Energy Recovery Ventilator

TERVR100A1P00B TERVR200A1P00B TERVR300A1P00B

PUB. NO. 22-1776-05

General Features

General Features

Energy Recovery Ventilator (ERV)

Product Description

Packaged static plate enthalpic-energy recovery ventilator. Energy transfer core is constructed of static plates in a cross flow arrangement with no moving parts. The unit is capable of operating in summer and winter conditions without generating condensate. No condensate drain pan or drain line is required. The ERV ships with MERV 8 Spun Polyester air filters in the exhaust and fresh air streams to protect the energy transfer core.

Product Certification

ERV models are listed under UL 1812 Standard for Ducted Air to Air Heat Exchangers and are certified by the Home Ventilating Institute (HVI) per CSA 439. Both a heating and cooling test are run to demonstrate year round energy recovery.

Energy Transfer

ERV's are capable of transferring both heat and moisture between airstreams. Moisture transfer is achieved by direct water vapor transfer from one air stream to the other.

Passive Frost Control

The energy transfer core performs without condensing or frosting under normal operating conditions (defined as outside temperatures above -10F and inside relative humidity below 40%). Occasional extreme conditions will not affect the usual function or performance of the element. A condensate drain is not required.

Continuous Ventilation

ERV's have the capacity to operate continuously without the need for bypass, recirculation, pre-heaters or defrost cycles under normal operating conditions.

Positive Airstream Separation

Water vapor transfer is achieved through molecular transport by hydroscopic resin and shall not be achieved by "porous plate" mechanisms. Exhaust and fresh air travel in separate passages at all times, and airstreams do not mix.

Laminar Flow

Airflow through the energy transfer core is laminar, avoiding deposit of particulates on the interior of the energy exchange plate material.

Contents

General Features	
Model Nomenclature	4
Features and Benefits	
General Data	
Performance Data	
Electrical Data	
Dimensions	

ERV Model Nomenclature

	1 ⊤	2 <u>E</u>	3 R	4 V	5 <u>R</u>	6 <u>1</u>	7 8 0 0	3	9 <u>A</u>	10 <u>1</u>	11 <u>P</u>	12 <u>0</u>	13 _0 ▲	14 <u>B</u>	15 <u>A</u>
Brand Trane Product Type ERV = Energy Recovery Ver	ntilato	r													
Feature Tier B = Future R = PSC Blower/PT Control X = Future															
Model Family (nominal air 100 = 130 cfm 200 = 200 cfm 300 = 300 cfm Major Design Modificat															
Power Supply 1 = 115 v/1 ph/60hz															
Type of Defrost —— P = Passive															
Open															
Minor Design Change															
Service Digit															

Features and Benefits

Features and Benefits

Features:

- ERV technology for all seasons and climates
- Static plate energy transfer core for efficient transfer of heat and moisture
- Passive defrost does not require condensate drain and provides lower installed cost and improves reliability
- Multi position mounting for installation flexibility
- ERV airflow design does not require installation of balancing dampers reducing installation and start up time
- Percent Timer (PT) control included with ERV for simple, automatic operation
- Optional push button control accessory provides manual override at point of use
- Latches and hinged access doors provide quick access for maintenance and service.
- Heavy gauge, powder painted steel cabinet provides durability and matches the system appearance
- Permanently lubricated motor bearings for long life
- Standard 34" power cord with ground plug for easy installation
- Double duct collars (6" & 8")for connection of flexible or rigid ductwork for TERVR100 and 200
- 8" round compatible duct connection for TERVR300
- Cabinet wall and doors have 1" cleanable, foil face, high density board insulation, with 1/4" foam insulation on access panel for thermal and sound insulation
- ERV cabinet / door color: Polyslate Gray
- 5 year limited warranty on parts
- 10 year limited warranty on energy transfer core
- Optional 5 and 10 year extended warranties

OPTIONAL ACCESSORIES

Point of Use Push Button Control for use with ERV models 100, 200, 300	TCONTV10APBC0A []
Filters - 2 per pack, for use with ERV model 100	FLR08618 []
Filters - 2 per pack, for use with ERV model 200 & 300	
6 inch White Vinyl Ventilation Hood	
6 inch Brown Vinyl Ventilation Hood	BAYBRN10AVENTA
8 inch Galvenized Ventilation Hood	BAYGLV10AVENTA

General Data

MODEL	TERVR100A1P00B	TERVR200A1P00B	TERVR300A1P00B
RATINGS (1)	See Note ①	See Note ①	See Note ①
AIRFLOW RANGE (cfm)	50-130	100-210	150-320
BLOWER ASSEMBLY			
Diameter x Width	6.32" x 2.01"	6.75" x 1.89"	7.67" x 1.89"
No. Blower Wheels Used	2	2	2
Speeds ②	1	1	1
No. Motors — H.P.	1 - 0.09	1 - 0.09	1 - 0.25
Nominal Motor Speed (R.P.M.)	1750	1750	1550
POWER CONNECTIONS			
Volts/Ph/Hz	120/1/60	120/1/60	120/1/60
Ampacity (in Amps)	15	15	15
Fuse Size - Max (Amps)	15	15	15
F.L. Amps	1.3	1.5	3.3
FILTER			
Filter Furnished?	Yes	Yes	Yes
Type Recommended	MERV 8 Spun Polyester	MERV 8 Spun Polyester	MERV 8 Spun Polyester
NoSize-Thickness	2 - 10.5" x 10.5"	2 - 10.5" x 21.75"	2 - 10.5" x 21.75"
Defrost	Passive	Passive	Passive
Duct Connections	See Note ②	See Note 2	8" oval connection for flex or rigid
Heat Exchanger	See Note 3	See Note ③	See Note ③
Insulation - Thermal/Sound	See Note ④	See Note ④	See Note ④
DIMENSIONS	H x W x D	H x W x D	H x W x D
Crated (In.)	21-1/2 x 32 x 17-1/2	21-1/2 x 32 x 28-1/2	21-1/2 x 32 x 28-1/2
Uncrated (In.) (Not including duct collars)	20-1/8 x 28-3/4 x 13	20-1/8 x 28-3/4 x 23-7/8	20-1/8 x 28-3/4 x 23-7/8
WEIGHT Shipping (Lbs.)/Net (Lbs) Including collars)	65 / 58	91 / 78	95 / 82

① Certified HVI 2100 PER CSA 439 and listed under UL standard UL 1812.

2 Insulating double collars with 6" and 8" round connections for flex or rigid duct.

O Cross flow - fixed plate enthalpic energy transfer core. Transfers heat and moisture.
Cabinet - 1" cleanable foil face fiberglass high density board insulation. Access door - 1/4" foam insulation over 1" fiberglass board insulation.

Performance Data

TERVR100	TERVR100 - Ventilation Performance													
Ext. Static Pressure		Net Supp	v Airflow	Gross Airflow										
		Not Oupp	ly / lilliow	Supply		Exhaust								
Pa	in. wg	L/S	CFM	L/S	CFM	L/S	CFM							
25	0.1	77	165	79	168	79	168							
50	0.2	72	153	73	156	73	156							
75	0.3	64	137	66	140	66	140							
100	0.4	59	126	61	129	61	129							
125	0.5	49	104	50	106	50	106							
150	0.6	37	79	38	81	38	81							

Electrical Requirements Volts 120 Amps 1.3

Exhaust Air Transfer Ratio = 2% @ 0.2 in. wg (50 PA) and 2% @ 0.4 in. wg (100 PA)

TERVR1	TERVR100 - Energy Performance												
Sup Tempe		Net Airflow		et Airflow Average Power S Watts		Apparent Sensible Effectiveness %	Net Moisture Transfer %						
C°	F°	L/S	CFM	vvalis	Efficiency %	LIGUIVEIIESS /0	114115161 70						
Hea	ting												
0°	32 °	61	130	102	71	77	53						
Cooling					Total Recovery Efficiency %								
35 °	95 °	61	130	102	48								

TERVR200	TERVR200 - Ventilation Performance												
Ext. Static	Pressure	Net Supp	v Airflow	Gross Airflow									
		not oupp	ly runnou	Sup	ply	Exh	aust						
Pa	in. wg	L/S	CFM	L/S	CFM	L/S	CFM						
25	0.1	97	207	100	213	109	232						
50	0.2	90	192	93	199	104	221						
75	0.3	88	186	90	192	101	216						
100	0.4	83	176	85	181	96	204						
125	0.5	79	168	81	173	88	187						
150	0.6	70	149	72	154	76	162						
175	0.7	57	122	59	126	68	145						

Electrical Requirements Volts 120 Amps 1.5

Exhaust Air Transfer Ratio = 3% @ 0.2 in. wg (50 PA) and 3% @ 0.4 in. wg (100 PA)

TERVR2	TERVR200 - Energy Performance												
Sup Tempe	ply rature	Net Airflow		Net Airflow		Net Airflow		Net Airflow		Average Power Watts	Sensible Recovery Efficiency %	Apparent Sensible Effectiveness %	Net Moisture Transfer %
C°	F°	L/S	CFM	vvallo	Linclency /0	LIIGUIVEIIESS /0	114115161 /0						
Hea	ting												
0°	32 °	85	181	157	78	85	62						
Coo	ling				Total Recovery Efficiency %								
35 °	95 °	85	180	155 52									

Performance Data

TERVR30	TERVR300 - Ventilation Performance													
Ext. Static	Pressure	Net Suppl	v Airflow	Gross Airflow										
	11000010		ly / li li ow	Sup	ply	Exh	aust							
Pa	in. wg	L/S	CFM	L/S	CFM	L/S	CFM							
100	0.4	147	311	150	317	143	303							
125	0.5	139	295	142	301	133	283							
150	0.6	131	277	133	282	125	265							
175	0.7	121	256	123	261	108	230							
200	0.8	101	215	103	219	94	198							
225	0.9	90	191	92	195	74	156							
250	1.0	80	170	82	174	47	99							

Electrical Requirements Volts 120 Amps 3.3 Exhaust Air Transfer Ratio = 3% @ 0.4 in. wg (50 PA)

TERVR	TERVR300 - Energy Performance												
Sup Tempe	ply erature	Net Airflow		Average Power Watts	Sensible Recovery Efficiency %	Apparent Sensible Effectiveness %	Net Moisture Transfer %						
C°	F°	L/S	CFM	Walls	LINCIENCY /0	LIEGUVEIIESS /0	110115161 /0						
Hea	ting												
0°	32 °	139	297	315	67	74	54						
Соо	ling				Total Recovery Efficiency %								
35 °	95 °	138	294	313	46								

* Refer to HVI Directory (Home Ventilation Institute) for definitions of column headings

Electrical Data

Optional PB Controls

(2) PB controls can be directly connected to the PT controlUp to (6) PB controls, wired in parallel, may be used.

Dimensions

Notes

Ingersoll Rand 6200 Troup Highway Tyler, TX 75707

Since the manufacturer has a policy of continuous product improvement, it reserves the right to change design and specifications without notice.