                                                                                                                                                                                              |

#### **Zone Sensor Options**

The UCM supports a range of zone sensors. The following table lists the zone sensors available for use with the Fan Coil Air Conditioner UCM:

| Table 2-1 | Zone | Sensor | <b>Options</b> |
|-----------|------|--------|----------------|
|-----------|------|--------|----------------|

| Zone Sensor Function                                | Туре А                     | Туре В             | Туре С |
|-----------------------------------------------------|----------------------------|--------------------|--------|
| Temperature Measurement                             | x                          | x                  | x      |
| Single Temperature<br>Setpoint<br>(degrees F and C) | x                          | x                  | x      |
| * and ** Setpoints                                  | x                          | x                  | x      |
| Fan Switch<br>OFF<br>AUTO<br>LOW<br>MED<br>HIGH     | off<br>Auto<br>Low<br>High | off<br>Low<br>High | OFF    |
| Override Button<br>ON & CANCEL                      | x                          | x                  | x      |
| Communications Service Jack                         | x                          | x                  | x      |

## Connecting Communications

Wiring

The UCM can provide a communications link to a Tracer building automation system. Field wiring of the UCM to the Tracer communications link must meet the following requirements:

- Wiring must be in accordance with the National Electrical Code and all local codes.
- Wiring must conform to the Belden 8760 standard or equivalent. Shields must be daisy chained and grounded at the Tracer only. More than one ground reference will cause communications failures. Tape the shield at the last UCM in the chain to prevent any connection between the shield and another ground.
- The maximum wire length from the Tracer to the last UCM in the chain must not exceed 5000 feet.
- Communications wiring must not pass between buildings.

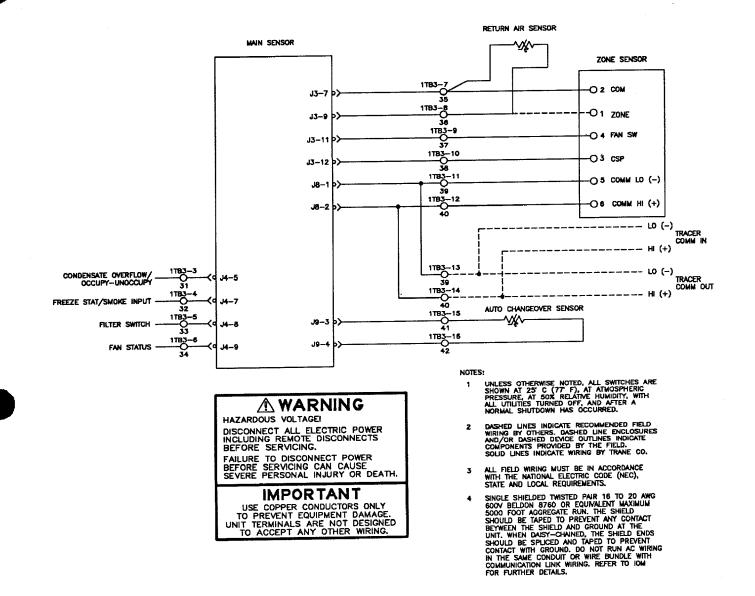
1. Connect wires to terminal J8-2 (+) and J8-1 (-) on the UCM.

### IMPORTANT: Polarity is extremely important and must be observed on all connections. Terminal J8-2 is designated positive (+) and terminal J8-1 is designated negative (-) for this purpose.

- 2. Connect the shield to terminal of the Tracer or sheet metal ground.
- 3. Verify that the UCM address is correctly set using the DIP switches. Refer to the following table.

| Unit #          | DIP1 | DIP2 | DIP3 | DIP4 | DIP5 | DIP6 | DIP7 | DIP8       |
|-----------------|------|------|------|------|------|------|------|------------|
| 33              | OFF  | OFF  | ON   | OFF  | OFF  | OFF  | OFF  | ON         |
| 34              | OFF  | OFF  | ON   | OFF  | OFF  | OFF  | ON   | OFF        |
| 35              | OFF  | OFF  | ON   | OFF  | OFF  | OFF  | ON   | ON         |
|                 | OFF  | OFF  | ON   | OFF  | OFF  | ON   | OFF  | OFF        |
| 37              | OFF  | OFF  | ON   | OFF  | OFF  | ON   | OFF  | ON         |
| 38              | OFF  | OFF  | ON   | OFF  | OFF  | ON   | ON   | OFF        |
| 39              | OFF  | OFF  | ON   | OFF  | OFF  | ON   | ON   | ON         |
| 40              | OFF  | OFF  | ON   | OFF  | ON   | OFF  | OFF  | OFF        |
| 40              | OFF  | OFF  | ON   | OFF  | ON   | OFF  | OFF  | ON         |
| 42              | OFF  | OFF  | ON   | OFF  | ON   | OFF  | ON   | OFF        |
| 43              | OFF  | OFF  | ON   | OFF  | ON   | OFF  | ON   | ON         |
| 44              | OFF  | OFF  | ON   | OFF  | ON   | ON   | OFF  | OFF        |
| 45              | OFF  | OFF  | ON   | OFF  | ON   | ON   | OFF  | ON         |
| 45              | OFF  | OFF  | ON   | OFF  | ON   | ON   | ON   | OFF        |
| 40              | OFF  | OFF  | ON   | OFF  | ON   | ON   | ON   | ON         |
| 47<br>48        | OFF  | OFF  | ON   | ON   | OFF  | OFF  | OFF  | OFF        |
| 40              | OFF  | OFF  | ON   | ON   | OFF  | OFF  | OFF  | ON         |
| <u>49</u><br>50 | OFF  | OFF  | ON   | ON   | OFF  | OFF  | ON   | OFF        |
| <u>50</u>       | OFF  | OFF  | ON   | ON   | OFF  | OFF  | ON   | ON         |
|                 | OFF  | OFF  | ON   | ON   | OFF  | ON   | OFF  | OFF        |
| 52              | OFF  | OFF  | ON   | ON   | OFF  | ON   | OFF  | ON         |
| 53              | OFF  | OFF  | ON   | ON   | OFF  | ON   | ON   | OFF        |
| 54              | OFF  | OFF  | ON   | ON   | OFF  | ON   | ON   | ON         |
| 55              | OFF  | OFF  | ON   | ON   | ON   | OFF  | OFF  | OFF        |
| 56              | OFF  | OFF  | ON   | ON   | ON   | OFF  | OFF  | ON         |
| 57              | OFF  | OFF  | ON   | ON   | ON   | OFF  | ON   | OFF        |
| 58<br>59        | OFF  | OFF  | ON   | ON   | ON   | OFF  | ON   | ON         |
| <del>59</del>   | OFF  | OFF  | ON   | ON   | ON   | ON   | OFF  | OFF        |
| 61              | OFF  | OFF  | ON   | ON   | ON   | ON   | OFF  | ON         |
| 61              | OFF  | OFF  | ON   | ON   | ON   | ON   | ON   | OFF        |
| 62<br>63        | OFF  | OFF  | ON   | ON   | ON   | ON   | ON   | ON         |
| 64              | OFF  | ON   | OFF  | OFF  | OFF  | OFF  | OFF  | OFF        |
|                 | OFF  | ON   | OFF  | OFF  | OFF  | OFF  | OFF  | ON         |
| 65              | OFF  | ON   | OFF  | OFF  | OFF  | OFF  | ON   | OFF        |
| 66              | OFF  | ON   | OFF  | OFF  | OFF  | OFF  | ON   | ON         |
| 67              | OFF  | ON   | OFF  | OFF  | OFF  | ON   | OFF  | OFF        |
| 68              |      |      | OFF  | OFF  | OFF  | ON   | OFF  | ON         |
| 69              | OFF  |      |      |      |      |      |      | (continued |

Table 2-2 DIP Switch Address Settings


(continued)

#### (continued from previous page)

| Unit # | DIP1 | DIP2 | DIP3 | DIP4 | DIP5 | DIP6 | DIP7 | DIP8 |
|--------|------|------|------|------|------|------|------|------|
| 70     | OFF  | ON   | OFF  | OFF  | OFF  | ON   | ON   | OFF  |
| 71     | OFF  | ON   | OFF  | OFF  | OFF  | ON   | ON   | ON   |
| 72     | OFF  | ON   | OFF  | OFF  | ON   | OFF  | OFF  | OFF  |
| 73     | OFF  | ON   | OFF  | OFF  | ON   | OFF  | OFF  | ON   |
| 74     | OFF  | ON   | OFF  | OFF  | ON   | OFF  | ON   | OFF  |
| 75     | OFF  | ON   | OFF  | OFF  | ON   | OFF  | ON   | ON   |
| 76     | OFF  | ON   | OFF  | OFF  | ON   | ON   | OFF  | OFF  |
| 77     | OFF  | ON   | OFF  | OFF  | ON   | ON   | OFF  | ON   |
| 78     | OFF  | ON   | OFF  | OFF  | ON   | ON   | ON   | OFF  |
| 79     | OFF  | ON   | OFF  | OFF  | ON   | ON   | ON   | ON   |
| 80     | OFF  | ON   | OFF  | ON   | OFF  | OFF  | OFF  | OFF  |
| 81     | OFF  | ON   | OFF  | ON   | OFF  | OFF  | OFF  | ON   |
| 82     | OFF  | ON   | OFF  | ON   | OFF  | OFF  | ON   | OFF  |
| 83     | OFF  | ON   | OFF  | ON   | OFF  | OFF  | ON   | ON   |
| 84     | OFF  | ÓN   | OFF  | ON   | OFF  | ON   | OFF  | OFF  |
| 85     | OFF  | ON   | OFF  | ON   | OFF  | ON   | OFF  | ON   |
| 86     | OFF  | ON   | OFF  | ON   | OFF  | ON   | ON   | OFF  |
| 87     | OFF  | ON   | OFF  | ON   | OFF  | ON   | ON   | ON   |
| 88     | OFF  | ON   | OFF  | ON   | ON   | OFF  | OFF  | OFF  |
| 89     | OFF  | ON   | OFF  | ON   | ON   | OFF  | OFF  | ON   |
| 90     | OFF  | ON   | OFF  | ON   | ON   | OFF  | ON   | OFF  |
| 91     | OFF  | ON   | OFF  | ON   | ON   | OFF  | ON   | ON   |
| 92     | OFF  | ON   | OFF  | ON   | ON   | ON   | OFF  | OFF  |
| 93     | OFF  | ON   | OFF  | ON   | ON   | ON   | OFF  | ON   |
| 94     | OFF  | ON   | OFF  | ON   | ON   | ON   | ON   | OFF  |
| 95     | OFF  | ON   | OFF  | ON   | ON   | ON   | ON   | ON   |
| 96     | OFF  | ON   | ON   | OFF  | OFF  | OFF  | OFF  | OFF  |

**IMPORTANT:** To set the Tracer ICS address, a valid Tracer address must be set on the DIP switches and the test input must be momentarily shorted. The UCM only reads its DIP switches when the test input is shorted. It will not read the DIP switches at power-up. Refer to the "Trouble Analysis" section for more DIP switch functions.

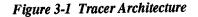
## Customer Connection Diagrams

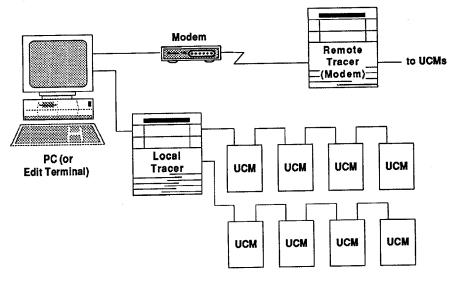


Notes

## **Programming & Operation**

 Chapter Overview
 This chapter contains information about the following:


 Introduction to Programming
 Introduction to Programming


 Setting Up the Terminal
 Setting Up the Modem

 UCM Priorities and Default Values
 UCM Priorities and Default Values

 Introduction to Programming
 In a standalone configuration, the Unit Control Module will use pre-programmed default values to control the temperature and air flow of the Fan Coil Air Conditioner. For information on the default values, see UCM Priorities and Default Values us at the end of this section. To change the default values, the UCM must be

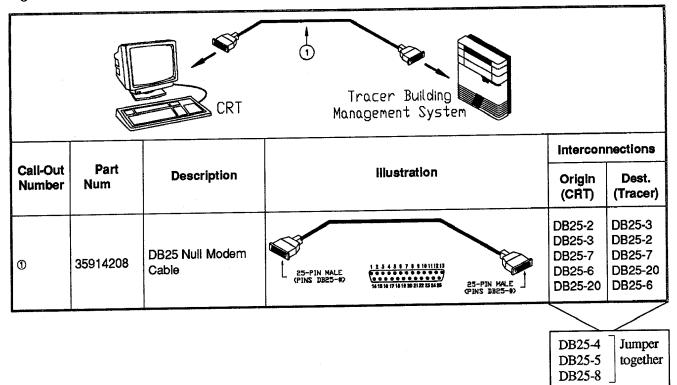
default values to control the temperature and air flow of the Fan Coil Air Conditioner. For information on the default values, see *UCM Priorities and Default Values* at the end of this section. To change the default values, the UCM must be programmed for the new values. The UCM Program can be modified if it is connected to a Tracer, at which point you can communicate with the system using either an edit terminal or a PC running terminal emulation software (local or remote). When connected remotely, a modem must be attached to the terminal. Figure 3-1 shows how the Tracer Panel fits into the overall system configuration.





Setting Up the Terminal An ASCII editing device or PC running either terminal emulation software or Tracer software (Building Management Network, PCL Edit, etc.) must be connected to the Tracer RS-232 port. See Figures 3-2 and 3-3 for details.

To establish communications between the terminal and the Tracer unit, the following parameters must be the same in both units:


| Function            | Setting         |
|---------------------|-----------------|
| Baud Rate           | 2400            |
| Half or Full Duplex | Full            |
| Parity              | None            |
| Upper/Lower Case    | Upper Case Only |
| Auto Line Feed      | OFF             |
| Data Bits           | 8               |
| Stop Bits           | 1 .             |

The Baud rate can be changed to 300, 600, 1200, 4800 or 9600 as long as it is changed on both the terminal and the Tracer.

See the Tracer Installation Manual for information on setting the Tracer baud rate.

See the terminal or PC operator's manual for information on setting the terminal parameters.

## Figure 3-2 CRT Terminal to Tracer



### Figure 3-3 PC to Tracer

|          | PC with 9-Pin<br>Serial Port<br>Serial Port<br>Serial Port<br>System |                                             |                                                          |                                                                                                                               |                             |                              |  |  |  |  |
|----------|----------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------|--|--|--|--|
|          | PC with 25-Pin 2 Tracer<br>Serial Port 2 Management<br>System        |                                             |                                                          |                                                                                                                               |                             |                              |  |  |  |  |
| Call-Out | Part                                                                 |                                             |                                                          |                                                                                                                               | Intercor                    | nterconnections              |  |  |  |  |
| Number   | Number                                                               | Description                                 |                                                          | Illustration                                                                                                                  | Origin<br>(PC)              | Dest.<br>(Tracer)            |  |  |  |  |
| 0        | 35914247                                                             | Direct-Connect<br>Cable<br>9-Pin Connector  | 9-Pin Fenale<br>(Pins DB9-#)<br>\$4321<br>\$555<br>\$576 | 25-Pin Male<br>(Pins DB25-#)<br>1 2 3 4 5 6 7 8 9 10111213<br>14151517141820 3122133455                                       | 1<br>9<br>2<br>3<br>5<br>7  | 20<br>20<br>2<br>3<br>7<br>8 |  |  |  |  |
| 0        | 35914246                                                             | Direct-Connect<br>Cable<br>25-Pin Connector | 25-Pin Fenale<br>(Pins DB25-#)<br>BHIDD 7 7 4 4 5 1 1    | 25-Pin Male<br>Crins DB25-#)<br>1.2 34 10 7 7 00000<br>4/01/07 000000<br>4/01/07 000000<br>4/01/07 0000000<br>4/01/07 0000000 | 8<br>22<br>2<br>3<br>7<br>4 | 20<br>20<br>3<br>2<br>7<br>8 |  |  |  |  |

.

| Setting Up the Modem | To program the UCM from a remote terminal, a modern must be connected to the Terminal. See Figure 3-4 for details. |
|----------------------|--------------------------------------------------------------------------------------------------------------------|
| Setting Up the Modem |                                                                                                                    |

The modem supported by Trane is a 2400 baud US Robotics Sportster external modem.

To set up the Trane-supplied modem:

- 1. Connect the terminal to the modem using the Trane cable (#3591 4206) or a modem bypass cable.
- 2. Verify that the 8 DIP switches on the back of the modem are set in the UP (ON) position.
- 3. Power up the modem. Power up the terminal with the CAPS LOCK switch ON. Verify that the baud rate is set to 2400.
- 4. At the terminal, type the following command: AT&F

This may or may not appear on the screen as you type.

- 5. Press the Enter button. The message "OK" or "0" will appear.
- 6. At the terminal type: ATQ1S0=1E0&C1&W
- 7. Turn the modem OFF. Set DIP switches 1 and 3 DOWN (OFF).
- 8. Power up the modem and continue with communications.

### Figure 3-4 PC to Tracer Using Modems

|                    | PC with 9-1<br>Serial Por  |                                       | Modern<br>Hodern<br>Hodern<br>Tracer Building<br>Management Syste                                                                             |                                           |                                             |
|--------------------|----------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------|
| Call-Out<br>Number | Part<br>Number             | Description                           | Illustration                                                                                                                                  | Intercon<br>9 Pin<br>(PC)                 | 25 Pin<br>(Modem)                           |
| 0                  | IBM P/N<br>6323670         | IBM Modem Cable                       | 9-Pin Female<br>(Pins DB9-#)<br>5 4 3 2 1<br>(Pins DB25-#)<br>1 2 3 4 5 6 7 8 9 10 11 12 13<br>9 8 7 6<br>14 13 16 17 18 19 20 21 22 23 24 25 | 3<br>2<br>7<br>8<br>6<br>5<br>1<br>4<br>9 | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>20<br>22 |
|                    |                            | · · · · · · · · · · · · · · · · · · · |                                                                                                                                               | Tracer                                    | Modem                                       |
| Ø                  | 35914206<br>or<br>35914251 | RS-232 Modem<br>Straight Cable        | 25-PIN MALE<br>(FINS DB25-4)<br>(4) (10) (10) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2                                                          | 2<br>3<br>4<br>5<br>7<br>8<br>20          | 2<br>3<br>4<br>5<br>7<br>8<br>20            |

## UCM Priorities and Default Values

**Priorities** 

**Default Values** 

When communication is established between the Tracer and the UCM AND a successful download has been completed, the downloaded values take priority over the default values in the UCM. When communication is interrupted, the UCM uses the default values instead of the downloaded values.

The default values for the UCM parameters are listed in the following table:

| Parameter                        | Value         |
|----------------------------------|---------------|
| Economizer Minimum Position      | 25 %          |
| Discharge Air Low Limit          | 38 degrees F  |
| Discharge Air High Limit         | 170 degrees F |
| Mixed Air Low Limit              | 38 degrees F  |
| DX Cooling Outdoor Air Low Limit | 50 degrees F  |
| Occupied cooling setpoint        | 74 degrees F  |
| Occupied heating setpoint        | 71 degrees F  |
| Unoccupied cooling setpoint      | 85 degrees F  |
| Unoccupied heating setpoint      | 60 degrees F  |
| Heating Setpoint Offset          | 2 degrees F   |
| Unoccupied Timed Override        | 120 minutes   |

Notes

## Sequence of Operations

**Chapter Overview** 

## **UCM** Operation

**General Operation** 

**Fan Operation** 

Heating/Cooling Setpoint and Mode

Four Pipe Valve Control

UNT-IOP-1

This chapter contains information about the following:

- UCM Operation
- Zone Sensor Operation

The Fan Coil Air Conditioner consists of:

- A main water coil with an optional control valve and/or bypass damper
- An air supply fan
- An air filter
- An optional auxiliary coil
- Optional electric heater elements
- An optional air ventilation damper

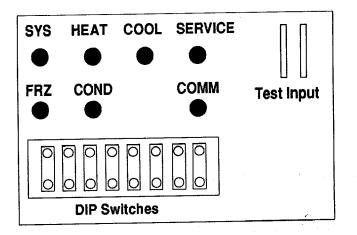
The main coil is used in most applications for cooling; when the auxiliary coil is used it provides heating. The Fan Coil Air Conditioner can be set up to provide cooling, heating or a combination of both.

The supply air fan will operate at various speeds in the OCCUPY mode unless the unit is controlled otherwise. The fan can also be manually adjusted to different speeds. With outside air control, the fan is turned off and the outside air damper is closed if the discharge air temperature drops below an adjustable low limit setpoint (safety trip-out). The low limit condition can be alarmed at the Tracer. Units equipped with the Fan Status option will indicate an alarm at the Tracer if the supply air fan output and status do NOT match after an adjustable verification delay.

The space temperature cooling setpoint is determined either by a local setpoint adjustment knob, the UCM default setpoint or Tracer downloaded values. The local setpoint adjustment knob will determine the setpoint if the UCM is in LOCAL mode. If the UCM is in REMOTE mode OR if the knob fails, the UCM will use the Tracer downloaded setpoint. If the Tracer is not communicating, the UCM will use its own default setpoint. The cooling setpoint is limited by adjustable parameters in the UCM to prevent it from being set too high or low. The heating setpoint is a UCM calculated value equal to the cooling setpoint minus an adjustable offset and is limited to a value less than or equal to the cooling setpoint. The UCM is set to cooling mode when the space temperature rises one degree F above the cooling setpoint. The UCM is set to heating when the space temperature drops one degree F below the heating setpoint. In the UNOCC mode, the setpoints will be widened to accommodate night setback and are adjustable.

In heating mode, the heating valve will be modulated to maintain the heating setpoint temperature and the cooling valve will be fully closed. In cooling mode, the cooling valve will be modulated to maintain the cooling setpoint and the heating valve will be fully closed. In either mode, the discharge air temperature setpoint will be limited to an adjustable low (usually 50 degrees F) and high (usually 90 degrees F) to prevent extremely cold or hot air from blowing into the space.

| Cooling Valve with Primary<br>Electric Heat | In heating mode, the valve will be closed and the electric heat will be cycled to maintain the space temperature setpoint. In cooling mode, the valve will be modulated and, if necessary, the electric heat will be cycled to maintain the space temperature setpoint. If the system and the UCM are in different modes (e.g. UCM in heating mode and chilled water in pipes) the valve will be closed and electric heat cycled to maintain the space temperature setpoint. In either mode, the discharge air temperature setpoint will be limited to an adjustable low (usually 50 degrees F) and high (usually 90 degrees F) to prevent extremely cold or hot air from blowing into the space. |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unoccupied Operation                        | In the UNOCC mode, the heating and cooling operation will be the same as OC-<br>CUPY mode except that the adjustable setpoints will have a wider range of values<br>to accommodate night setback. The outside air damper (if present) will remain<br>closed. The UCM will change to UNOCC operation when commanded.                                                                                                                                                                                                                                                                                                                                                                               |
| Safety Shutdown                             | When the discharge air temperature drops below the low limit setpoint, the heating valve will open fully and the cooling valve will close. The fan will shut off and the OUTSIDE AIR damper will close. The safety shutdown will also occur when there is a smoke alarm or condensate overflow alarm input.                                                                                                                                                                                                                                                                                                                                                                                       |
| Morning Warm Up                             | When a warm up is initiated, the fan will turn at high speed, the OUTSIDE AIR damper will close, the heating valve will fully open and the cooling valve will fully close. When the space temperature reaches the heating setpoint, the UCM will operate in the OCCUPY mode.                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Morning Cool Down                           | When cool down is initiated, the fan will turn at high speed, the OUTSIDE AIR damper will close, the cooling valve will fully open and the heating valve will close. When the space temperature reaches the cooling setpoint, the UCM will operate in OCCUPY mode.                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Zone Sensor<br>Operation                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Zone Temperature                            | Each zone sensor uses a thermistor element to measure the actual zone tempera-<br>ture. If the sensor has a setpoint option, the setpoint will only be used by the UCM<br>if the Setpoint Source is set to Wall Sensor on the Tracer UCM Setup Screen.                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                             | The ON (TOV) and TOV CANCEL commands are issued by the zone sensor<br>when the corresponding buttons are pressed. When the ON button is pressed, the<br>UCM will activate the TOV signal for two minutes, clear the TOV CANCEL sig-<br>nal (if it was set) and start the two hour, adjustable, timed override timer. When the<br>TOV CANCEL button is pressed for at least one second, the UCM will activate<br>the TOV CANCEL signal, clear the TOV signal and set the timed override timer to<br>zero. Pressing either button will NOT affect the zone temperature reported by the<br>UCM.                                                                                                      |
|                                             | Zone sensor failure will cause the unit to shut down unless the unit has a discharge air sensor, in which case the UCM will use that sensor for control purposes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |


## **Checkout Procedures**

This chapter contains information about the following: Chapter Overview • Pre-Power Up Checkout Operational Checkout Zone Sensor Checkout • Check the supply voltage at UCM terminal J4-3. Voltage should measure 20 **Pre-Power Up** to 28 VAC. Checkout Check the communication wire connections and polarity. Verify that the zone sensor connections are correct as detailed in Chapter 2 -Installation and Wiring. When you are satisfied that all the above have been checked, power up the system. If the UCM is a standalone unit, operation can be checked using the UCM LEDs. This procedure is explained later on in this chapter. If the system is configured with a Tracer, go to the Tracer display to check status and perform the UCM Setup. Refer to the Tracer manuals for more information on checking status.

## **Operational Checkout**

The UCM contains a service interface panel with LEDs to indicate mode of operation / status and a set of eight DIP switches that are used to set the UCM address and as a service data entry point. Figure 5-1 shows the service interface panel.

Figure 5-1 Service Interface Panel



The TEST INPUT and DIP Switches can be used by service personnel to run diagnostics. These are explained in Chapter 6. In Normal operating mode, the LEDs indicate the current operating condition of the UCM.

#### SYS

When lit, indicates this UCM is currently powered (ON).

#### HEAT

When lit, indicates the Fan Coil is in heating mode.

#### COOL

When lit, indicates the Fan Coil is in cooling mode. When blinking, indicates that the unit is shutdown on a latching diagnostic.

#### SERVICE

When lit, indicates service is required (dirty filter).

#### COMM

When lit continuously, indicates a bad connection in the communication link. When OFF continuously, indicates the communication link is wired correctly and there is no activity on the link. When blinking continuously, indicates activity on the link. Short blinks (.2 sec) indicate the UCM is responding. Long blinks (.5 sec) indicate the UCM does NOT recognize the signals on the link.

## Zone Sensor Checkout

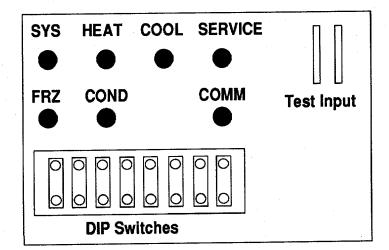
If an erroneous temperature is being reported to the UCM, use the following table to verify the integrity of the sensor or thermostat thumbwheel. Using an ohmmeter, measure thumbwheel resistance at terminals 2 and 3 on the thermostat. Also measure sensor resistance at terminals 1 and 2 on the zone sensor. The values listed in this table may vary + or - 10%.

| Temperature (°F) | Temperature (°C) | Thumbwheel<br>resistance —<br>ohms | Sensor<br>resistance —<br>ohms |
|------------------|------------------|------------------------------------|--------------------------------|
| 55               | 12.8             | 792                                | 17.0                           |
| 56               | 13.3             | 772                                | 16.5                           |
| 57               | 13.9             | 753                                | 16.1                           |
| 58               | 14.4             | 733                                | 15.7                           |
| 59               | 15.0             | 714                                | 15.4                           |
| 60               | 15.6             | 694                                | 15.0                           |
| 61               | 16.1             | 675                                | 14.6                           |
| 62               | 16.7             | 656                                | 14.3                           |
| 63               | 17.2             | 636                                | 14.0                           |
| 64               | 17.8             | 617                                | 13.6                           |
| 65               | 18.3             | 597                                | 13.3                           |
| 66               | 18.9             | 578                                | 13.0                           |
| 67               | 19.4             | 558                                | 12.6                           |
| 68               | 20.0             | 539                                | 12.3                           |
| 69               | 20.6             | 519                                | 12.1                           |
| 70               | 21.1             | 500                                | 11.8                           |
| 71               | 21.7             | 481                                | 11.5                           |

| Temperature (°F) | Temperature (°C) | Thumbwheel<br>resistance —<br>ohms | Sensor<br>resistance —<br>ohms |
|------------------|------------------|------------------------------------|--------------------------------|
| 72               | 22.2             | 461                                | 11.2                           |
| 73               | 22.8             | 442                                | 11.0                           |
| 74               | 23.3             | 422                                | 10.7                           |
| 75               | 23.9             | 403                                | 10.4                           |
| 76               | 24.4             | 383                                | 10.2                           |
| 77               | 25.0             | 364                                | 10.0                           |
| 78               | 25.6             | 344                                | 9.7                            |
| 79               | 26.1             | 325                                | 9.5                            |
| 80               | 26.7             | 306                                | 9.3                            |
| 81               | 27.2             | 286                                | 9.0                            |
| 82               | 27.8             | 267                                | 8.8                            |
| 83               | 28.3             | 247                                | 8.6                            |
| 84               | 28.9             | 228                                | 8.4                            |
| 85               | 29.4             | 208                                | 8.2                            |

Notes

## **Trouble Analysis**


**Chapter Overview** 

This chapter contains information about the following:

- Service Interface Panel Tests
- Binary Inputs and Outputs
- UCM Problems

The UCM contains a service interface panel that can be used to run diagnostic tests. Figure 6-1 shows the service interface panel.

Figure 6-1 Service Interface Panel



### **Test Input**

When shorted together using a jumper wire, the input leads can either set the ICS address for the UCM or perform one of three service test functions on the UCM.

The following table shows the DIP switch settings for each test mode.

| Mode | Description | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   |
|------|-------------|-----|-----|-----|-----|-----|-----|-----|-----|
| 01   | ICS Address | Off | On  |
| 02   | Auto Cycle  | Off | Off | Off | Off | Off | Off | On  | Off |
| 08   | Diagnostic  | Off | Off | Off | Off | On  | Off | Off | Off |

If the DIP switches are set to a valid Tracer ICS address (see Table 2-2) and the test input is shorted, the UCM will assume the address defined by the DIP switches.

The current ICS address can be read from the Service Interface Panel by setting the DIP switches to mode 01 and shorting and holding the test input. The four LEDs



(SYS, HEAT, COOL, SERVICE) act as the bits of information. The address is displayed back in three separate LED blinking stages. The first stage is all four LEDs off. The second stage is the four high order bits of the address. The last stage is the four low order bits of the address. For example, say the UCM was to be given an address of 40.

First, use Table 2-2 to find that the DIP switches should be set as: OFF OFF ON OFF ON OFF OFF. Then, short the test input to set the address.

You should see the following information displayed on the four LEDs:

| 1st blink       | 2nd blink      | 3rd blink      |
|-----------------|----------------|----------------|
| OFF OFF OFF OFF | OFF OFF ON OFF | ON OFF OFF OFF |

Notice, the first blink always contains all four LEDs OFF.

The second blink corresponds to the four high order bits of the address (i.e., DIP switches 1, 2, 3, and 4). The third blink corresponds to the four low order bits of the address (i.e., DIP switches 5, 6, 7, and 8).

| Auto Cycle<br>Stage | LED 1 | LED 2 | LED 3 | LED 4 | Description                         |
|---------------------|-------|-------|-------|-------|-------------------------------------|
| 0                   | OFF   | OFF   | OFF   | OFF   | Off                                 |
| 1                   | OFF   | OFF   | OFF   | ON    | Fan LO                              |
| 2                   | OFF   | OFF   | ON    | OFF   | Fan MED                             |
| 3                   | OFF   | OFF   | ON    | ON    | Fan HI                              |
| 4                   | OFF   | ON    | OFF   | OFF   | Economizer (energize<br>2-position) |
| 5                   | OFF   | ON    | OFF   | ON    | Cool (open valve)                   |
| 6                   | OFF   | OŇ    | ON    | OFF   | Heat (open valve)                   |
| 7                   | OFF   | ON    | ON    | ON    | Electric heat output 1              |
| 8                   | ON    | OFF   | OFF   | OFF   | Electric heat output 2              |
| 9                   | ON    | OFF   | OFF   | ON    | Electric heat output 3              |

Auto Cycle

#### Diagnostic

The four LEDs define a two-digit diagnostic code. The information is displayed in three segments. The first stage is all four LEDs OFF. The second stage lights the appropriate LEDs representing the high order binary bits for the diagnostic code. The third stage lights the appropriate LEDs for the low order bits. As an example, if diagnostic code 10 was to be displayed, the first stage would be all four LEDs OFF. The second stage would be OFF OFF OFF OFF, and the third stage would be ON OFF. The second and third stages together make up the eight bits which define all diagnostic codes. In this example, diagnostic code 10 has the binary representation OFF OFF OFF OFF ON OFF.

|      | 1st E | Blink |      | 2nd Blink |      |      | 3rd Blink |      |      |      | Description |                                       |
|------|-------|-------|------|-----------|------|------|-----------|------|------|------|-------------|---------------------------------------|
| LED1 | LED2  | LED3  | LED4 | LED1      | LED2 | LED3 | LED4      | LED1 | LED2 | LED3 | LED4        | · · · · · · · · · · · · · · · · · · · |
| OFF  | OFF   | OFF   | OFF  | ON        | ON   | ON   | ON        | ON   | OFF  | OFF  | OFF         | Bad configuration                     |
| OFF  | OFF   | OFF   | OFF  | ON        | ON   | OFF  | OFF       | ON   | OFF  | OFF  | ON          | Smoke alarm                           |
| OFF  | OFF   | OFF   | OFF  | ON        | ON   | OFF  | OFF       | ON   | OFF  | OFF  | OFF         | Fan status                            |
| OFF  | OFF   | OFF   | OFF  | ON        | OFF  | ON   | OFF       | OFF  | OFF  | OFF  | OFF         | Zone and supply temp sensors failed   |
| OFF  | OFF   | OFF   | OFF  | ON        | ON   | OFF  | OFF       | OFF  | ON   | ON   | ON          | Low coil entering air temp            |
| OFF  | OFF   | OFF   | OFF  | ON        | OFF  | OFF  | OFF       | ON   | OFF  | ON   | ON          | Condensate overflow                   |
| OFF  | OFF   | OFF   | OFF  | OFF       | ON   | OFF  | OFF       | ON   | OFF  | OFF  | OFF         | Low discharge air temp                |

## Binary Inputs and Outputs

The following table lists the binary inputs and outputs for the Fan Coil UCM.

| Binary Input               | Application                                                                                          |
|----------------------------|------------------------------------------------------------------------------------------------------|
| High Pressure Cutout       | Senses 24VAC applied to the compressor contact coil.                                                 |
| Low Pressure Cutout        | A refrigerant pressure switch with a sensing port connected to the compressor suction.               |
| Freeze Protection Switch   | Provides contact closure by sensing<br>low temperature across the entering<br>face of the main coil. |
| Condensate Overflow Switch | Float switch in condensate pan to indicate overflow.                                                 |
| Condensate Overflow Probe  | Probe in condensate pan to indicate overflow.                                                        |
| Air Filter Pressure Switch | Differential pressure switch with air ports communicating across the air filter.                     |
| Fan Status Air Flow Switch | Flow switch at the discharge end of the fan.                                                         |
| Occupied/Unoccupied        | Reports occupancy in a controlled space.                                                             |
| Smoke                      | Smoke or other air contaminant switch.                                                               |
| Enable/Disable             | Input connected to user device.                                                                      |
| Aux Heat Water Temp Switch | Temperature switch that senses supply water temperature.                                             |
| Firestat                   | Temperature switch that senses return air temperature.                                               |
| Reheat Input               | Status switch used in reheat control.                                                                |
| Test Input                 | Sets the UCM to service mode.                                                                        |
| Fan Speed Control          | Controls fan (ON/OFF, speed)                                                                         |
| Valve Operators            | Controls valves (OPEN/CLOSE)                                                                         |
| Damper Operators           | Controls dampers.<br>Outdoor air - OPEN/CLOSE<br>Outdoor air - ON/OFF                                |
| Electric Heat - ON/OFF     | Contactors that energize electric heat elements.                                                     |
| Electric Heat - PWM        | Contactors that modulate the slow energizing of electric heat elements.                              |

| Binary Input                     | Application                                                            |
|----------------------------------|------------------------------------------------------------------------|
| Exhaust Fan                      | Starts the exhaust fan to allow outdoor air into the space.            |
| Alarm                            | Outputs to an external alarm indicator to indicate a need for service. |
| Aux Heat - Tracer Generic Output | Operates an external relay to provide external heat.                   |

### **UCM** Problems

#### UCM doesn't communicate

UCM does not display data

The following lists potential problems, possible causes and solutions. Causes are listed in order of probability from most to least likely.

#### UCM is not addressed correctly.

Verify / reset the DIP switch settings.

#### Signal interference on the link

Verify that the link wires are not routed near or with voltage source wires.

#### Incorrect wiring

Verify that link wiring is twisted pair as specified in Chapter 2 of this manual.

#### Incorrect supply voltage

Verify the input power is 20-28 VAC at all UCMs in the system.

#### **Defective UCM board**

If all of the previously listed solutions do not fix the problem, disconnect the communication link from the UCM board. Replace the board if necessary.

### UCM is not addressed correctly or two UCMs have same address

Verify / reset the DIP switch settings.

#### Wiring problem

Disconnect the link past the first UCM and verify polarity. Check resistance across the wires for possible short or open condition.

#### UCM has no power

Check the system LED and verify the input power is 20-28 VAC.

#### **Defective UCM**

If all of the previously listed solutions do not fix the problem, check the other UCMs in the system. One UCM failure can affect communications to all other UCMs.

# UCM reports incorrect zone temp or setpoint

#### Incorrect wiring

Verify that wiring is connected as specified in Chapter 2 of this manual.

#### Defective zone sensor

Disconnect the zone sensor plug. Using an ohmmeter, check the resistance according to the Zone Sensor Checkout procedure described in Chapter 5 of this manual. Check the installation and location of the zone sensor.

#### **Incorrect calibration**

Change the calibration factor on the UCM Setup screens (see Chapter 3).

#### Setpoint wheel disabled

Enable the zone sensor using the UCM Setup screens (see Chapter 3).

#### UCM downloaded incorrectly

Check unit type and control parameters.

#### Outputs on UCM have failed

Check using the Auto Cycle test.

#### Fan / control relay failed

Remove the fan / heat wires from the UCM and apply 24 VAC directly to the relay.

Note: To avoid damage, do NOT jumper 24 VAC to J1.

#### Tracer fan / control outputs disabled

Using the Tracer, check group, global and Tracer overrides (refer to the Tracer manuals).

#### UCM outputs configured as normally closed

Verify the output configurations using the UCM Setup screens (see Chapter 3).

#### Zone temp is at or above high setpoint

Increase the high limit using the UCM Setup screens (see Chapter 3).

## Fan Control outputs not energizing

## Glossary

#### Acronym

An abbreviation, typically the first letter of each word in a name. The following is a list of acronyms:

| AIP<br>AOP | Analog Input Point<br>Analog Output Point |
|------------|-------------------------------------------|
| ASCII      | American Standard Code for                |
|            | Information Interchange                   |
| BAS        | Building Automation System                |
| BIP        | Binary Input Point                        |
| BMN        | Building Management Network               |
| BMS        | Building Management System                |
| BOP        | Binary Output Point                       |
| CPU        | Central Processing Unit                   |
| DDC        | Direct Digital Control                    |
| MWU        | Morning Wake Up                           |
| NSB        | Night Setback                             |
| OPR        | Operator Override                         |
| PCL        | Process Control Language                  |
| UCM        | Unit Control Module                       |
| VAV        | Variable Air Volume                       |

#### Address

A number used by a central processing unit (CPU) to specify a location in memory or define a system device (e.g. communication link).

#### Alarm

An audible or visual signal that warns of an abnormal and critical operating condition.

#### Analog Input Point (AIP)

A varying voltage, current or resistance signal which can be converted to engineering units of temperature, pressure, humidity, wattage, etc.

#### Analog Output Point (AOP)

A varying voltage or current signal used to change the position of a device such as an electric valve. AOPs are typically used in DDC loops.

#### **Analog Sensor**

A device that measures the exact value of a varying parameter (temperature, humidity, flow, etc.) and transmits a signal to the Building Management System indicating that value.

#### ASCII

American Standard Code for Information Interchange. A binary code designed to represent each of 256 different alphanumeric characters and other non-printing characters used to control computer devices.

#### Backup

A copy of one or more computer files to a storage medium for safekeeping in case the original is damaged or lost.

#### Baud Rate

The speed, in bits per second, at which information is transmitted over communication lines.

#### **Binary**

1 - A numbering system with two digits (0 and 1) in which each symbol has a decimal power of two.

2 - Any system that has only two possible states or levels (e.g. a switch that is either on or off).

3 - A computer circuit that indicates the presence (1) or the absence (0) of a signal.

#### **Binary Input Point (BIP)**

An on / off input to a processor, used to indicate status (e.g. flow switch, limit switch, other contact).

#### **Binary Output Point (BOP)**

An on / off control output from a processor.

#### Boot (Bootstrap)

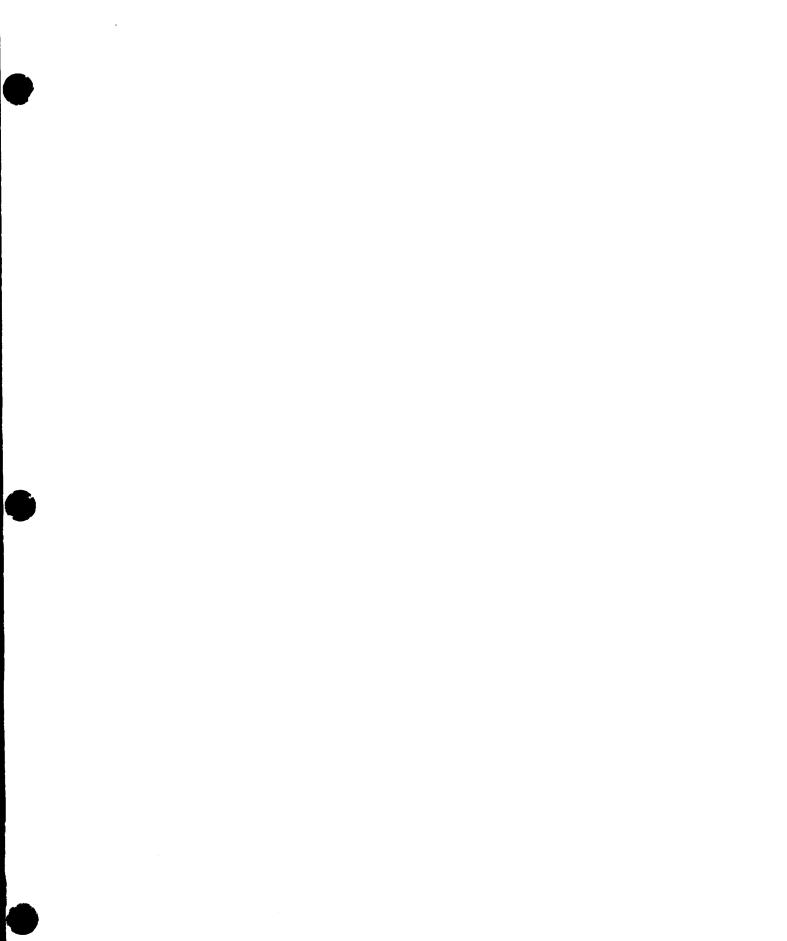
The act of starting a computer.

#### Buffer

1 - A device or memory area that stores information temporarily during data transfer.

2 - An electronic device used for isolation.

#### **Building Automation System (BAS)**


A combination of controllers and other software products that control various mechanical systems in a building such as heating, cooling, ventilation, lighting, access, etc.

#### **Building Management Network (BMN)**

A Trane PC based software system, with a graphic interface, that allows an operator to remotely monitor and control Tracer and / or Tracker building management systems.

#### **Building Management System (BMS)**

A combination of controllers and other software products that control various mechanical systems in a building such as heating, cooling, ventilation, lighting, access, etc. Same as Building Automation System.

