Installation, Operation, and Maintenance

Variable Speed Air Handlers, Convertible, 2 to 5 Ton

5TAMXB02AV21DA 5TAMXC03AV31DA 5TAMXD04AV31DA 5TAMXD05AV41DA 5TAMXD06AV41DA 5TAMXD06AV41DA

Notes:

- Graphics in this document are for representation only. Actual model may differ in appearance.
- For use with BAYEA series heaters only.

A SAFETY WARNING

Only qualified personnel should install and service the equipment. The installation, starting up, and servicing of heating, ventilating, and air-conditioning equipment can be hazardous and requires specific knowledge and training. Improperly installed, adjusted or altered equipment by an unqualified person could result in death or serious injury. When working on the equipment, observe all precautions in the literature and on the tags, stickers, and labels that are attached to the equipment.

AHR-SVX007A-EN

Introduction

Read this manual thoroughly before operating or servicing this unit.

This document is customer property and is to remain with this unit. Return to the service information pack upon completion of work.

Warnings, Cautions, and Notices

Safety advisories appear throughout this manual as required. Your personal safety and the proper operation of this machine depend upon the strict observance of these precautions.

The three types of advisories are defined as follows:

Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

Indicates a potentially hazardous situation which, if not avoided, could result in minor or moderate injury. It could also be used to alert against unsafe practices.

NOTICE

Indicates a situation that could result in equipment or property-damage only accidents.

Important Environmental Concerns

Scientific research has shown that certain man-made chemicals can affect the earth's naturally occurring stratospheric ozone layer when released to the atmosphere. In particular, several of the identified chemicals that may affect the ozone layer are refrigerants that contain Chlorine, Fluorine and Carbon (CFCs) and those containing Hydrogen, Chlorine, Fluorine and Carbon (HCFCs). Not all refrigerants containing these compounds have the same potential impact to the environment. Trane advocates the responsible handling of all refrigerants.

Important Responsible Refrigerant Practices

Trane believes that responsible refrigerant practices are important to the environment, our customers, and the air conditioning industry. All technicians who handle refrigerants must be certified according to local rules. For the USA, the Federal Clean Air Act (Section 608) sets forth the requirements for handling, reclaiming, recovering and recycling of certain refrigerants and the equipment that is used in these service procedures. In addition, some states or municipalities may have additional requirements that must also be adhered to for responsible management of refrigerants. Know the applicable laws and follow them.

Proper Field Wiring and Grounding Required!

Failure to follow code could result in death or serious injury.

All field wiring MUST be performed by qualified personnel. Improperly installed and grounded field wiring poses FIRE and ELECTROCUTION hazards. To avoid these hazards, you MUST follow requirements for field wiring installation and grounding as described in NEC and your local/state/national electrical codes.

A WARNING

Personal Protective Equipment (PPE) Required!

Failure to wear proper PPE for the job being undertaken could result in death or serious injury. Technicians, in order to protect themselves from potential electrical, mechanical, and chemical hazards, MUST follow precautions in this manual and on the tags, stickers, and labels, as well as the instructions below:

- Before installing/servicing this unit, technicians MUST put on all PPE required for the work being undertaken (Examples; cut resistant gloves/ sleeves, butyl gloves, safety glasses, hard hat/ bump cap, fall protection, electrical PPE and arc flash clothing). ALWAYS refer to appropriate Safety Data Sheets (SDS) and OSHA guidelines for proper PPE.
- When working with or around hazardous chemicals, ALWAYS refer to the appropriate SDS and OSHA/GHS (Global Harmonized System of Classification and Labelling of Chemicals) guidelines for information on allowable personal exposure levels, proper respiratory protection and handling instructions.
- If there is a risk of energized electrical contact, arc, or flash, technicians MUST put on all PPE in accordance with OSHA, NFPA 70E, or other country-specific requirements for arc flash protection, PRIOR to servicing the unit. NEVER PERFORM ANY SWITCHING, DISCONNECTING, OR VOLTAGE TESTING WITHOUT PROPER ELECTRICAL PPE AND ARC FLASH CLOTHING. ENSURE ELECTRICAL METERS AND EQUIPMENT ARE PROPERLY RATED FOR INTENDED VOLTAGE.

A WARNING

Follow EHS Policies!

Failure to follow instructions below could result in death or serious injury.

- All Trane personnel must follow the company's Environmental, Health and Safety (EHS) policies when performing work such as hot work, electrical, fall protection, lockout/tagout, refrigerant handling, etc. Where local regulations are more stringent than these policies, those regulations supersede these policies.
- Non-Trane personnel should always follow local regulations.

A WARNING

Cancer and Reproductive Harm!

This product can expose you to chemicals, including lead, which are known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings. ca.gov.

A WARNING

Safety Hazard!

Failure to follow instructions below could result in death or serious injury or property damage. This unit is not to be used by persons (including children) with reduced physical, sensory, or mental capabilities, or lack of experience and knowledge, unless they have been given supervision or instruction concerning the use of the appliance by a person responsible for their safety.

Do not allow children to play or climb on the unit or to clean or maintain the unit without supervision.

Safety Hazard!

Failure to follow instructions below could result in death or serious injury or property damage. Connect the air handler to an outdoor unit suitable for use with R-454B refrigerant only.

A WARNING

Hazardous Voltage!

Failure to disconnect power before servicing could result in death or serious injury.

Disconnect all electric power, including remote disconnects before servicing. Follow proper lockout/ tagout procedures to ensure the power can not be inadvertently energized. Verify that no power is present with a voltmeter.

A WARNING

Grounding Required!

Failure to follow instructions below could result in death or serious injury, or property damage.

- Reconnect all grounding devices.
- All parts of this product that are capable of conducting electrical current are grounded.

• If grounding wires, screws, straps, clips, nuts, or washers used to complete a path to ground are removed for service, they must be returned to their original position and properly fastened.

A WARNING

Risk of Fire — Flammable Refrigerant!

Failure to follow instructions below could result in death or serious injury, and equipment damage.

- To be repaired only by trained service personnel.
- Do not puncture refrigerant tubing.

• Dispose of properly in accordance with federal or local regulations.

A WARNING

Live Electrical Components!

Failure to follow all electrical safety precautions when exposed to live electrical components could result in death or serious injury.

When it is necessary to work with live electrical components, have a qualified licensed electrician or other individual who has been properly trained in handling live electrical components perform these tasks.

A WARNING

Refrigerant under High Pressure!

Failure to follow instructions below could result in an explosion which could result in death or serious injury or equipment damage.

System contains oil and refrigerant under high pressure. Recover refrigerant to relieve pressure before opening the system. See unit nameplate for refrigerant type. Do not use non-approved refrigerants, refrigerant substitutes, or refrigerant additives.

A CAUTION

Corrosion Hazard!

Failure to follow instructions below could result in personal injury or equipment damage.

To prevent shortening its service life, do not use air handler during the finishing phases of construction or remodeling. The low return air temperatures can lead to the formation of condensate. Condensate in the presence of chlorides and fluorides from paint and other components creates a corrosive condition which may cause rapid deterioration of the cabinet and internal components.

Coil Damage!

Failure to follow instructions below could result in minor to moderate injury or coil damage. Confirm coil is pressurized with 8–12 psi dry air and factory-checked for leaks. Carefully release the pressure by removing the rubber plug on the liquid line. If no pressure is released, check for leaks.

Sharp Edges!

Failure to follow instructions below could result in minor to moderate injury.

The service procedure described in this document involves working around sharp edges. To avoid being cut, technicians MUST put on all necessary Personal Protective Equipment (PPE), including gloves and arm guards.

Copyright

This document and the information in it are the property of Trane, and may not be used or reproduced in whole or in

part without written permission. Trane reserves the right to revise this publication at any time, and to make changes to its content without obligation to notify any person of such revision or change.

Trademark

All trademarks referenced in this document are the trademarks of their respective owners.

Revision History

- This literature supersedes the old literature number 18-GJ96D1-1*-EN.
- Updated Standard Features and Installation Recommendations and Notes section in General information chapter.
- Updated values for 5TAMXD05AV41DA in the Outline Drawing chapter.
- Replaced wiring diagrams D808142P01, 24V Two-Stage System, AC or HP and 24V Single-Stage System, AC or HP in the Wiring chapter.
- Updated MCB diagnostic codes table in the Refrigerant Leak Detection System chapter.
- Updated Optional accessories in the Optional Accessories chapter.
- Replaced figure Refrigerant system layout in Refrigerant Line chapter.
- Updated figures in Strain relief for low-voltage wiring using adhesive hook table in the Electrical—Low Voltage chapter.
- Updated Product specifications table in the Product Specifications chapter.
- Updated values in the tables in the Heater Attribute Data chapter.
- Replaced figures in the Troubleshooting chapter.

Table of Contents

General Information 6
Diagnostic Mobile App 6
Standard Features
Installation Recommendations and Notes
Additional Unit Preparation Considerations
Information on Servicing
Prior to Beginning Work
Repairs to Electrical Components
Detection of Flammable Refrigerants
Removal and Evacuation
Charging Procedures
Recovery 10
Decommissioning
Outline Drawing 12
Wiring Diagrams13
Refrigerant Leak Detection System 17
Minimum Conditioned Space
Airflow Adjustment 18
Verification of Mitigation Actions
Unit Install Preparation
Unit Design
Optional Accessories 22
Optional Cabinet Disassembly24
Placing Unit at Location
Four-Way Conversion
Ducted and Non-Ducted Return Applications
Setting the Unit — Vertical Installation 35
Setting the Unit — Horizontal Installations

Connecting the Duct work	38
Refrigerant Line	39 39
Refrigerant Line Brazing	40
Condensate Drain Piping	43
Electrical — High Voltage	45
Electrical — Low Voltage	48
Replacement AHC configuration – 24 volt mode	54
Button Press AHC Configuration Method: Method #2 Replacement AHC configuration — LINK Communicating Mode:	54
Product Specifications	55
Airflow Performance Tables	57
Heater Attribute Data	63
Distance from Belly Band to Shaft Face of Motor for Minimum Vibration Filters	66
System Start Up	67 67
Unit Test Options	68
ET / GT and Supply Air Temperature Sensor Return Air Temperature Sensor Stepper Motor Tables—For use with Low	69 70
and High Superheat Troubleshooting	. 70
Sequence of Operation Abbreviations	. 71 71
Checkout Procedures	73
Troubleshooting	74
Notices	. 79

General Information Diagnostic Mobile App

The Diagnostics Mobile App is available by scanning a QR code located inside this unit or by searching for the Link Diagnostics App in the App Store.

Notes:

- This unit can be used in Link Communicating mode or 24 volt mode.
- Use Diagnostics App to configure blower delays, and accessories in 24 volt mode.

Standard Features

- Multi-position (upflow, downflow, horizontal left, and horizontal right) with integrated horizontal pans
- Sweat-eliminating double-wall foamed waterproof cabinet system with minimum R-4.2 insulating value (average value R-8.2)
- Modular cabinet
- Smooth, cleanable interior surfaces with no loose fibers
- Link™ Communicating or 24V control
- Vortica® blower with polarized plug connections and integrated slide deck for easy removal
- Variable-speed ECM motor with soft-start fan motor operation
- Aluminum coil with integrated slide deck for easy removal
- Electronic Expansion Valve (EEV) with low ambient and low superheat compressor protection
- Molded in 1" standard filter rail
- Bottom return from factory with side and front return options (sold as accessories)
- Meets the minimum leakage requirements for the Florida and California building codes

Optional Accessories

- 4, 5, 8, 10, 15, 20, and 25 kW Single phase electric heaters
 - Circuit breakers available on single phase 4, 5, 8, 10, 15, 20, and 25 kW heaters
 - Lugs available on single phase 4, 5, 8, and 10 kW heaters
 - Lugs available on three phase 10 and 15 KW heaters
- Single point power entry kit (for 15 and 20 KW heaters)
- · Slide in hot water coils with polarized plug connections
- Low-voltage conduit entry kit
- Front and side return kits
- Horizontal hanger kit
- Internal condensate switch kit
- UVC light kit with safety switch and polarized plug connections
- Sound reduction kits
- Plenum stand kits
- Supply duct flange kits
- Downflow sub-base kit
- CleanEffects Whole House Air Cleaners -EFD175DLAH000B, EFD215DLAH000B, EFD235DLAH000B

Note: See "Optional Accessories," p. 22 for more details.

Installation Recommendations and Notes

ALL Phases of this installation must comply with NATIONAL, STATE and LOCAL CODES!

Important:

- Installation of this unit shall be made in accordance with the National Electric Code, NFPA No. 90A and 90B, and any other local codes or utilities requirements.
- Air handlers do not require repositioning of the coil or drain pan for any application. Horizontal left, horizontal right, and downflow applications require repositioning of the refrigerant sensor. See "the Four-Way Conversion," p. 29 section for details.
- The 5TAMX air handlers are only compatible with BAYEA** internal electric heaters.
- Panel damage can occur with prolonged exposure to POE lubricants. Air handler front panels that come in contact with POE oil must be washed immediately with soapy water
- These instructions do not cover all variations in systems nor provide for every possible contingency to be met in connection with the installation. Should further information be desired or should particular problems arise which are not covered sufficiently for the purchaser's purposes, the matter should be referred to your installing dealer.
- The 24 volt low voltage wire harness is shipped in the supplied document pack.

Notes:

- Air handlers have been evaluated in accordance with the Code of Federal Regulations, Chapter XX, Part 3280 or the equivalent. "SUITABLE FOR MOBILE HOME USE."
- Condensation may occur on the surface of the air handler when installed in an unconditioned space. When units are installed in unconditioned spaces, verify that all electrical and refrigerant line penetrations on the air handler are sealed completely.
- The manufacturer recommends installing ONLY AHRI approved, matched indoor and outdoor systems. Some of the benefits of installing approved matched indoor and outdoor split systems are maximum efficiency, optimum performance, and the best overall system reliability.
- There is no declared maximum altitude for operating the appliance.
- Charging of the refrigerating system shall be according to the instructions provided by the manufacturer of the outdoor unit.
- Representative illustrations only included in this document. Most illustrations display the upflow configuration.
- Duct heaters cannot be applied with this air handler.
- The heater size will be automatically configured by installing a resistor in the Electric heat harness located in the electric heat compartment and will be included with the BAYEA heater.

Additional Unit Preparation Considerations

For proper installation the following items must be considered prior to moving the unit to its installation site:

- Pursuant to Florida Building Code 13–610.2A.2.1, this unit meets the criteria for a factory sealed air handler.
- If a side return is needed for your application, the side return MUST be prepared prior to moving the air handler to its installation location. See the Side Return Kit #BAYSRKIT100A Installer Guide for detailed instructions, if used.
- When the air handler is located adjacent to the living area, the system should be carefully designed with returns which minimize noise transmission through the return air grill. Although the air handler is designed with large blowers operating at moderate speeds, any blower moving a high volume of air will produce audible noise which could be objectionable when the unit is located very close to a living area. It is often advisable to route the return ducts under the floor through the

attic. Such design permits the installation of air return remote from the living area (i.e. central hall).

- Study the unit's outline drawing and dimensions prior to selecting the installation site. Note in advance which electrical conduit entry points and condensate drain holes are to be used, so that proper clearance allowances can be made for installation and future maintenance.
- Installation of the air handler must be made prior to, or at the same time as, the installation of the outdoor unit in order to allow access for refrigerant lines.
- Consider the overall space needed when external accessories are used, additional height and width requirements may exist.
- These units are not approved for outdoor installation.
- These units must be installed in the proper air flow direction.

- Any third-party heater accessories or hydronic coils must be downstream of the unit.
- **Note:** No atomizing style humidifier is allowed in the return plenum with the use of this unit.
- Excessive bypass air may cause water blow-off, which will adversely affect system operation and air cleaner performance. To verify bypass airflow, follow the Bypass Humidifier Pre-Installation Checkout and Set-Up Procedures available through your local distributor. Ask for publication number 18–CH37D1–* Steam and Flow-through Fan Power Duct-mounted Humidifiers. Follow the humidifier installation instructions. These should only be installed on the supply air side of the system.
- **Note:** The air handlers have been evaluated in accordance with the Code of Federal Regulations, Chapter XX, Part 3280 or the equivalent. "SUITABLE FOR MOBILE HOME USE."

Information on Servicing

All replacement parts shall be in accordance with the manufacturer's specifications.

Prior to Beginning Work

Prior to beginning work on systems containing flammable refrigerants, safety checks are necessary to ensure that the risk of ignition is minimized. For repair to the refrigerating system, the following shall be completed prior to conducting work on the system:

- Work shall be undertaken under a controlled procedure to minimize the risk of a flammable gas or vapor being present while the work is being performed.
- All maintenance staff and others working in the local area shall be instructed on the nature of work being carried out. Work in confined spaces shall be avoided.
- The area shall be checked with an appropriate refrigerant detector prior to and during work, to ensure the technician is aware of potentially toxic or flammable atmospheres. Ensure that the leak detection equipment being used is suitable for use with all applicable refrigerants, i.e., non-sparking, adequately sealed or intrinsically safe.
- If any hot work is to be conducted on the refrigerating equipment or any associated parts, appropriate fire extinguishing equipment shall be available to hand. Have a dry powder or CO₂ fire extinguisher adjacent to the charging area.
- No person carrying out work in relation to a refrigerating system which involves exposing any pipe work shall use any sources of ignition in such a manner that it may lead to the risk of fire or explosion. All possible ignition sources, including cigarette smoking, should be kept sufficiently far away from the site of installation, repairing, removing and disposal, during which refrigerant can possibly be released to the surrounding space. Prior to work taking place, the area around the equipment is to be surveyed to make sure that there are no flammable hazards or ignition risks. "No Smoking" signs shall be displayed.
- Ensure that the area is in the open or that it is adequately ventilated before breaking into the system or conducting any hot work. A degree of ventilation shall continue during the period that the work is carried out. The ventilation should safely disperse any released refrigerant and preferably expel it externally into the atmosphere.
- The following checks shall be applied to installations using flammable refrigerants:
 - marking to the equipment continues to be visible and legible. Markings and signs that are illegible shall be corrected;
 - refrigerating pipe or components are installed in a position where they are unlikely to be exposed to

any substance which may corrode refrigerant containing components, unless the components are constructed of materials which are inherently resistant to being corroded or are suitably protected against being so corroded.

Repairs to Electrical Components

Where electrical components are being changed, they shall be fit for the purpose and to the correct specification. At all times the manufacturer's maintenance and service guidelines shall be followed. If in doubt, consult the manufacturer's technical department for assistance.

Repair and maintenance to electrical components shall include initial safety checks and component inspection procedures. If a fault exists that could compromise safety, then no electrical supply shall be connected to the circuit until it is satisfactorily dealt with. If the fault cannot be corrected immediately but it is necessary to continue operation, an adequate temporary solution shall be used. This shall be reported to the owner of the equipment, so all parties are advised.

Initial safety checks shall include:

- that capacitors are discharged; this shall be done in a safe manner to avoid possibility of sparking;
- that no live electrical components and wiring are exposed while charging, recovering or purging the system;
- · that there is continuity of earth bonding.

Check that cabling will not be subject to wear, corrosion, excessive pressure, vibration, sharp edges or any other adverse environmental effects. The check shall also take into account the effects of aging or continual vibration from sources such as compressors or fans.

Detection of Flammable Refrigerants

Under no circumstances shall potential sources of ignition be used in the searching for or detection of refrigerant leaks. A halide torch (or any other detector using a naked flame) shall not be used.

The following leak detection method is deemed acceptable for all refrigerant systems:

 Electronic leak detectors may be used to detect refrigerant leaks but, in the case of flammable refrigerants, the sensitivity may not be adequate, or may need re-calibration. (Detection equipment shall be calibrated in a refrigerant-free area.) Ensure that the detector is not a potential source of ignition and is suitable for the refrigerant used. Leak detection equipment shall be set at a percentage of the LFL of the refrigerant and shall be calibrated to the refrigerant employed, and the appropriate percentage of gas (25 % maximum) is confirmed.

Example of leak detection fluids is bubble method.

If a leak is suspected, all naked flames shall be removed/ extinguished.

If a leakage of refrigerant is found which requires brazing, all of the refrigerant shall be recovered from the system, or isolated (by means of shut off valves) in a part of the system remote from the leak.

Removal and Evacuation

When breaking into the refrigerant circuit to make repairs or for any other purpose - conventional procedures shall be used. However, for flammable refrigerants it is important that best practice be followed, since flammability is a consideration. The following procedure shall be adhered to:

- safely remove refrigerant following local and national regulations;
- evacuate;
- purge the circuit with inert gas (optional for A2L);
- evacuate (optional for A2L);
- continuously flush or purge with inert gas when using flame to open circuit;
- and open the circuit.

The refrigerant charge shall be recovered into the correct recovery cylinders if venting is not allowed by local and national codes. For appliances containing flammable refrigerants, the system shall be purged with oxygen-free nitrogen to render the appliance safe for flammable refrigerants.

This process might need to be repeated several times. Compressed air or oxygen shall not be used for purging refrigerant systems.

For appliances containing flammable refrigerants, refrigerants purging shall be achieved by breaking the vacuum in the system with oxygen-free nitrogen and continuing to fill until the working pressure is achieved, then venting to atmosphere, and finally pulling down to a vacuum (optional for A2L). This process shall be repeated until no refrigerant is within the system (optional for A2L). When the final oxygen-free nitrogen charge is used, the system shall be vented down to atmospheric pressure to enable work to take place.

The outlet for the vacuum pump shall not be close to any potential ignition sources, and ventilation shall be available.

Charging Procedures

In addition to conventional charging procedures, the following requirements shall be followed.

• Ensure that contamination of different refrigerants does not occur when using charging equipment. Hoses or lines shall be as short as possible to minimise the

amount of refrigerant contained in them.

- Cylinders shall be kept in an appropriate position according to the instructions.
- Ensure that the refrigerating system is earthed prior to charging the system with refrigerant.
- Label the system when charging is complete (if not already).
- Extreme care shall be taken not to overfill the refrigerating system.

Prior to recharging the system, it shall be pressure-tested with the appropriate purging gas. The system shall be leaktested on completion of charging but prior to commissioning. A follow up leak test shall be carried out prior to leaving the site.

See installation instructions below for further details.

Recovery

When removing refrigerant from a system, either for servicing or decommissioning, it is recommended good practice that all refrigerants are removed safely.

When transferring refrigerant into cylinders, ensure that only appropriate refrigerant recovery cylinders are employed. Ensure that the correct number of cylinders for holding the total system charge is available. All cylinders to be used are designated for the recovered refrigerant and labelled for that refrigerant (i.e., special cylinders for the recovery of refrigerant). Cylinders shall be complete with pressure-relief valve and associated shut-off valves in good working order. Empty recovery cylinders are evacuated and, if possible, cooled before recovery occurs.

The recovery equipment shall be in good working order with a set of instructions concerning the equipment that is at hand and shall be suitable for the recovery of the flammable refrigerant. If in doubt, the manufacturer should be consulted. In addition, a set of calibrated weighing scales shall be available and in good working order. Hoses shall be complete with leak-free disconnect couplings and in good condition.

The recovered refrigerant shall be processed according to local legislation in the correct recovery cylinder, and the relevant waste transfer note arranged. Do not mix refrigerants in recovery units and especially not in cylinders.

If compressors or compressor oils are to be removed, ensure that they have been evacuated to an acceptable level to make certain that flammable refrigerant does not remain within the lubricant. The compressor body shall not be heated by an open flame or other ignition sources to accelerate this process. When oil is drained from a system, it shall be carried out safely.

Decommissioning

Before carrying out this procedure, it is essential that the technician is completely familiar with the equipment and all

its detail. It is recommended good practice that all refrigerants are recovered safely. Prior to the task being carried out, an oil and refrigerant sample shall be taken in case analysis is required prior to re-use of recovered refrigerant. It is essential that electrical power is available before the task is commenced.

- 1. Become familiar with the equipment and its operation.
- 2. Isolate system electrically.
- 3. Before attempting the procedure, ensure that:
 - a. mechanical handling equipment is available, if required, for handling refrigerant cylinders;
 - b. all personal protective equipment is available and being used correctly;
 - c. the recovery process is supervised at all times by a competent person;
 - d. recovery equipment and cylinders conform to the appropriate standards.
- 4. Pump down refrigerant system, if possible.
- 5. If a vacuum is not possible, make a manifold so that refrigerant can be removed from various parts of the system.

- 6. Make sure that cylinder is situated on the scales before recovery takes place.
- 7. Start the recovery machine and operate in accordance with instructions.
- 8. Do not overfill cylinders (no more than 80 % volume liquid charge).
- 9. Do not exceed the maximum working pressure of the cylinder, even temporarily.
- 10. When the cylinders have been filled correctly and the process completed, make sure that the cylinders and the equipment are removed from site promptly and all isolation valves on the equipment are closed off.
- 11. Recovered refrigerant shall not be charged into another refrigerating system unless it has been cleaned and checked.

Equipment shall be labelled stating that it has been decommissioned and emptied of refrigerant. The label shall be dated and signed. For appliances containing flammable refrigerant, ensure that there are labels on the equipment stating the equipment contains flammable refrigerant.

Outline Drawing

Figure 1. Outline drawing

1.50	
c c	
<u>ا</u> ۱. 50 ا	

MINIMUM UNI	T CLEARANCE TABLE
	SERVICE CLEARANCE (RECOMMENDED)
SIDES	2 "
FRONT	2 "
BACK	0 "
INLET DUCT	
OUTLET DUCT	

NOTE: THIS UNIT IS APPROVED FOR INSTALLATION CLEARANCES TO COMBUSTIBLE MATERIAL AS STATED ON THE UNIT RATING NAMEPLATE

Model Number	Α	В	с	D	E	F	н	FLOW CONTROL	GAS LINE BRAZE	LIQ LINE BRAZE
5TAMXB02AV21DA	49.9	39.6	14.5	17.5	14.5	7.3	24.4	EEV	3/4	3/8
5TAMXC03AV31DA	55.7	45.5	18.4	21.3	18.4	9.2	24.8	EEV	3/4	3/8
5TAMXD04AV31DA	56.9	46.7	20.5	23.5	20.5	10.3	24.2	EEV	7/8	3/8
5TAMXD05AV41DA	61.7	51.5	20.5	23.5	20.5	10.3	24.5	EEV	7/8	3/8
5TAMXD06AV41DA	61.7	51.5	20.5	23.5	20.5	10.3	24.9	EEV	7/8	3/8
5TAMXD07AV51DA	61.7	51.5	20.5	23.5	20.5	10.3	24.9	EEV	7/8	3/8

Wiring Diagrams

Figure 2. Wiring diagram

Note: For refrigerant leak detection and mitigation control board diagnostic flash codes, see Table 4, p. 18

Figure 3. Link communicating low voltage hook-up diagrams

Table 1. Wire colors

R	Red
DH	White
DL	Green
В	Blue

Notes:

- * Accessory terminals are dry contact outputs only.
- + R connection to the outdoor unit is required only in applications utilizing an outdoor loadshed device or when using SmartCharge.
- ** B connection to the outdoor unit is optional for 2 wire outdoor applications, but is recommended in other applications.
- *** DATA (Brown) wire only used in Clii mode.
- Wire colors are for illustration purposes only. If using a different color, ensure it lands at the correct terminal throughout all of the communicating control wiring.
- Drawing is for reference only. Wiring can be done in many different ways.

Figure 4. 24 Volt low voltage wiring - 24V two stage system, AC or HP

Notes:

- 1. Separate BK and G wires when using the BK functionality from the thermostat or a humidistat.
- 2. Y-in and Y-out connections must be made as shown for refrigerant leak mitigation, freeze protection, and internally mounted condensate overflow circuits to function properly.
- 3. 3rd party condensate switch should break the Y1-in circuit between the thermostat and indoor unit.
- 4. X2 is necessary if not using select Trane or American Standard thermostats.
- 5. For single-stage outdoor units, use Y1-out and cap off Y2-out wire.
- 6. Only needed for heat pump operation.

Figure 5. 24 Volt low voltage wiring - 24V single- stage system, AC or HP

Notes:

- 1. Separate BK and G wires when using the BK functionality from the thermostat or a humidistat.
- 2. Y-in and Y-out connections must be made as shown for refrigerant leak mitigation, freeze protection, and internally mounted condensate overflow circuits to function properly.
- 3. 3rd party condensate switch should break the Y1-in circuit between the thermostat and indoor unit.
- 4. X2 is necessary if not using select Trane or American Standard thermostats.
- 5. For single-stage outdoor units, use Y1-out and cap off Y2-out wire.
- 6. Only needed for heat pump operation.
- 7. For single-stage indoor airflow operation, must connect Y1-in and Y2-in for full airflow.

Table 2. 5TAMX 24 volt wire harness colors

R	Red		Y2out	Orange/Red
В	Blue	I	G	Green
0	Orange	I	ВК	Black
Y1in	Yellow	I	W1	White
Y2in	Yellow/Red	I	W2	White/Black
Y1out	Yellow/ Black		W3	White/Red

Refrigerant Leak Detection System

For all tables contained in this section of the manual, the refrigerant charge is the total system charge which is marked on the system according to the instructions provided by the manufacturer of the outdoor unit.

Risk of Fire — Flammable Refrigerant!

Failure to follow instructions below could result in death or serious injury, and equipment damage.

- To be repaired only by trained service personnel.
- Do not puncture refrigerant tubing.

• Dispose of properly in accordance with federal or local regulations.

A WARNING

Leak Detection System Installed!

Failure to follow instructions below could result in death or serious injury or equipment damage. The unit is equipped with electrically powered safety measures and must be powered at all times after installation, except during servicing, to detect any leak.

To ensure safety of the building occupants, the air handler is equipped with a refrigerant leak detection system. The system is comprised of a refrigerant sensor and a mitigation control board. The system automatically detects leaks in the indoor coil and initiates actions to mitigate the risk of ignition of the leaked refrigerant, including:

Turning on the blower of the indoor unit to dilute leaked refrigerant;

Table 3. Minimum space conditioned by the appliance

- Fully opening any zoning dampers, when applicable;
- · Turning off the compressor of the outdoor unit;
- De-energizing potential sources of ignition connected to the system;
- Energizing an audible alarm, if so equipped.

Examples of potential ignition sources that are deenergized include electrostatic air cleaners.

A WARNING

Risk of Fire!

Failure to follow instructions below could cause a fire which could result in death, serious injury, and equipment damage.

Relocate the refrigerant sensor if installing the unit in any other orientation other than upflow.

Refrigerant sensors for refrigerant leak detection systems shall only be replaced as specified by the manufacturer.

Minimum Conditioned Space

The installer must verify that the total space conditioned by the system is large enough to safely dilute any leaked refrigerant in the event of a refrigerant leak of the indoor coil.

The minimum space conditioned by the appliance shall be according to Table 3, p. 17. The conditioned space includes any parts of the space connected via an air duct system. The altitude of installation is the altitude above sea level of the site where the equipment is installed.

	Altitude (ft)								
	sea level- 2,000	2,001-4,000	4,001-6,000	6,001-8,000	8,001-10,000	10,001- 12,000	12,001- 14,000	14,001- 15,000	above 15,000
Charge (lb)		•	•	Minimum	Conditioned S	pace (ft ²)		•	•
4	63	66	70	74	79	85	91	94	98
5	79	83	88	93	99	106	113	118	122
6	95	100	105	112	119	127	136	141	147
7	110	116	123	130	138	148	159	165	171
8	126	133	140	149	158	169	181	188	196
9	142	149	158	167	178	190	204	212	220
10	158	166	175	186	198	211	227	235	245
11	173	183	193	205	218	232	249	259	269
12	189	199	211	223	237	254	272	282	294
13	205	216	228	242	257	275	295	306	318
14	221	232	246	260	277	296	318	330	343
15	236	249	263	279	297	317	340	353	367
16	252	266	281	298	317	338	363	377	392
17	268	282	298	316	336	359	386	400	416
18	284	299	316	335	356	380	408	424	440
19	299	315	333	353	376	402	431	447	465
20	315	332	351	372	396	423	454	471	489

Airflow Adjustment

Note: All 5TAMX model air handlers have been factory configured to provide sufficient airflow to dilute leaked refrigerant.

Verification of Mitigation Actions

After installation, the installer must verify that the refrigerant leak detection system actuates all mitigating actions listed above.

The test can be initiated by shorting the two test pins on the header of the mitigation control board inside of the unit. The mitigating actions will continue for approximately 5 minutes. See Figure 6, p. 18 below.

Figure 6. Mitigation control board

Short these pins to test the refrigerant detection system

Amber and Green LED diagnostic indicators

If any of the mitigating actions are not actuated by the system during the test, please check the following:

- All field wiring connections should be checked against the diagrams in the "Wiring Diagrams," p. 13 section of this manual.
- The diagnostic indicators on the mitigation control board should be checked against the diagnostic codes given in Table 4, p. 18 below.

 Scan the QR code below for more information on field troubleshooting of the refrigerant leak detection system.

For Software V07.1 and earlier

Condition	Green LED		
Idle or Off	Off		
Startup	On		
No Active Alarm	Slow Flash		
Active Alarm (Refrigerant Leak, Sensor Communication Error, or Sensor Error)	3 Flash		
Past Refrigerant Detected Alarm	4 Flash		
Past Sensor Communication Error	5 Flash		
Past Sensor Error	6 Flash		
Condition	Amber LED		
No Power/Off	Off		
24V Mode Active	On		
Communication Mode is Active/ Normal Operation	Node Count		
CAN Communication lost	Fast Blink		

For Software V9.1 and later

Green LED	Status Condition
No Power/Off	Off
Startup	On
Normal Operation	Slow Flash
Active Alarm - Sensor Communication Error	2 Flash
Active Alarm - Refrigerant Leak or Sensor Failure	3 Flash
Past Refrigerant Detected Alarm	4 Flash
Past Sensor Communication or Sensor Error	5, 6, or 7 Flash

Unit Install Preparation

 Check for damage and report promptly to the carrier any damage found to the unit.
Note: If the unit must be transported in a horizontal position, it must be laid on its back (marked "REAR" on carton).
Note: After unit is removed from the carton, verify coil is pressurized. Carefully remove the liquid line plug. If no pressure is released, check for leaks.
Note: Remove the cardboard from the bottom of the blower. Cut the tie wrap and remove the foam shipping block located at the motor.

Condition	Amber LED
No Power/Off	Off
24V Mode Active	On
Communication Mode is Active/ Normal Operation	Node Count
CAN Communication lost	Fast Blink

Notes:

- For 24V systems, the software version can be determined by looking at the printed label on the control board.
- For communicating systems, the software version can be found in the UI or Tech App.

Unit Design

Table 5. Cabinet penetration

Table 6. Panel removal

The unit contains four (4) access panels: Blower/Filter, Coil, Line Set, and Heater.

The Blower/Filter panel is removed using thumb screws.

- 1. Turn thumb screws on Blower/Filter panel.
- 2. Pull top of panel out, away from cabinet.
- 3. Lift panel up out of channel.
- 4. Set aside.

The Block off plate is removed with a 5/16-in. nut driver.

- 1. Remove the two 5/16-in. screws at the top of the block off plate.
- 2. Pull top of panel out, away from cabinet.
- 3. Lift panel up and off mounting bosses at the bottom.
- 4. Set aside.

Unit Design

Optional Accessories

Table 7. Optional accessories

Accessory Number	Description	Fits Cabinet Size
BAYEA(AC/13)04BK1 (a)	Electric Heater, 4kW, Breaker, 24V Control, 1 Ph	17.5 -in., 21.0 -in., 23.5 -in.
BAYEA(AC/13)04LG1 (a)	C/13)04LG1 ^(a) Electric Heater, 4kW, Lugs, 24V Control, 1 Ph	
BAYEA(AC/13)05BK1 (a)	Electric Heater, 5kW, Breaker, 24V Control, 1 Ph	17.5 -in., 21.0 -in., 23.5 -in.
BAYEA(AC/13)05LG1 (a)	Electric Heater, 5kW, Lugs, 24V Control, 1 Ph	17.5 -in., 21.0 -in., 23.5 -in.
BAYEA(AC/13)08BK1 (a)	Electric Heater, 8kW, Breaker, 24V Control, 1 Ph	17.5 -in., 21.0 -in., 23.5 -in.
BAYEA(AC/13)08LG1 (a)	Electric Heater, 8kW, Lugs, 24V Control, 1 Ph	17.5 -in., 21.0 -in., 23.5 -in.
BAYEA(AC/13)10BK1 (a)	Electric Heater, 10kW, Breaker, 24V Control, 1 Ph	17.5 -in., 21.0 -in., 23.5 -in.
BAYEA(AC/13)10LG1 (a)	3)10LG1 (a) Electric Heater, 10kW, Lugs, 24V Control, 1 Ph	
BAYEA(AC/13)10LG3 (a)	AC/13)10LG3 (a) Electric Heater, 10kW, Lugs, 24V Control, 3 Ph	
BAYEA(BC/23)15BK1 (a)	BAYEA(BC/23)15BK1 ^(a) Electric Heater, 15kW, Breaker, 24V Control, 1 Ph	
BAYEA(BC/23)15LG3 (a)	BAYEA(BC/23)15LG3 (a) Electric Heater, 15kW, Lugs, 24V Control, 3 Ph	
BAYEA(BC/23)20BK1 (a)	Electric Heater, 20kW, Breaker, 24V Control, 1 Ph	21.0 -in., 23.5 -in.
BAYEA(CC/33)25BK1 (a)	Electric Heater, 25kW, Breaker, 24V Control, 1 Ph	23.5 -in.
BAYSUPFLGAA	Supply Duct Flange 17.5 -in.	17.5 -in.
BAYSUPFLGBA	Supply Duct Flange 21.0 -in.	21.0 -in.
BAYSUPFLGCA	Supply Duct Flange 23.5 -in.	23.5 -in.
BAYRETFLGAA	Return Duct Flange 17.5 -in.	17.5 -in.
BAYRETFLGBA	Return Duct Flange 21.0 -in.	21.0 -in.
BAYRETFLGCA	Return Duct Flange 23.5 -in.	23.5 -in.
BAYSRKIT100A	Side Return Kit	17.5 -in., 21.0 -in., 23.5 -in.
BAYFLR1620A	High Velocity Filter Kit, 16 -in. X 20 -in. X 1 -in. (10 filters)	17.5 -in.
BAYFLR2020A	High Velocity Filter Kit, 20 -in. X 20 -in. X 1 -in. (10 filters)	21.0 -in.
BAYFLR2220A	High Velocity Filter Kit, 22 -in. X 20 -in. X 1 -in. (10 filters)	23.5 -in.
TASB175SB (b) (c)	Plenum Stand with Integrated Sound Baffle 17.5 -in.	17.5 -in.
TASB215SB	Plenum Stand with Integrated Sound Baffle 21.0 -in.	21.0 -in.
TASB235SB	Plenum Stand with Integrated Sound Baffle 23.5 -in.	23.5 -in.
BAYFRKIT175	Front Return Kit for 17.5 -in. Cabinet	17.5 -in.
BAYFRKIT210	Front Return Kit for 21.0 -in. Cabinet	21.0 -in.
BAYFRKIT235	Front Return Kit for 23.5 -in. Cabinet	23.5 -in.
TAYBASETAMA	Downflow Sub-Base Kit	17.5 -in., 21.0 -in., 23.5 -in.
BAYBAFKT175 ^(d) Sound Baffle Kit for 17.5 -in. Cabinet		17.5 -in.
BAYBAFKT215 ^(d)	Sound Baffle Kit for 21.0 -in. Cabinet	21.0 -in.
BAYBAFKT235 (d)	Sound Baffle Kit for 23.5 -in. Cabinet	23.5 -in.
TASSBK175 (b)(e) (f) Sound Baffle Kit for 17.5 -in. Cabinet		17.5 -in.
TASSBK215 (b)(e)(f)	Sound Baffle Kit for 21.0 -in. Cabinet	21.0 -in.

Accessory Number	Description	Fits Cabinet Size
TASSBK235 (b)(e)(f)	Sound Baffle Kit for 23.5 -in. Cabinet	23.5 -in.
BAYICSKIT01A Internal Condensate Switch Kit		17.5 -in., 21.0 -in., 23.5 -in.
BAYHHKIT001A	AYHHKIT001A Horizontal Hanger Kit	
BAYUVCLK001A	UVCLK001A UVC Lights	
BAYLVKIT100A	Low Voltage Conduit Entry Kit	17.5 -in., 21.0 -in., 23.5 -in.
BAYSPEKT200A	Single Point Power Entry Kit	21.0 -in., 23.5 -in.
BAYWA(AA/17)05SC1AA (a)	Hydronic heater, 17.5 -in. cabinet, no control, slide-in	17.5 -in.
BAYWA(BB/21)07SC1AA (a)	Hydronic heater, 21.0 -in. cabinet, no control, slide-in	21.0 -in.
BAYWA(CC/23)08SC1AA (a)	Hydronic heater, 23.5 -in. cabinet, no control, slide-in	23.5 -in.
BAYWA(CC/23)11SC1AA (a)	Hydronic heater, 23.5 -in. cabinet, no control, external	23.5 -in.
BAYWACNTKT05	Relay Kit for use with BAYWAAA05SC1A	17.5 -in.
BAYWACNTKT07	Relay Kit for use with BAYWABB07SC1A	21.0 -in.
BAYWACNTKT08	Relay Kit for use with BAYWACC08SC1A	23.5 -in.
BAYWACNTKT11	Relay Kit for use with BAYWACC11SC1A	23.5 -in.
BAYINSKT175A	Solcoustic® Liner Kit - 17.5 -in. Cabinet	17.5 -in.
BAYINSKT215A	Solcoustic® Liner Kit - 21.5 -in. Cabinet	21.0 -in.
BAYINSKT235A	Solcoustic® Liner Kit - 23.5 -in. Cabinet	23.5 -in.
BAYCNDPIP01A	3/4 -in. PVC Threaded Pipe Kit Foam Seal (10 per box)	17.5 -in., 21.0 -in., 23.5 -in.
BAYSENSC360	Supply Air Temperature Sensor	17.5 -in., 21.0 -in., 23.5 -in.

Table 7. Optional accessories (continued)

^(a) Model number may have either of the pairs of characters in parenthesis.

(b) Contact your distributor for information.

(c) In open air applications, the plenum stand with sound baffle provides sound reduction.

^(d) Mounts inside air handler filter channel.

(e) In return plenum applications, use TASSBK for sound reduction.

(f) Mounts to TASB original plenum stand without integrated baffle.

Optional Cabinet Disassembly

Notes:

 If the unit must be transported in a horizontal position, it must be laid on its back (marked "REAR" on carton). To reassemble cabinet, follow the steps in reverse order. Ensure electrical connections are secure and the plug clips are engaged.

6. Disconnect wires to the EEV motor and sensors. Cut the wire ties on those wire harnesses if necessary and replace after re-installing.

Note: If cut, wire ties that held the sensor must be replaced after the coil is placed back into the cabinet.

11. Continue preparation by following the proper carrying procedures shown in the next section.

Placing Unit at Location

A WARNING

RISK OF FIRE!

The following requirements apply to the room where the air handler is installed:

• All combustion appliances located in the same room that have continuous pilot lights are equipped with an effective flame arrest.

• All indoor field-made joints of the field piping have been checked for refrigerant leaks after charging using an electronic leak detector calibrated for R-454B having a sensitivity of 5 grams per year or better.

• The room is constructed to ensure that should any refrigerant leak it will not stagnate and create a fire hazard.

1. Carry the unit to the installation location

2. Reassembly by reversing the steps listed in Section 4 if disassembly was required. If cut, wire ties that held the sensor wiring must be replaced.

Important: Under no conditions should metal strapping be attached to the unit to be used as support mechanisms for carrying or suspension purposes.

Approved Carrying:

• Hold by the cross members within the cabinet or unit top plate and use as handles for lifting and carrying the coil and blower sections.

Four-Way Conversion

To place the unit in the configuration your application requires (upflow, downflow, horizontal right, or horizontal left), simply turn the unit to that orientation. Remember to adjust the badge and the A2L sensor accordingly. Notes: • The air handlers are shipped from the factory suitable for four-way application. Entry for low voltage connections is allowed on either side of cabinet. . Heatter 🕈 ৾ Refrigerant HEATER Connections Dowflow Configuration Ø ۲ Airflow \bigcirc MOTENIN ₽ ₽ ۲ ৾ ø ILOWIER 1070.G COLLO Ocoll 0 ÍO 0 0 OCOLL 8 Upflow Condensate Drains ھى 0 BLOWER / FILTER 0 10 () û û AIRFLOW ۲ ⊚ Refrigerant HEATER Connections © HEATER Airflow Downflow ⊙_ĝ Condensate Drains **Upflow Configuration**

Horizontal sensor relocation:

 Note: The A2L sensor does not need to be relocated for upflow applications. It comes installed from the factory in the upflow position. 1. Remove the coil panel and locate the A2L sensor on the upflow drain pan. 	A2L Sensor
 Remove the A2L sensor from the drain pan by pulling directly up. 	
 3. Clip the sensor onto the blower deck just in front of the roto latch. For horizontal right applications, clip the sensor on the right side of the unit. For horizontal left applications, clip the sensor on the left side of the unit. Note: If the blower needs to be removed after this point, the A2L sensor will need to be removed and set aside before the blower is removed. 	A2L Sensor

Downflow sensor relocation:

 Note: To avoid damaging the refrigerant sensor, sensor should be relocated only after field braze joints have been completed. 4. Remove the coil panel and the line set panel. Locate the A2L sensor on the upflow drain pan. 	A2L Sensor
 Remove the A2L sensor from the drain pan by pulling directly up. 	
 Remove the A2L sensor from the metal bracket by removing the plastic push pins. Keep the push pins as they will be used later. 	

-		
7.	Locate the downflow sensor bracket in the Documentation package.	
8.	Secure the A2L sensor to the downflow bracket using the push pins.	
9.	Place the tab of the downflow bracket into the slot on the coil	
10	Support. Unbundle refrigerant sensor harness. Neatly route across front of coil using field-supplied wire ties. Connect harness to refrigerant sensor.	A2L Sensor

Ducted and Non-Ducted Return Applications

Table 8. Non-Ducted applications

Table 9. Ducted return installations

Setting the Unit — Vertical Installation

Table 10. Considerations

Table 12. Plenum installation

Table 13. Downflow installation

Setting the Unit — Horizontal Installations

Table 14. Considerations

Imp	orta	 <i>nt:</i> Due to the unique design of this unit, which allows the electrical wiring to be routed within the insulation, do not screw, cut, or otherwise puncture the unit cabinet in any location other than the ones illustrated in this Installer Guide or in an approved accessory's Installer Guide. Make certain that the unit has been installed in a level position to ensure proper draining. Under no conditions should metal strapping be attached to 	Field Supplied Isolators
1.	Sup	the unit to be used as support mechanisms for carrying or suspension purposes.	
	a.	Approved bottom support methods are rail, u-channels (Unistrut ®), or other load bearing materials.	
	b.	The unit must be isolated carefully to prevent sound transmission. Field supplied vibration isolators are recommended.	
Imp	orta	nt: The unit can only be supported from the bottom unless using kit BAYHHKIT001A. Do not drill or screw supports into any area of the cabinet.	
Not	e: D	o not allow the unit to be used as strain relief.	Auxiliary DrainBottom SupportPanNear Both Ends
2.	Inst pos	all an auxiliary drain pan under the horizontal air handler to prevent sible damage to ceilings.	Note: BAYHHKIT001A Hanging Bracket Kit may be ordered separately.
	a.	Isolate the auxiliary drain pan from the unit and from the structure.	
	b.	Connect the auxiliary drain pan to a separate drain line and terminate according to local codes.	Important: The BAYHHKIT001A may not be used if the cabinet has been altered per Installer Guide 18–GJ58D1–1

Connecting the Duct work

Table 15. Duct connection considerations

Important: Due to the unique design of this unit, which allows the electrical wiring to be routed within the insulation, do not screw, cut, or otherwise puncture the unit cabinet in any location other than the ones illustrated in this Installer Guide or in an approved accessory's Installer Guide. Important: Under no conditions should metal strapping be attached to the unit to be used as support mechanisms for carrying or suspension purposes. Important: On units with sheet metal returns: Return air plenum must be flanged. Sheet metal drill point screws must be 1/2 -in. in length or shorter. The supply and return air ducts must be connected to the unit with non flammable duct connectors. See the Outline drawing for sizes of the duct connections. . After the ducts are secured, seal around the supply and return ducts to prevent air leakage. Insulate all duct work that will be outside of conditioned spaces. Convertible Duct Flange Kits are available to connect the supply plenum or for mounting on the discharge opening to provide a "flush fit" for 1-1/2 -in. duct board applications. If front or rear return is required, the air handler must be elevated --placed on a pedestal or plenum and duct must be connected to this pedestal or plenum. If side return is required, the Side Return Kit # BAYSRKIT100A accessory 3/4" must be used. A remote filter will be required. To ensure maximum efficiency and system performance, the existing supply and return duct system static pressures must not exceed the total available static pressure of the air handler. Reference ACCA Manual D, Manual S and Manual RS for additional information. Notes: Side return is not approved without Side Return Kit # BAYSRKIT100. More than one Side Return Kit may be necessary depending on the application. See the Installation Guide in BAYSRKIT100 for approved duct connections, sizing, number, transitions, and accessory application. 6 Duct work must be supported as appropriate. See National and local codes for guidelines. Do not depend on the unit to support duct work. 0

Refrigerant Line

Table 16. Refrigerant line connection sizes

Model	Vapor Line Connection	Liquid Line Connection
5TAMXB02AV21DA	3/4	3/8
5TAMXC03AV31DA	3/4	3/8
5TAMXD04AV31DA	7/8	3/8
5TAMXD05AV41DA	7/8	3/8
5TAMXD06AV41DA	7/8	3/8
5TAMXD07AV51DA	7/8	3/8

Notes:

- 1. This table indicates the tubing connection diameters at the indoor coil. A field supplied reducing coupling may be required.
- 2. All AHRI listed systems are tested with 25 feet of refrigeration tubing; the rated tubing diameters are located in the electronic performance data system.
- 3. If the refrigeration lines exceed 60 feet in linear length and/or if alternate size refrigeration tubing is present at the job, please consult SS-APG006–EN or 32–3312** (latest version)

Refrigerant System Layout

Figure 7. Refrigerant system layout

Saturation Temperature Sensor (Yellow Wires), if equipped

- Located on 3/8" aluminum distributor tube (orange wires)

AHR-SVX007A-EN

Refrigerant Line Brazing

Table 17. Braze the refrigerant lines

Refrigerant Line Brazing

Condensate Drain Piping

Condensate Drain Piping Considerations

- Condensate drain plumbing must comply with national, state, and local codes.
- Route condensate drain lines away from air handler so they do not interfere with access panels.
- Slope the drain lines downward a minimum of 1/4 -in. per foot, support per local codes.
- Do not use reducing fittings in the condensate drain lines.

Connect Condensate Drain Piping

Notes:

- Downflow and horizontal orientations require the Coil panel to be removed in order to make the drain connections.
- Make certain that the unit has been installed in a level position to allow for proper draining.
- 1. Select the drain connections that are oriented for your application.
- 2. Prepare the condensate drain connections.
 - From the factory, the unit comes with plugs in both upflow condensate drains and an additional plug in the documentation packet.
 - For upflow applications, remove upflow condensate plug(s) and connect condensate piping.
 - c. For all other applications, do not remove upflow condensate plugs. Remove the cover from the needed condensate drain connections and connect condensate piping.
 - d. If the secondary condensate opening is not used, plug the condensate opening with the fitting supplied in the documentation pack. Use scissors to cut the air seal in half and re-install over the unused opening.

- Do not use a torch or flame near the plastic drain pan coupling.
- A P-trap is not required for proper drainage due to the positive pressure of the air handler; however, it is recommended to prevent efficiency loss of conditioned air.

Note: A small amount of sealant must be applied around the drain line(s) passing through the panel to prevent air leakage and possible water drips.

- Dry fit and test clearance for coil panel removal before applying PVC/ CPVC cement.
- Use Teflon tape on the air handler drain line connections. Do not use pipe joint compound or PVC/CPVC cement on drain nipple.
- Hand tighten the drain pipe.
- For upflow installations, connect 3/4 -in. PVC pipe to the threaded drain nipple with PVC/CPVC cement. 3 -in. minimum clearance to the condensate piping is needed for coil panel removal. Thread the assembly into the primary drain connection (repeat for the secondary drain connection if used).
 - a. Remove panel and insert the 3/4 -in. nipples.
 - b. Reinstall the panel.
 - c. Connect the condensate lines to the nipples.
- Important: For Horizontal and Downflow installations, the following order must be observed:
- **Note:** A small amount of sealant must be applied around the drain line(s) passing through the panel to prevent air leakage and possible water drips.

 Insulate the primary drain line to prevent sweating where dew point temperatures may be met. (Optional depending on climate and application needs).

Provide a means of drainage to prevent winter freeze-up of condensate line (Optional depending on climate and application needs).

6. Support the condensate piping outside the unit per local codes for proper drainage and to prevent sagging.

Allow 1/4 -in. of downward slope for each foot of pipe.

Note: If using downflow or horizontal drain lines, A2L sensor is required to be relocated. See "Four-Way Conversion," p. 29 for more details.

Electrical — High Voltage

Table 18. High voltage power supply

The high voltage power supply must match the equipment nameplate.

Power wiring, including ground wiring must comply with national, sate, and local codes.

Field wiring diagrams for supplementary electric heaters are shipped with the heaters.

To allow disconnection of the air handler from the power supply, a disconnection from the supply mains having a contact separation in all poles must be incorporated into the fixed wiring in accordance with national, state, and local codes.

A WARNING

Live Electrical Components!

Failure to follow all electrical safety precautions when exposed to live electrical components could result in death or serious injury.

When it is necessary to work with live electrical components, have a qualified licensed electrician or other individual who has been properly trained in handling live electrical components perform these tasks.

Table 19. Make electrical connections

- 1. Route High Voltage wiring to unit.
- Select a conduit entry point. Drill a hole for the desired conduit size up to 1–1/2 -in. diameter. A locating target is identified on these units.
 - a. Select the entry point you will use to bring in your high voltage wiring.

Note: When drilling access through cabinet do not drill into any internal components. Remove internal components before drilling through cabinet, if possible. Damage to the air handler or heater could result.

3. Route conduit (if used) to the entry point and connect.

- a. Use one hand to secure the conduit nut from inside of the heater compartment.
- b. Connect a field supplied 3/4 -in. or 1–1/2 -in. conduit to conduit nut.

Note: Reducing bushings may be required for your application.

Electrical — Low Voltage

5TAMX can be used in either Link Communicating mode or 24 volt mode. In Link Communicating mode, all configurations are made by using the configuration menu in the User Interface (UX360) or from the Diagnostic Mobile

Table 20. Low voltage maximum wire length

App. In 24 volt mode, basic operation is configured from the factory with no defaults for accessories. All configurations for blower delays, accessories etc., need accomplished using the Diagnostic Mobile App.

The Low Voltage Maximum Wire Length table	Control Wire —	Communicating
length of the low voltage wiring from the outdoor	WIRE SIZE	MAX. WIRE LENGTH
unit, to the indoor unit, and to the thermostat.	18 AWG	500 FT. Combined
recommended to simplify connections	Control Wi	re — 24 Volt
the indoor unit.	WIRE SIZE	MAX. WIRE LENGTH
	18 AWG	100 FT. Combined

Table 21. Low voltage hook-up instructions

Table 22. Low-voltage wire routing

Table 22. Low-voltage wire routing (continued)

Table 23. Link communicating low voltage wire connectors

Link mode uses simple connectors for low voltage connections. These connections are color coded which makes the installation easier and quicker.											
Wire Colors											
R	Red										
DH	White										
DL	Green										
В	Blue										

Do the following to make the connections from the actual thermostat wire to the connector.

- Note: These connectors are necessary at the communicating outdoor unit, communicating indoor unit, distribution board(s), system controller and communicating accessories.
- Strip the Red, White, Green and Blue thermostat wires back 1/4 -in. 1.
- Insert the wires into the connector in the correctly colored locations. 2.
- 3. When you feel it release, allow each wire to slide in further.
- 4 Pull back on the wires individually and slightly and check if the wires are seated properly. If each wire does not pull out for all four wires, the connection is complete.
- Connectors are ONE TIME USE. If a 18 ga. Thermostat wire gets broken 5. off inside of the connector, the connector will need replaced.
- Wire colors are for illustration purposes only. If using a different color, 6. ensure it lands at the correct terminal throughout all of the communicating control wiring.

Connect the CAN connector into the male coupling on the low voltage harness at the Outdoor unit.

This air handler has two dedicated CAN Connector headers on the Air Handler Control (AHC) board. In Link communicating mode, both of them are in the communicating loop. It does not matter which one goes to the thermostat, System Controller, distribution board, outdoor unit or any other Link accessory.

Table 24. Get the APP:

hole.)

Table 25. External switches and accessories

Table 26. Accessory harness installation

Replacement AHC configuration – 24 volt mode

Replacement AHC boards need programmed and will not run without Method #1: configuration IN 24 Volt Mode. There are 2 ways to perform the configuration. 11:00 🐝 📽 🖬 Sal 47%≞ 1 of the methods is required to get the unit running. Combining 2 or more methods will result in unwanted operation. Climate Control General System Operation 1. The most complete configuration will be accomplished using the Diagnostics Mobile App. In this app, there are configurations for the model Model Number TAMX***36****** > number, blower delays and accessories. TAMX 24V 🥒 Serial Number 2. There is a Button Press method is to configure the size of the Air Handler OD Type HP > and is accomplished by pressing the S1 button on the bottom of the OD Capacity 3.00 > control board in a sequence explained in this document. OD Stages 2-1 > Only 1 of these methods should be used. Restore config settings Airflow Control Airflow Mode CFM) Continuous Fan Multiplier 35 . Cool CFM Per Ton 340 Cool Delay Profile Enhanced > Heat CFM Per Ton SHBOARD TEST MODES MONITOR Ш Ο

Button Press AHC Configuration Method: Method #2

Table 27. Configuration for replacement AHC

Replacement AHC will need to be configured for unit size. Airflow will be set at 400 cfm/ton based on unit size configuration. These configurations can be done through the Diagnostics Mobile App with no manual steps or can be done manually without the Diagnostics Mobile App Manual Program Unit Model Size **Red LED Status** Step Red LED will be off. 1 Hold BLE button for 5 seconds and release. 2 1 Red flash that indicates system is ready to program. 1 Red LED flash alerts user that it is now able to program. 3 If configuration is present, Red LED will flash based on the Red LED will be off if no configuration is present. configuration. 4 5 quick Red LED flashes. 5 quick Red LED flashes. 5 Start programming by clicking BLE button. 13 press - 5TAMXB02A 14 press - 5TAMXC03A 15 press - 5TAMXD04A 16 press - 5TAMXD05A 17 press - 5TAMXD06A 18 press - 5TAMXD07A Red LED will now flash the number of times you pressed to confirm 6 After the last button press, Red LED will flash 1 time to acknowledge programming. your configuration. If you programmed the wrong size, within 2 seconds, start step 5 over. 7 Red LED will announce successful programming. Red LED will turn on for 5 seconds announcing the configuration has been stored in NV memory correctly. Red LED will be on for only 2 seconds if not stored properly. Programming is complete.

Replacement AHC configuration — LINK Communicating Mode:

The system controller (SC360) will load important parameters in communicating mode and no interaction is necessary when replacing the AHC. IF the AHC and the System Controller (SC360) need replaced at the same time- contact your local FSR or technical support agent.

Product Specifications

Table 28. Product specifications - models 5TAMXB02A, 5TAMXC03A, and 5TAMXD04A

MODEL	5TAMXB02AV21DA	5TAMXC03AV31DA	5TAMXD04AV31DA			
Application Configuration	4-Way	4-Way	4-Way			
RATED CAPACITY RANGE (BTUH)	18K to 24K	18K to 30K	24K to 42K			
SYSTEM CONTROL TYPE	Link Communicating or 24V	Link Communicating or 24V	Link Communicating or 24V			
POWER CONN V/PH/HZ	208-230/1/60	208-230/1/60	208-230/1/60			
Max Breaker Size, Without Electric Heater (Amps)	15	15	15			
Max Breaker Size, With Electric Heater (Amps) (a) (b)	60	60	60			
COIL TYPE	Epoxy Coated All-Aluminum Plate Fin	Epoxy Coated All-Aluminum Plate Fin	Epoxy Coated All-Aluminum Plate Fin			
Refrigerant Type	R-454B	R-454B	R-454B			
Refrigerant Control	EEV	EEV	EEV			
Refrigerant Line Connection - Gas (in.)	3/4	3/4	7/8			
Refrigerant Line Connection - Liquid (in.)	3/8	3/8	3/8			
BLOWER TYPE	Direct Drive Centrifugal	Direct Drive Centrifugal	Direct Drive Centrifugal			
Configuration	Blow Through	Blow Through	Blow Through			
Dimensions (Diameter x Width (in.))	11 x 8	11 x 10	11 x 10			
Motor Type	Variable Speed	Variable Speed	Variable Speed			
Nominal CFM (c)	800	1000	1200			
Speed (RPM)	1050	1050	1050			
Volts/Ph/Hz	208-230/1/60	208-230/1/60	208-230/1/60			
Full Load Amps	3.9	3.9	3.9			
FILTER RACK (YES, NO)	Yes	Yes	Yes			
Dimensions (Length x Width (in.))	16 x 20 x 1	20 x 20 x 1	22 x 20 x 1			
DUCT CONNECTIONS	L x W	LxW	LxW			
Supply (in.)	14.5 x 14.35	18.4 x 14.35	20.5 x 14.35			
Return (in.)	14.5 x 17.15	18.4 x 17.15	20.5 x 17.15			
DRAIN CONN. SIZE (IN.)	3/4 NPT	3/4 NPT	3/4 NPT			
DIMENSIONS	H x W x D	H x W x D	H x W x D			
Uncrated (in.)	49-7/8 x 17-1/2 x 21-3/4	55-3/4 x 21-1/4 x 21-3/4	56-7/8 x 23-1/2 x 21-3/4			
Crated (in.)	51-3/8 x 20-1/2 x 25-3/4	57-1/4 x 24-1/4 x 25-3/4	58-1/2 x 27-1/2 x 25-3/4			
WEIGHT - SHIPPING/NET (LBS.)	126/120	150/142	163/153			

(a) Maximum overcurrent protection is dependent on electric heater. See Installation, Operation, and Maintenance manual or unit name plate.

(b) If installing system outside of the United States, accessory electric heaters may not be installed.

(c) For CFM versus external static pressure (in. w.c.), see Installation, Operation, and Maintenance manual.

MODEL	5TAMXD05AV41DA	5TAMXD06AV41DA	5TAMXD07AV51DA
Application Configuration	4-Way	4-Way	4-Way
RATED CAPACITY RANGE (BTUH)	36K - 48K	42K - 60K	42K - 60K
SYSTEM CONTROL TYPE	Link Communicating or 24V	Link Communicating or 24V	Link Communicating or 24V
POWER CONN V/PH/HZ	208-230/1/60	208-230/1/60	208-230/1/60
Max Breaker Size, Without Electric Heater (Amps)	15	15	15
Max Breaker Size, With Electric Heater (Amps) (a) (b)	60	60	60
COIL TYPE	Epoxy Coated All-Aluminum Plate Fin	Epoxy Coated All-Aluminum Plate Fin	Epoxy Coated All-Aluminum Plate Fin
Refrigerant Type	R-454B	R-454B	R-454B
Refrigerant Control	EEV	EEV	EEV
Refrigerant Line Connection - Gas (in.)	7/8	7/8	7/8
Refrigerant Line Connection - Liquid (in.)	3/8	3/8	3/8
BLOWER TYPE	Direct Drive Centrifugal	Direct Drive Centrifugal	Direct Drive Centrifugal
Configuration	Blow Through	Blow Through	Blow Through
Dimensions (Diameter x Width (in.))	11 x 10	11 x 10	11 x 10
Motor Type	Variable Speed	Variable Speed	Variable Speed
Nominal CFM (c)	1400	1600	2000
Speed (RPM)	1050	1050	1050
Volts/Ph/Hz	208-230/1/60	208-230/1/60	208-230/1/60
Full Load Amps	3.9	5.7	6.9
FILTER RACK (YES, NO)	Yes	Yes	Yes
Dimensions (Length x Width (in.))	22 x 20 x 1	22 x 20 x 1	22 x 20 x 1
DUCT CONNECTIONS	L x W	L x W	L x W
Supply (in.)	20.5 x 14.35	20.5 x 14.35	20.5 x 14.35
Return (in.)	20.5 x 17.15	20.5 x 17.15	20.5 x 17.15
DRAIN CONN. SIZE (IN.)	3/4 NPT	3/4 NPT	3/4 NPT
DIMENSIONS	H x W x D	H x W x D	H x W x D
Uncrated (in.)	61-3/4 x 23-1/2 x 21-3/4	61-3/4 x 23-1/2 x 21-3/4	61-3/4 x 23-1/2 x 21-3/4
Crated (in.)	63-1/4 x 27-1/2 x 25-3/4	63-1/4 x 27-1/2 x 25-3/4	63-1/4 x 27-1/2 x 25-3/4
WEIGHT - SHIPPING/NET (LBS.)	174/164	176/166	180/170

Table 29. Product specifications - models 5TAMXD05A, 5TAMXD06A, and 5TAMXD07A

(a) Maximum overcurrent protection is dependent on electric heater. See Installation, Operation, and Maintenance manual or unit name plate.

(b) If installing system outside of the United States, accessory electric heaters may not be installed.

(c) For CFM versus external static pressure (in. w.c.), see Installation, Operation, and Maintenance manual.

Airflow Performance Tables

Table 30. Airflow performance - model 5TAMXB02AV21DA

5TAMXB02AV21DA airflow performance constant CFM mode / constant torque mode														
Outdoor	Cooling	Airflow	Exterr	nal static p	ressure	(constant C	CFM /	Heating	Airflow	External static pressure				
multiplier	airflow	nowor		cons	stant tore	que)		airflow	nowor		LAterna	ai static j	JIE55U	16
(tons)	setting	power	0.1	0.3	0.5	0.7	0.9	setting	power	0.1	0.3	0.5	0.7	0.9
	290	CFM	407 / 546	430 / 403	398 / N/	A 347 / NA	255 / NA	290	CFM	416	426	401	330	291
	CFM/ton	Watts	22 / 40	51/48	77 / NA	103 / NA	133 / NA	CFM/ton	Watts	22	49	76	101	134
	350	CFM	534 / 630	549 / 531	542 /36	0 509 / NA	445 / NA	350	CFM	532	550	542	507	434
1.5 tons	CFM/ton	Watts	39/57	71/68	103/73	3 132 / NA	156/ NA	CFM/ton	Watts	37	69	101	129	152
	400	CEM	617/697	633/61/	632/50	1 604 / NA	559/NA	400	CEM	660	680	679	658	614
	CFIVI/ton	VVatts	54/72	90/80	707 /60	0 150/NA	181/NA		VVatts	600	99 710	700	600	197
	450 CEM/ton	Watte	72/01	111 / 106	1/10//00	2 000/4/0	049/INA 212/NA	450 CEM/ton	Watte	60	108	109	180	208
	290	CEM	593/680	613/595	607 /47	583/208	527/132	290	CEM	593	613	608	582	527
	CFM/ton	Watts	54 / 68	85/81	119/90	150 / 94	175 / 138	CFM/ton	Watts	48	82	116	147	172
	350	CFM	717 / 783	733/717	733 /63	2 714/519	678/355	350	CFM	714	734	734	716	679
0.44444	CFM/ton	Watts	79/98	118 / 114	157 /12	7 192 / 136	222/143	CFM/ton	Watts	75	115	153	189	218
2 tons T	400 †	CFM	810/868	827/811	827 /74	0 813/652	782/543	400 (a)	CFM	862	881	884	874	849
	CFM/ton	Watts	108 / 128	152 / 146	194 / 16	1 233 / 173	265/182	CFM/ton	Watts	122	168	213	254	290
	450	CFM	903 / 954	918 / 902	920 /83	9 909/764	884 / 674	450	CFM	899	917	921	912	889
	CFM/ton	Watts	144 / 165	192 / 182	238 /20	1 280/215	316 / 224	CFM/ton	Watts	136	184	231	273	310
	290	CFM	741 / 820	757 / 759	757 / 68	1 739/582	705 / 452	290	CFM	738	757	758	742	707
	CFM/ton	Watts	86 / 110	126 / 127	166 /14	1 202 / 152	232 / 159	CFM/ton	Watts	81	122	162	198	229
	350	CFM	880 / 947	896 / 895	896 / 83	2 885/757	859 / 665	350	CFM	876	895	898	888	864
	CFM/ton	Watts	134 / 162	182 / 181	226 / 19	8 267 / 211	302 / 221	CFM/ton	Watts	127	174	220	261	297
2.5 tons	400	CEM	996 /1059	1011 /	1014 / 9	1006 /	985 / 807	400	CEM	1064	1083	1089	1084	1066
2.0 10110	CFM/ton	Watts	188/220	1011	291/25	7 887	375 / 280	CFM/ton	Watts	215	272	326	375	418
	0	mano		241/240		336/271		0				020	0.0	
	450	450 CFM	1120 / 1180	1135/	11377	11297	1108 /	450	CFM	1115	1133	1139	1133	1116
	CFM/ton W	Watts	260 / 297	1134	1081	1019	946	CFM/ton	Watts	244	304	360	410	453
	200		075/040	319/31/	3/3/33	4 422/34/	463/355	200		074	000	004	000	050
	290 CEM/top		0/0/940	091/091	092/09	1 000/751	200 / 210	290 CEM/top		0/1	090 170	094	000 250	009
	CFIW/1011	vvalls	1327100	1060/	1063/	1055/	1035 /	CFIVI/LOIT	vvalls	120	172	217	209	295
	350	CFM	1045 / 1106	1050	10037	030	862	350	CFM	1040	1058	1064	1059	1041
	CFM/ton	Watts	215/248	270/268	321/28	5 369 / 299	409/308	CFM/ton	Watts	202	257	310	358	401
3 tons				1212/	1212/	1200 /	1129/							
0 10113	400	CFM	1200 / 1257	1211	1159	1099	1030	400	CFM	1291	1302	1300	1220	1138
	CFM/ton	Watts	315 / 354	376/374	432/39	0 480 / 402	481 / 409	CFM/ton	Watts	368	432	487	478	470
		0514		1333 /	1256 /	1177/	1095/		0514		40.00	4000	1000	
	450	CFM	1358 / 1403	1359	1308	1251	1187	450	CFM	1355	1360	1286	1208	1128
	CFM/ton	Watts	447/484	482 / 502	472/51	7 466 / 527	460 / 531	CFM/ton	Watts	422	483	476	468	462
 + Factory Setting Status LED will blink once per 100 CFM requested. In torque mode, actual airflow may be lower - Torque mode will reduce airflow when static is above approxima water column. - All heating modes default to Constant CFM. 										nately 0.3"				
					241/240	Minimum	Heating							
	DAY			STANIXBU	ZAVZID	- wiinimum	neating /	AITHOW S	eungs			1		
MODEL NO.	BAY BAY BAY BAY	EA(13/AC EA(13/AC EA(13/AC EA(13/AC)04BK1)04LG1 B/)05BK1 B/)05LG1	BAYEA(13/AC)08BK1 BAYEA(13/AC)10BK1 BAYEA(13/AC)08LG1 BAYEA(13/AC)10LG1			BAYEA(13/AC)10LG3		_G3 B	AYEA(23/ C)15BK1	BAYEA BC)15L	(23/ BA G3	YEA(23/BC) 20BK1	
5TAMXB02AV2	21-	639/713	2	630/000 675/000			00	600/713				_		
DA 638/713 639/900 675/90							00	6	00//13					_
Without heat pump / with heat pump — see air handler nameplate for approved combin									combinat	tions				

(a) Factory heating default setting is 430 CFM/ton

	5TAMXC03AV31DA airflow performance constant CFM mode / constant torque mode													
Outdoor	Cooling	Air-	Exter	nal static	pressure	(constan	t CFM /	CFM / Heating Airflow External static			static pre	ssure		
multiplier	airflow	flow		CO	nstant tor	que)	-	airflow	power		External			
(tons)	setting	power	0.1	0.3	0.5	0.7	0.9	setting		0.1	0.3	0.5	0.7	0.9
	290	CFM	492 / 581	442/397	408 / NA	353 / NA	221 / NA	290	CFM	485	437	393	349	300
	350	CEM	22/30	45/41	71/ NA 527 / NA	98 / NA	129 / NA 472 / NA	250	CEM	574	44 545	69 517	97	130
	CEM/ton	Watts	30/40	58/54	87 / NA	493 / ΝΑ 117 / ΝΔ	150 / NA	CEM/ton	Watts	29	56	85	115	146
1.5 tons	400	CFM	644 / 730	633 / 598	612/403	590 / NA	563 / NA	400	CFM	643	624	605	583	559
	CFM/ton	Watts	38/49	70/65	102/72	134 / NA	167 / NA	CFM/ton	Watts	37	67	99	132	165
	450	CFM	711 / 794	708 / 673	691 / 510	678 / NA	656 / NA	450	CFM	709	698	684	669	649
	CFM/ton	Watts	47 / 60	83 / 77	118 / 86	154 / NA	189 / NA	CFM/ton	Watts	45	80	115	151	186
	290	CFM	627 / 713	611 / 576	589/369	568 / NA	542 / NA	290	CFM	625	603	582	559	533
	CFM/ton	Watts	36/4/	66/62	98/68	130 / NA	163 / NA	CFM/ton	Watts	35	64 722	95 710	127	160
	CEM/top	Watte	51/6/	130/090	124/01	161 / NA	107 / NA	S50 CEM/ton		/31	84	120	090	103
2 tons †	400 +	CEM	822 / 898	824 / 792	817/657	811 / NA	797 / NA	400 (a)	CFM	817	815	811	801	788
	CFM/ton	Watts	66 / 81	107 / 101	149/112	191 / NA	231 / NA	CFM/ton	Watts	63	103	145	186	226
	450	CFM	910 / 982	916 / 884	916 / 763	914 / 610	904 / NA	450	CFM	902	907	908	904	895
	CFM/ton	Watts	85 / 102	131 / 123	178 / 136	226 / 140	270 / NA	CFM/ton	Watts	80	126	172	219	263
	290	CFM	755 / 860	753 / 749	742 / 606	732 / 397	712 / NA	290	CFM	753	745	735	723	706
	CFM/ton	Watts	54/73	92 / 91	130 / 102	168 / 104	205 / NA	CFM/ton	Watts	52	88	126	164	201
	350	CFM	887 / 985	893 / 887	891/767	888/614	876 / NA	350	CFM	881	884	884	879	868
	CFIM/ton	vvatts	80/102	125/124	1017/	217/141	260 / NA	CFIVI/ton	vvatts	75	120	165	210	253
2.5 tons	400	CFM	1094	10107	895	765	1008 / NA	400	CFM	989	1001	1008	1008	1000
	CFM/ton	Watts	107 / 134	160 / 158	213/173	266 / 179	315 / NA	CFM/ton	Watts	100	152	205	257	306
	450	0514	1116/	1135 /	1147 /	1148 /	4404 (114	450	0514	4404	4404	4400	4400	4400
	450 CEM/top		1212	1126	1027	911	1134 / NA	450 CEM/ton		1104	1124	1136	1139	1128
	CFIM/LOIT	vvalls	143 / 176	205 / 201	267/219	325 / 227	3707 NA	CFINI/LOI	vvalls	155	194	200	314	300
	290	CFM	883 / 981	888 / 882	887 / 762	881 / 608	870 / NA	290	CFM	877	880	879	874	863
	CFM/ton	Watts	79/101	124 / 122	169 / 136	214 / 140	257 / NA	CFM/ton	Watts	74	118	164	208	252
	350	CFM	10437	1059/	1068 /	1069/	1059 / NA	350	CFM	1034	1049	1058	1061	1053
	CFM/ton	Watts	120 / 150	1051	947 233 / 190	023 288 / 197	339 / NA	CFM/ton	Watts	112	168	224	279	330
3 tons			1190 /	1214 /	1226/	1223/								
0 10110	400	CFM	1304	1221	1126	1016	1201 / 886	400	CFM	1177	1201	1215	1215	1198
	CFM/ton	Watts	170 / 203	238 / 231	304 / 251	364 / 261	414 / 261	CFM/ton	Watts	157	224	291	352	403
	450	CEM	1355 /	1376 /	1375 /	1353 /	1296 /	450	CEM	1339	1363	1368	1350	1314
	CEM/ton	Watts	1471	1391	1302	1201	1086	CEM/ton	Watts	221	299	369	427	472
		Watto	241 / 282	318/311	386 / 333	441/345	472/345		watto	221	200	000	721	772
t Fastan O	- 44 ¹						Torque	e mode wi	Il reduce air	flow when	static is abo	ove approx	imately 0.38	5"
Tractory Se	etting will blink on	aa aar 1(mucated in	torque me	de estual	water	column.						
 Status LED airflow may 	will Dillik On	ce per n		quested. In	lorque mo	de, actual	 All heat 	ating mode	es default to	Constant	CFM.			
annow may	be lower.						 Coolin 	g airflow v	alues are v	with wet coil	, no filter			
				5TAM)	(C03AV31	DA Minin	num Heatin	ig Airflov	v Settings					
	BAYEA(13/AC)												
	04B	K1												
	BAYEA(13/AC)	BAYEA	A(13/AC)	BAYEA(1	3/AC)								
MODEL NO.	04L	G1	08	BK1	10BK	(1	BAYEA(13	B/AC)	BAYEA(23/I	BC)15BK1	BAYEA	(23/BC)	BAYEA(2	3/BC)
MODEL NO.	BAYEA(13/AC)	BAYEA	A(13/AC)	BAYEA(1	3/AC)	10LG	3	,	,	15L	G3	20BK	1
		N1 13/AC)	80	LGT	TULG	1								
		G1	1											
5TAMX-	7001	000	700	4000	705/14	200	000/00		705/1	000	0501	1405		
C03AV31DA	723/	808	723	/1020	/65/10	020	680/80	б	765/1	063	850/	1105	_	
				Without h	neat pump /	with heat	pump — see	air handl	er namepla	te				

Table 31. Airflow performance - model 5TAMXC03AV31DA

(a) Factory heating default setting is 430 CFM/ton

5TAMXD04AV31DA Airflow performance constant CFM mode / constant torque mode														
Outdoor multiplier	Cooling airflow	Airflow	Exter	nal static co	pressui nstant to	re (constan orque)	t CFM /	Heating airflow	Air- flow		Exter	nal static pr	essure	
(tons)	setting	power	0.1	0.3	0.5	0.7	0.9	setting	power	0.1	0.3	0.5	0.7	0.9
	290	CFM	605/747	573 / 565	553/30	6 548 / NA	546 / NA	290	CFM	606	574	557	551	549
	CFM/ton	Watts	31/48	59 / 58	88 / 62	120 / NA	153 / NA	CFM/ton	Watts	31	58	87	119	152
	370	CFM	755 / 880	745 / 738	737 / 57	5 738/367	735 / NA	350	CFM	720	705	695	694	691
0.444	CFM/ton	Watts	50 / 70	85/85	121/93	3 160/97	197 / NA	CFM/ton	Watts	43	77	111	148	184
2 tons	400	CFM	810/929	804 / 797	800/65	0 802 / 478	802 / 231	400	CFM	810	805	800	803	802
	CFM/ton	Watts	58 / 80	97 / 96	136 / 10	6 176 / 111	216 / 120	CFM/ton	Watts	56	95	134	174	214
	450	CFM	900 / 1011	900 / 893	902 / 76	4 905 / 624	906 / 462	450	CFM	900	900	903	906	907
	CFM/ton	Watts	75 / 98	118 / 117	162/12	9 207 / 136	251 / 140	CFM/ton	Watts	72	115	159	204	248
	290	CFM	742 / 891	729 / 752	722 / 59	2 721 / 394	720 / NA	290	CFM	742	731	722	722	720
	CFM/ton	Watts	48/72	82/87	118/96	6 155/99	193 / NA	CFM/ton	Watts	46	81	117	154	191
	370	CFM	922 / 1055	923/942	927 / 82	0 930 / 690	931/546	350	CFM	877	877	876	880	880
	CFM/ton	Watts	80/109	124 / 128	170/14	2 215 / 150	260/154	CFM/ton	Watts	68	110	152	196	239
2.5 tons	400	CFM	989/1118	9957	1002/	1008 /	1010/652	400	CFM	989	995	1000	1008	1008
	CFM/ton	Watts	95/12/	1012	899	//9	290/1//	CFM/ton	Watts	90	139	188	258	285
	450	CEM	1102 /	143/148	193/16	3 242/1/3	1127/000	450		1100	1116	1107	1107	1120
	450 CEN//top		1037	1101	10297	001	1137 / 609	450 CEM/#ap	CFM	1102	1110	1127	200	1130
	CFIM/ION	walls	1220	101/105	1020	921	340/221	CFIM/ION	Watts	119	175	231	200	340
	200	CEM	872/102	871 / 800	230/20	1 874 / 620	874 / 457	200	CEM	871	872	871	874	875
	CEM/ton	Watts	70/97	111 / 116	154 / 12	8 197 / 135	240 / 139	CEM/ton	Watts	67	109	151	195	237
	370 +	CFM	1089/	1102/	1114/	1121/	1122 / 791	350	Wallo	1033	1043	1051	1059	1061
	CFM/ton	Watts	1214	1116	1013	905	339/215	CEM/ton	CFM	101	152	204	257	307
		Wallo	121/157	176 / 180	232 / 19	8 287 / 209	0007210		Watts	101	102	201	201	001
3 tons †	400	CFM	1175/	1193 /	1208 /	1215/	1211 / 899	400 (a)	0514	1171	1191	1205	1215	1212
	CFM/ton	Watts	1298	1205	1107	1006	382 / 251	CFM/ton	CFM	139	200	262	322	376
			147 / 188	208/212	270/23	1 329 / 244			vvatts					
	450	CFM	1329 /	1353 /	1366 /	1363 /	1343 /	450	CEM	1324	1349	1364	1364	1347
	CFM/ton	Watts	1447	1361	1270	1176	1077	CFM/ton		192	264	334	396	448
			204/ 253	276 / 279	345/29	9 406 / 313	456 / 321		Walls					
	290	CFM	1002 /	1009 /	1017 /	1023 /	1024 / 671	290	CEM	997	1010	1016	1022	1027
	CFM/ton	Watts	1131	1026	914	797	296 / 182	CFM/ton	Watts	92	143	197	248	293
			98 / 130	147 / 152	198 / 16	7 248 / 177			mano					
	370	CFM	1270 /	1293 /	1308 /	1311 /	1297 /	350	CFM	1196	1217	1231	1241	1234
	CFM/ton	Watts	1391	1302	1210	1113	1012	CFM/ton	Watts	146	210	272	334	387
3.5 tons	100	0514	181/227	249/252	316/27	2 377 / 286	429/293			1070			1000	1000
	400	CFM	1383 /	14077	1416/	1406 /	1380 / 1130	5 400	CFM	1379	1404	1415	1330	1390
	CFIVI/ton	vvatts	1499	1414	1325	1233	478/348	CFIM/ton	Watts	214	289	360	378	473
	450	CEM	1570/	1502/	1567/	1471/	1257/	450	-	1400	1500	1596	1504	1200
	450 CEM/top	Watte	1660	15037	15077	14/4/	13077	450 CEM/top	CFM	268	342	1000	1504	1390
	CFIVI/IOT	Walls	326/375	1007	164 / 42	3 175 / 137	168 / 111	CFIVI/IOH	Watts	200	342	400	4/0	472
			3207 373	402/402	404/42	5 4757 457	400/444							
• + Factory	Setting						 Torque 	e mode will	reduce a	irflow whe	n static is	above approx	imately (0.35" water
Status L E			100 CEM	aquastad	In torquo	modo	colum	n.						
 Status LE actual aid 	flow mov b	o lower	100 CFIVIT	equested.	Intorque	moue,	 All heat 	ating modes	s default	to Constan	t CFM.			
actuar air	Cooling airflow values are with wet coil, no filter													
5TAMXD04AV31DA Minimum Heating Airflow Settings														
	BAYEA(13/AC)04	BK1 B	AYEA(13/	AC)			-		•				
	BAYEA(13/AC)04	LG1	08BK1	.с, В/	AYEA(13/AC)10BK1 B	AYEA(13/A	C) E	AYEA(23/	BC)	BAYEA(23/B	C) BA	YEA(23/BC)
MODEL NO.	BAYEA(13/AC)05	BK1 B	AYEA(13/	AC) B	AYEA(13/AC)10LG1	10LG3	-/ -	15BK1	/	15LG3	-, _,	20BK1
	BAYEA(13/AC)05	LG1	08LG1	- /	· · ·	·							
5TAMX-	-	70/070		070/100		007/107		004/076		007/101		4000/1000		000/4 : : 0
D04AV31DA	8	76/979		876/1236	j	927/123	6	824/979		927/1288	3	1030/1339	1	1236/1442
				Withou	t heat pui	mp / with hea	at pump — s	see air hand	dler name	eplate			!	

Table 32. Air flow performance - model 5TAMXD04AV31DA

(a) Factory heating default setting is 420 CFM/ton

5TAMXD05AV41DA Airflow performance constant CFM mode / constant torque mode												ode		
Outdoor	Cooling	Air-	Exterr	nal static	pressure	(constant	CFM /	Heating	Air-		Extorn	al static n	rossuro	
multiplier	airflow	flow		con	stant tore	que)		airflow	flow		Extern			-
(tons)	setting	power	0.1	0.3	0.5	0.7	0.9	setting	power	0.1	0.3	0.5	0.7	0.9
	290	CFM	747 / 905	743/764	742 / 591	741/342	739 / NA	290	CFM	744	741	740	738	734
	CFM/ton	Watts	48/77	87/94	127 / 102	168 / 106	207 / NA	CFM/ton	Watts	51	90	130	170	209
	370		9377	942/956	946/823	947/655	944 / 458	350	CFM	889	892	894	894	890
	CFIVI/ton	walls	107Z 807118	1297 139	1/9/151	2277 155	2/3/155	CFIM/ION	Watts	70	123	109	215	259
2.5 tons	400	CEM	1006/	1014 /	1020/	1022/	1019/	400		1006	1016	1018	1019	1016
2.0 10110	CFM/ton	Watts	1136	1027	903	760	586	CFM/ton	CFM	103	156	209	160	308
			95/138	148 / 159	201/173	253 / 178	302 / 177		Watts					
	450	CFM	1122 /	1135 /	1143 /	1146 / 911	1142 /	450	CEM	1124	1135	1142	1144	1140
	CFM/ton	Watts	1247	1146	1035	303 / 224	768	CFM/ton	Watts	136	196	256	313	366
			125/176	185/200	245/216		357 / 223		Wallo					
	290	CFM	885 /	889/904	891 / 763	892 / 590	889/341	290	CFM	884	887	889	889	885
	CFIM/ton	vvatts	1020	116/125	163/136	209/139	254/143	CFIVI/ton	Watts	75	121	168	214	257
	370	CEM	1108 /	1120 /	1128 /	1131 /	1128 /	350		1053	1062	1067	1069	1066
	CFM/ton	Watts	1233	1132	1019	893	747	CFM/ton	CFM	115	171	227	280	330
	0	mano	121/171	181 / 195	240/210	297/218	350/217	0	Watts				200	
3 tons	400	CFM	1194 /	1208 /	1218/	1221 /	1215/	400	OFM	1196	1209	1218	1219	1212
	CFM/ton	Watts	1316	1220	1115	999	868	CFM/ton	UFIVI Watte	160	225	289	349	403
			147 / 204	212/229	276 / 246	337 / 255	393 / 256		walls					
	450	CFM	1343 /	1361/	1371/	1368 /	1352 /	450	CFM	1347	1363	1371	1366	1342
	CFM/ton	Watts	1463	1374	1279	1175	1061	CFM/ton	Watts	220	295	367	430	480
	200	CEM	200/272	1028/	348/320	413/331	469/334	200	-	1020	1028	1033	1173	1031
	CEM/ton	Watts	1149	10207	919	779	609	CEM/ton	CFM	1020	160	214	327	315
		vvalio	99/142	152 / 164	206 / 178	259 / 183	308 / 182		Watts	107	100	214	021	010
	370 †	CFM	1287 /	1304 /	1314 /	1315/	1304 /	350	0514	1220	1234	1243	1244	1236
	CFM/ton	Watts	1408	1317	1218	1110	981	CFM/ton		169	236	301	362	417
3.5 tons t			179/245	250 / 272	320 / 291	384 / 301	441 / 303		walls					
0.0 10110	400	CFM	1395 /	1413 /	1421 /	1415 /	1369 /	400 †	CEM	1440	1416	1421	1411	1355
	CFM/ton	Watts	1514	1427	1334	1233	1124	CFM/ton	Watts	244	322	395	458	475
	450	OLM.	221/299	300/328	3/4/348	440/361	480/364	450		1590	1500	1545	1424	1015
	450 CEM/ton	Watte	1504 /	1605	15/0/	14/4/	1326	450 CEM/ton	CFM	347	1092	1545	1434	1315
		vvalis	313/405	399/435	467 / 458	477 / 472	468 / 477		Watts	547	720	7/7	775	-00
	290	CFM	1156 /	1169 /	1178/	1181/	1174 /	290	0514	1157	1169	1177	1179	1174
	CFM/ton	Watts	1302	1205	1098	981	848	CFM/ton		147	209	271	330	383
			135 / 197	197 / 222	259 / 239	319/248	383 / 249		walls					
	370	CFM	1487 /	1500 /	1496 /	1445 /	1319/	350	CFM	1400	1416	1421	1411	1335
	CFM/ton	Watts	1618	1534	1445	1350	1248	CFM/ton	Watts	244	322	395	458	475
4 tons	400	CEM	288/359	369/389	441/411	481/425	4707429	400		1615	1615	1515	1421	1212
	400 CEM/ton	Watte	1010/	16/6	15437	14237	13017	400 CEM/ton	CFM	363	1015	1545	1431	462
		vvalis	363/433	443/464	475/475	472 / 472	463 / 463		Watts	505		7/7		402
	450	CFM	1711/	1621 /	1514 /	1393 /	1273/	450	0514	1716	1629	1528	1411	1297
	CFM/ton	Watts	1711	1621	1514	1393	1273	CFM/ton		430	453	462	458	452
			432 / 432	456 / 456	465 / 465	460 / 460	453 / 453		walls					
							 Torai 	ie mode wi	ll reduce	airflow wher	n static is a	above appro	oximatelv 0.	35" water
 † Factory 	Setting						colur	nn.						
 Status LE 	D will blink	once pe	er 100 CFM	requested	. In torque	mode,	All he	eating mode	es defau	It to Constan	t CFM.			
actual airf	low may b	e lower.					 Cooli 	ng airflow v	values a	re with wet co	oil, no filter			
				5TA	MXD05A	/41DA Mi	nimum He	ating Air	flow Se	ttings	,			
	BAYEA	A(13/AC)												
	04	BK1	·											
	BAYEA	A(13/AC)	BAY	EA(13/AC)										
	04	LG1	(08BK1	BAYEA	(13/AC)10	BK1 BA	YEA(13/AC	S) BA	YEA(23/BC)	BAYE	A(23/BC)	BAYEA(23	(BC)20BK1
WODEL NO.	BAYEA	A(13/AC)	BAY	EA(13/AC)	BAYEA	(13/AC)10l	LG1	10LG3		15BK1	1	5LG3	D/ (1 E/ ((20	<i>100/200</i>
	05	BK1	(J8LG1										
	BAYEA	4(13/AC)												
5TAMX-	05									+				
D05AV41DA	978	/1093	97	78/1380	10	035/1380	9	920/1093 1035/1438 1150/1495 1380/1610)/1610			
200.0110/(1			Witho	ut heat pur	np / with he	at pump -	- see air ha	andler na	meplate			1	

Table 33. Airflow performance - model 5TAMXD05AV41DA

Outdoor (tons) Cooling setting power Airflow power Airflow power Airflow power Airflow power External static pressure (constant CFM / constant power Heating power Lind power Dot D.5 D.7 0.9 Setting power D.5 D.7 10.9 Setting power D.5 D.7 10.9 Setting power D.5 D.7 10.9 Setting power D.5 D.7 10.9 Setting power Setting power D.5 D.7 10.9 Setting power D.5 D.7 10.9 Setting power D.5 D.7 10.9 Setting power D.7 10.1 D.7 D.7 D.7 D.7 D.7 D.7 D.7 D.7 D.7 D.7 <thd.7< th=""> D.7</thd.7<>		5TA	MXD06AV	41DA AIRFL	OW PERFO	RMANCE	CONS	ANT CFM M	ODE / CC	NSTAN	т тоғ	RQUE N	IODE		
multiplei airMov (tons) power power 0.1 0.3 0.5 0.7 0.9 setting power 0.1 0.3 0.5 0.7 0.9 3 tons 290 CFM 894/1018 900/897/103 1057/103	Outdoor	Cooling	Airflow	Externa	I static pres	sure (cons	tant CFM /	constant	Heating	Air-		Extern	al statio	; pressu	ıre
(tons) setting · 0.1 0.3 0.5 0.7 0.9 setting 0.00 0.5 0.7 0.9 3 tons 200 CFM 894.1108 090.497.186 287.1445 200 CFM 80.0 083 843 844 3 tons 267.M00 Watts 1067.1120 1144.114 157.172 220.1182 CFM 108.172.121 121.212 121.212 121.212 121.212 121.212 121.212 121.212 121.212 121.212 121.212 121.212 121.212 121.212 121.212 121.212 121.2106 113.21 133.21 134.31 135.21 134.32 134.41 130.171.112 120.1101.112 120.1101.112 120.111.112 120.111.112 120.112.206 1136.21 134.21 135.21 134.31 135.21 134.31 135.21 134.31 135.21 134.31 135.21 135.1 135.21 135.1 135.21 135.1 135.21 135.21 137.31 133.11 132	multiplier	airflow	power		1	torque)		1	airtiow	tiow				·	
CHM B84 CPA B86 / C2 B87 / 445 C290 CPM B83 B84 3 toms CPM 1007 / 1160 1073 / 1071 1072 / 972 1085 / 851 1085 / 783 350 CPM to 108 1071 1082 224 / 136 1084 / 1084 1073 1072 1082 224 156 1085 / 1082 226 146 1084 1073 1072 1082 226 146 1084 1073 1072 1082 226 146 144 142 226 231 332 333 387 235 335 35 35 35 35 35 126 1267 1267 1267 1	(tons)	setting		0.1	0.3	0.5	0.7	0.9	setting	power	0.1	0.3	0.5	0.7	0.9
Children Viettis 1037/190		290	CFM	894 / 1018	900/897	896 / 767	886 / 622	871/445	290	CFM	893	900	893	883	864
3 tons CFM00n Weils 100 1120 1120 1202		CFIM/ton	VVatts CEM	09/91 1067/1180	114/114	1072/072	195/13/	229/130	250	VVatts	1069	118	1070	197	230
3 tons 0 0 CFM 1207 1121 1212		CEM/ton	Watte	106/132	158/160	208/180	252 / 102	202/10/	CEM/ton	Watte	112	16/	213	257	205
CFMIon Weits 145/176 203/206 229/28 30/244 354/249 CFMION Weits 142/12 286 315 359 CFMION Weits 133/232 129/244 320/288 377/305 427/313 CFMION Weits 203 CFM 1034/1040 1034 104 104 1034 104 1014 1014 1014 1014 1014 1037 1028 1014 1014 1014 1029 1220 1240 1230 1200 120 120 120 121 126 121 126 120 120 120	3 tons	400	CEM	1205/1314	1212 / 1222	1213 / 1128	1208/102	9 1199 / 926	400	CEM	1207	1212	1212	1206	1196
450 CFM 143/1451 135/130 135/150 135/1100 136/1008 450 CFM 134/149 135/2 134/149 290 CFM 103/111 131/22 259/283 259/283 27/130 CFM 103/1 102/2		CFM/ton	Watts	145/176	203/206	259 / 229	309 / 244	354 / 249	CFM/ton	Watts	154	212	266	315	359
CFMMon Waits 193/232 229/264 320/289 377/305 427/313 CFMMon Waits 287 438 290 CFM 1034/140 1034/140 1038/934 1031/147 1016/600 200 CFM 1034/140 1037 1024 128 140 128 138 140 128 138 140 138 139 139 139 139 139 139 139 138 138 140 138 140 138 140 138 140 138 140 138 140 138 140 130 136 140		450	CFM	1343 / 1451	1352 / 1367	1355 / 1280	1353 / 119	0 1346 / 1098	450	CFM	1344	1352	1354	1352	1344
4.5 tom** 290 CFM 1034 / 1149 1041 / 1044 1038 / 934 1031 / 817 1018 / 800 200 CFM 1034 1040 1037 1028 1014 3.5 toms CFM/ton Watts 935 / 1246 1236 / 1240 1230 / 1240 1230 1236 1331 1401 / 126 1357 1574 1561 1572 1576 1574 1567 1564 1567 1561 1572 1576 1574 1567 1564 1567 1561 1562 1576 1574 1		CFM/ton	Watts	193 / 232	259 / 264	320 / 289	377 / 305	427 / 313	CFM/ton	Watts	206	270	331	387	436
CFM/ton Watts 98 / 123 149 / 150 197 / 170 240 / 181 279 / 182 CFM/ton Watts 152 128 1230 122 1230 122 1230 122 1230 1240 1335 130 136 457 521 577 571 1537 1541 1630 1571 1537 1541 1630 1571 1537 1541 1507 1537 1541 1507 1537 1541 1507 1537 1541 1507 1537 1571 1576 1567		290	CFM	1034 / 1149	1041 / 1044	1038 / 934	1031 / 81	7 1018 / 690	290	CFM	1034	1040	1037	1028	1014
3.5 tons 350 CFM 1228 / 138 / 128 / 126 / 123 / 126 / 123 / 126 / 122 / 125 / 228		CFM/ton	Watts	98 / 123	149 / 150	197 / 170	240 / 181	279 / 182	CFM/ton	Watts	103	154	202	244	281
3.5 tons CFM/ton Watts 152 / 185 212 / 215 268 / 238 319 / 223 365 / 259 CFM/ton Watts 122 / 216 286 / 371 400 CFM 1389 / 1498 1399 / 1451 1400 / 1244 1395 / 1154 400 CFM 1389 / 1400 1400 1394 450 CFM 1568 / 1669 1570 / 1570 1576 / 1514 1576 / 1534 1556 / 1351 450 CFM 1567 / 1574 1567 / 1574 1567 / 1574 1567 / 1574 1577 1577 1577 1576 / 1574 1577 1577 1577 1577 1577 1570 / 1568 / 1351 150 / 1570 / 1576 1577 1577 1577 1577 1577 1577 1577 1577 1577 1577 1577 1577 1577 1577 1577 1577 1577 1400 1400 / 1394 1401 / 1266 1395 / 1177 350 CFM 1392 / 1400 1403 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 </td <td></td> <td>350</td> <td>CFM</td> <td>1228 /1336</td> <td>1235 / 1246</td> <td>1236 / 1153</td> <td>1232 / 105</td> <td>6 1224 / 955</td> <td>350</td> <td>CFM</td> <td>1229</td> <td>1235</td> <td>1236</td> <td>1230</td> <td>1220</td>		350	CFM	1228 /1336	1235 / 1246	1236 / 1153	1232 / 105	6 1224 / 955	350	CFM	1229	1235	1236	1230	1220
4.00 CFM 1389 /1498 1399 /1419 1400 / 1344 1400 / 1344 1400 / 1344 1400 / 1344 1400 / 1344 4.50 CFM/ton Watts 226 / 223 / 226 / 228 / 226 / 226 / 228 / 226 / 228 / 226 / 228 / 226 / 228 / 226 / 228 / 226 / 228 / 226 / 228 / 226 / 228 / 226 / 228 / 226 / 228 / 226 / 228 / 228 / 228 / 26 / 218 / 227 / 1256 / 330 / 166 / 1302 / 1311 / 1309 / 1301 / 1304 / 1302 / 1301 / 1301 / 1304 / 1302 / 1301 / 1301 / 1304 / 1302 / 1301 / 1311 / 1309 / 1301 / 126 / 1302 / 1301 / 1311 / 1309 / 1301 / 126 / 1302 / 1301 / 1311 / 1309 / 1301 / 126 / 1302 / 1301 / 1311 / 1309 / 1301 / 126 / 1302 / 1301 / 1311 / 1308 / 1302 / 1301 / 1	3.5 tons	CFM/ton	Watts	152 / 185	212/215	268 / 238	319/253	365 / 259	CFM/ton	Watts	162	221	276	326	371
CF-M/ton Watts 212/253 280/286 343/31 402/326 455 CFM 1556 1577 1587 290 CFM 1168/1298 1177 1205 1757 1170 1180/905 290 CFM 1188 1176 1134 1148 1132 1400 1400 1400 1403 1403 1403 1403 1403 1403 1403 1403 1403 1403 1403 1403 1403 1403 1404 1581<		400	CFM	1389/1498	1399/1415	1403 / 1331	1401 / 124	4 1395 / 1154	400	CFM	1392	1400	1403	1400	1394
4:30 CPM 1350 / 1032 1370 / 132 1370 / 134 1370 / 133 130 430 CPM 1361 372 1376 1372 1376 1377 137 1377 1372 1377		CFIVI/ton	VVatts	212/253	280/286	343/311	402/328	455/336	CFM/ton	VVatts	226	293	356	413	465
CPMI0ID Virtus 230/343 30/174 1439/345 300/1422 CPMI0ID 1168 1175 1174 1174 1168 1175 1174 1174 1176 1174 1176 1174 1176 1174 1176 1174 1176 1177 1174 1176 1177 1174 1176 1177 1174 1186 1177 1174 1186 1177 1174 1186 1177 1174 1186 1177 1174 1176 1177 1173 1170 1130 1176 1177 1173 1171 1174 1174 <th1< td=""><td></td><td>505 / 143</td><td>4 1000 / 1001</td><td>450 CEM/top</td><td></td><td>210</td><td>1072</td><td>15/0</td><td>10/4 501</td><td>577</td></th1<>		505 / 143	4 1000 / 1001	450 CEM/top		210	1072	15/0	10/4 501	577					
4 tons t CFM/ton Watts 133/170 191/200 244/223 293/237 336/242 CFM/ton Watts 112 103		200	1170 / 101	0 1160 / 905	200	CEM	1168	1176	457	1168	1157				
4 tons † 4 tons		CEM/ton	336/242	CEM/ton	Watts	141	198	251	299	341					
4 tons † CFM/ton Watts 212/262 280/295 343/321 402/338 455/346 CFM/ton Watts 226 293 356 413 465 400 CFM 1583/1714 1595/1639 1601/1562 1600/1483 1593/1401 400 CFM 1586 1597 1601 1599 1591 1591 1591 1501 1599 1501 1599 1501 1599 1501 1599 1501 1597 1501 1598 1597 1501 1598 1597 1501 1598 1597 1501 1506 1667 667 667 667 667 667 667 667 657 657 657 657 1507 1575 1575 1576 1575 1575 1576 1575 1576 1575 1576 1575 1576 1575 1576 1575 1576 1575 1576 1576 1575 1576 1575 1576 1575 1576 1575 1576 1575 1576 1576 1576 1576 1576 1576		350 +	CFM	1389/1517	1399 / 1436	1403 / 1352	1401 / 126	6 1395 / 1177	350	CFM	1392	1400	1403	1400	1394
4 (0)15 T 400 CFM 1583/1714 1595/1630 1601/1562 1600/1483 1893/1401 400 + CFM 1598 1591 4 (0)15 T 450 CFM 1790/1918 1800/184 1808/1775 1793/1701 1688/1626 450 CFM 1794 1801 1800 1766 1667 CFM 0 (CFM 101/1428 1310/1344 1312/1266 1300/1701 290 CFM 1301 1300 1301 1303 1302 </td <td>4 4 4 4 4 4</td> <td>CFM/ton</td> <td>Watts</td> <td>212/262</td> <td>280 / 295</td> <td>343/321</td> <td>402/338</td> <td>455 / 346</td> <td>CFM/ton</td> <td>Watts</td> <td>226</td> <td>293</td> <td>356</td> <td>413</td> <td>465</td>	4 4 4 4 4 4	CFM/ton	Watts	212/262	280 / 295	343/321	402/338	455 / 346	CFM/ton	Watts	226	293	356	413	465
CFM/ton Watts 303/370 382/546 455/431 521/450 S80/459 CFM/ton Watts 325 402 474 538 595 450 CFM 1790/1918 1800/175 1793/1701 1698/1625 450 CFM 1794 1801 1800 1766 1667 CFM/ton Watts 429/511 851/546 594/1573 663/592 660/601 CFM/ton Watts 1310 1311 1309 1301 CFM/ton Watts 177/222 221/253 300/278 355/294 404/302 CFM/ton Watts 210 355 403 1310 1311 1309 1301 350 CFM 1558/1688 1570/1613 1575/1535 1575/1455 1568/1373 350 CFM 157 157 157 1569 400 CFM 1970/1198 1800/1473 1698/1627 1657 157 157 1569 CFM/ton Watts 229/3511 515/546	4 tons T	400	CFM	1583 /1714	1595 / 1639	1601 / 1562	1600 / 148	3 1593 / 1401	400 †	CFM	1586	1597	1601	1599	1591
4.5 CFM 1790/1918 1800/184 1808/1775 1793/1701 1993/1625 450 CFM 1794 1801 1800 1766 1667 290 CFM 1301/1429 1310/1429 1310/1429 1310/1429 1310/1429 1300/1765 1302/1071 290 CFM 1302 1311 1309 1301 4.5 tons** CFM/ton Watts 177/222 241/253 300/278 355/294 404/302 CFM 1507 1575 1555 1565 CFM/ton Watts 177/222 241/253 300/278 355/294 404/302 CFM/ton Watts 290 367 433 505 434 CFM/ton Watts 290/354 367/388 439/415 505/434 563/444 CFM/ton Watts 290 515 566 563 522 600/601 CFM/ton Watts 505 563 CFM/ton Watts 605/605 656/656 645/645 637/637 1631/1631		CFM/ton	Watts	303 / 370	382 / 546	455 / 431	521/450	580 / 459	CFM/ton	Watts	325	402	474	538	595
CFM/ton Watts 429/511 8515/546 594/573 663/592 660/601 CFM/ton Watts 450 644 620 665 655 290 CFM 1301/1429 1310/1344 1312/1256 1309/1455 1302/1071 290 CFM 1302 1310 1311 1309 1301 350 CFM 1558/1688 1570/11613 1575/1455 1557/1455 1568/1373 350 CFM 1557/1575 1575 1575 1575 1575 1575 1575 1575 1575 1575 1575 1575 1575 1575 1575 1575 1575 1575 1575 1569 303 263/444 CFM/ton Watts 429/54 663 659 663 665 664 665 665 666 666 666 666 666 666 666 666 666 666 666 666 666 667 663 663 663 659 663		450	CFM	1790 /1918	1800 / 184	1808 / 1775	1793 / 170	1 1698 / 1625	450	CFM	1794	1801	1800	1766	1667
4.5 tons** 290 CFM 1301/1429 1310/1344 1312/1256 1302/1165 1302/1071 290 CFM 1302 1310 1311 1309 1301 4.5 tons** CFM/ton Watts 177/222 241/253 300/278 355/294 404/302 CFM/ton Watts 180 1575 1575 1575 1575 1575 1575 1575 1575 1575 1575 1575 1569 450 CFM Watts 429/511 515/546 594/573 663/592 660/601 CFM 1789 1801 1794 1701 CFM/ton Watts 429/511 515/546 594/573 663/592 660/601 CFM/ton Watts 428 515 594 663 659 CFM/ton Watts 605/605 656/656 645/645 637/637 631/631 CFM/ton Watts 605 656 643 628 * * Not an actual OD size * * Not an actual OD size * Status LED will bli		CFM/ton	Watts	429 / 511	8515 / 546	594 / 573	663 / 592	660 / 601	CFM/ton	Watts	459	544	620	665	655
4.5 tons** CFM/ton Watts 177/222 241/253 300/278 355/294 404/302 CFM/ton Watts 189 252 310 355 403 4.5 tons** 350 CFM 1558/1886 1570/1813 1575/1455 1568/1373 350 CFM 1557 1575		290	CFM	1301 /1429	1310 / 1344	1312 / 1256	1309 / 116	5 1302 / 1071	290	CFM	1302	1310	1311	1309	1301
4.5 tons** 350 CFM 1568/1688 1570/163 1575/1455 1568/1373 350 CFM 1575 1575 1569 4.5 tons** CFM/ton Watts 290/354 367/389 439/415 505/434 463/462 CFM/ton Watts 290/356 366 563 440 CFM/ton Watts 290/356 439/415 505/434 463/462 400 CFM 1799 1801 1794 1701 400 CFM Watts 429/351 515/546 594/573 663/592 660/601 CFM/ton Watts 428 515 594 663 659 450 CFM 2018 / 2018 1973 1857/1857 17457 1575 1575 1669 450 CFM/ton Watts 429/367 1660 656 656 657 657/657 651/657 651/657 1650 1657 1650 657/1660 651/657 1657/1657 1650 651/656 645/645 637/637 631/631 651/656 643 634 634 628 634 634 <t< td=""><td></td><td>CFM/ton</td><td>Watts</td><td>177 / 222</td><td>241/253</td><td>300 / 278</td><td>355 / 294</td><td>404 / 302</td><td>CFM/ton</td><td>Watts</td><td>189</td><td>252</td><td>310</td><td>355</td><td>403</td></t<>		CFM/ton	Watts	177 / 222	241/253	300 / 278	355 / 294	404 / 302	CFM/ton	Watts	189	252	310	355	403
4.5 tons** CFM/ton Watts 290 367 439 439 439 439 439 439 439 439 505 434 505 434 505 434 505 434 505 434 505 434 505 436 505 563 563 563 563 563 563 563 660 601 CFM 1789 1799 1799 1794 1701 650 CFM 2018 / 2018 1973 / 1973 1857 / 1857 1749 / 1749 1651 / 1651 450 CFM 2018 1975 1863 1757 1660 651 656 656 656 645 637 / 637 631 / 631 CFM/ton Watts 605 656 645 628 * * T factory Setting *** Not an actual OD size If the air handler is applied in downflow or horizontal configurations, the airflow should not exceed 2000 CFM. Airflow above 2000 CFM. could result in water blow-off. All heating modes default to Constant CFM. Cooling airflow values are with wet coil, no filter Cooling airflow values are with wet coil, no filter Statas 173/4 104/4 <t< td=""><td></td><td>350</td><td>CFM</td><td>1558 / 1688</td><td>1570 / 1613</td><td>1575 / 1535</td><td>1575 / 145</td><td>5 1568 / 1373</td><td>350</td><td>CFM</td><td>1557</td><td>1570</td><td>1575</td><td>1575</td><td>1569</td></t<>		350	CFM	1558 / 1688	1570 / 1613	1575 / 1535	1575 / 145	5 1568 / 1373	350	CFM	1557	1570	1575	1575	1569
etable CFW ton Watts 1300 / 1948 1800 / 1948 1800 / 1943 1801 / 1743 1933 / 193 1803 / 1933 / 193 1803 / 1933 / 193 1803 / 1933 / 193 1803 / 193 / 193 1803 / 193 / 193 1803 / 193 / 193 1801 / 1749 / 1749 1803 / 193 / 193 1801 / 1749 / 1749 1603 / 1633 / 150 1603 / 1633 / 150 1603 / 1633 / 150 1603 / 123 1801 / 1749 / 1749 1631 / 16	4.5 tons**	CFM/ton	VVatts	290/354	367/389	439/415	505/434	1 1609 / 1625		VVatts	290	367	439	1704	1701
Image: Construction Values		400 CEM/top	Watte	1/90/1910	515 / 546	504 / 573	663 / 502	660 / 601	CEM/top	Watte	1709	515	504	663	650
Status LED will blink once per 100 CFM requested. In torque mode, actual airflow may be lower. • If the air handler is applied in downflow or horizontal configurations, the airflow should not exceed 2000 CFM. Airflow above 2000 CFM. • Torque mode will reduce airflow when static is above approximately 0.4" water column. • If the air handler is applied in downflow or horizontal configurations, the airflow should not exceed 2000 CFM. Airflow above 2000 CFM. • Torque mode will reduce airflow when static is above approximately 0.4" water column. • If the air handler is applied in downflow or horizontal configurations, the airflow should not exceed 2000 CFM. Airflow above 2000 CFM. • Torque mode will reduce airflow when static is above approximately 0.4" water column. • If the air handler is applied in downflow or horizontal configurations, the airflow should not exceed 2000 CFM. Airflow above 2000 CFM. • Torque mode will reduce airflow when static is above approximately 0.4" water column. • If the air handler is applied in downflow or horizontal configurations, the airflow should not exceed 2000 CFM. • Torque mode will reduce airflow when static is above approximately 0.4" water column. • If the air handler is applied in downflow or horizontal configurations, the airflow should not exceed 2000 CFM. • MODEL BAYEA(13/AC) 04BK1 BAYEA(13/AC) 08BK1 BAYEA(13/AC) 10BK1 BAYEA(23/BC) 15BK1 BAYEA(23/BC) 15LG3 BAYEA(23/BC) 20BK1 BAYEA(33/CC) 20BK1 • STAMXX- DO6AV41- DA 1063 / 1188 1063 / 1500 <		450	CEM	2018/2018	1073 / 1073	1857 / 1857	1749/174	9 1651 / 1651	450	CEM	2018	1075	1863	1757	1660
 f Factory Setting f Factory Setting f actual OD size Status LED will blink once per 100 CFM requested. In torque mode, actual airflow may be lower. Torque mode will reduce airflow when static is above approximately 0.4" water column. Status LED will blink once per 100 CFM requested. In torque mode, actual airflow may be lower. Torque mode will reduce airflow when static is above approximately 0.4" water column. Status LED will blink once per 100 CFM requested. In torque mode, actual airflow may be lower. Torque mode will reduce airflow when static is above approximately 0.4" water column. Status LED will blink once per 100 CFM requested. In torque mode, actual airflow mode ade will reduce airflow when static is above approximately 0.4" water column. BAYEA(13/AC) dot bas to bas t		CFM/ton	Watts	605/605	656 / 656	645/645	637 / 637	631/631	CFM/ton	Watts	605	656	643	634	628
 			mano	0007000	0007000	0107010	0017001	0017001		Watto	000	000	010	001	020
 ** Not an actual OD size Status LED will blink once per 100 CFM requested. In torque mode, actual airflow may be lower. Torque mode will reduce airflow when static is above approximately 0.4" water column. Torque mode will reduce airflow when static is above approximately 0.4" water column. STAMXD06AV41DA Minimum Heating Airflow Settings MODEL BAYEA(13/AC) 04BK1 BAYEA(13/AC) 04BK1 04BK1	 † Factor 	y Setting						 If the air 	r handler i	s applied	l in dov	vnflow o	r horizon	tal confid	gurations.
 Status LED will blink once per 100 CFM requested. In torque mode, actual airflow may be lower. Torque mode will reduce airflow when static is above approximately 0.4" water column. STAMXD06AV41DA Minimum Heating Airflow Settings MODEL BAYEA(13/AC) 04BK1 BAYEA(13/AC) 04BK1 04BK1	 ** Not al 	n actual OD s	size					the airfl	ow should	I not exce	ed 20	00 CFM	. Airflow a	above 20	00 CFM
 may be lower. Torque mode will reduce airflow when static is above approximately 0.4" water column. All heating modes default to Constant CFM. Cooling airflow values are with wet coil, no filter Cooling airflow Settings BAYEA(13/AC) 04BK1 BAYEA(13/AC) 04LG1 04BK1 BAYEA(13/AC) 04LG1 08BK1 008BK1 100BK1 BAYEA(13/AC) 05BK1 08LG1 10LG1 10LG3 BAYEA(13/AC) 05BK1 05LG1 BAYEA(13/AC) 05LG1 1063 / 1188 1063 / 1500 1125 / 1500 1000 / 1188 1125 / 1563 1250 / 1625 1500 / 1750 1625 / 1813	 Status L 	ED will blink	once per 10	00 CFM reque	sted. In torque	e mode, actu	al airflow	could re	esult in wa	ter blow-	off.				
• Torque mode will reduce airflow when static is above approximately 0.4" water column. • Cooling airflow values are with wet coil, no filter • Cooling airflow values are with wet coil, no filter • Cooling airflow values are with wet coil, no filter • Cooling airflow values are with wet coil, no filter • Cooling airflow values are with wet coil, no filter • MODEL BAYEA(13/AC) BAY	may be	lower.						 All heat 	ting modes	s default	to Con	stant CF	FM.		
<t< td=""><td> Torque r </td><td>mode will red</td><td>uce airflow</td><td>when static is</td><td>above approx</td><td>cimately 0.4"</td><td>water</td><td> Cooling </td><td>airflow va</td><td>alues are</td><td>with w</td><td>et coil, r</td><td>no filter</td><td></td><td></td></t<>	 Torque r 	mode will red	uce airflow	when static is	above approx	cimately 0.4"	water	 Cooling 	airflow va	alues are	with w	et coil, r	no filter		
BAYEA(13/AC) 04BK1 BAYEA(13/AC) 04LG1 BAYEA(13/AC) 08BK1 BAYEA(13/AC) 05BK1 BAYEA(13/AC) 08BK1 BAYEA(13/AC) 10BK1 BAYEA(13/AC) 10LG1 BAYEA(13/AC) 10LG3 BAYEA(23/BC) 15BK1 BAYEA(23/BC) 15LG3 BAYEA(23/BC) 20BK1 BAYEA(23/BC) 20BK1 BAYEA(33/CC) 25BK1 5TAMX- D06AV41- DA 1063 / 1188 1063 / 1500 1125 / 1500 1000 / 1188 1125 / 1563 1250 / 1625 1500 / 1750 1625 / 1813	column.						nimum Ho:	ting Airflow	Sottings						
MODEL OdBK1 BAYEA(13/AC)	r		\sim		UTANIA DUU				octango					T	
MODEL NO. BAYEA(13/AC) 04LG1 BAYEA(13/AC) 05BK1 BAYEA(13/AC) 05BK1 05BK1 BAYEA(13/AC) 08BK1 BAYEA(13/AC) 05LG1 BAYEA(13/AC) 08LG1 BAYEA(13/AC) 10LG1 BAYEA(13/AC) 10LG3 BAYEA(23/BC) 15BK1 BAYEA(23/BC) 15LG3 BAYEA(23/BC) 20BK1 BAYEA(23/BC) 20BK1 BAYEA(33/CC) 25BK1 5TAMX- D06AV41- DA 1063 / 1188 1063 / 1500 1125 / 1500 1000 / 1188 1125 / 1563 1250 / 1625 1500 / 1750 1625 / 1813		04RK1	.0)												
MODEL 04LG1 08BK1 10BK1 BAYEA(13/AC) BAYEA(13/AC		BAYEA(13/A	C) BAYE	=A(13/AC)	BAYEA(13/A	C)									
NO. BAYEA(13/AC) 05BK1 BAYEA(13/AC) 05LG1 BAYEA(13/AC) 08LG1 BAYEA(13/AC) 10LG1 10LG3 15BK1 15LG3 20BK1 25BK1 5TAMX- D06AV41- DA 1063 / 1188 1063 / 1500 1125 / 1500 1000 / 1188 1125 / 1563 1250 / 1625 1500 / 1750 1625 / 1813	MODEL	04LG1	.0) 0/11	08BK1	10BK1	BAYE	A(13/AC)	BAYEA(23/BC) BAYI	EA(23/BC	3	BAYEA(23/BC)	BAYE	A(33/CC)
05BK1 BAYEA(13/AC) 05LG1 08LG1 10LG1 Image: Constraint of the second	NO.	BAYEA(13/A	C) BAYE	EA(13/AC)	BAYEA(13/A	C) 10	DLG3	15BK1	,	15LG3	,	20B	K1 ,	25	5BK1
BAYEA(13/AC) 05LG1 Description Description <thdescription< th=""></thdescription<>	_	05BK1	· (08LG1	10LG1	- /									
05LG1 05LG1 1063 / 1188 1063 / 1500 1125 / 1500 1000 / 1188 1125 / 1563 1250 / 1625 1500 / 1750 1625 / 1813 DA Mithaut best sums (with be		BAYEA(13/A	C)												
STAMX- D06AV41- DA 1063 / 1188 1063 / 1500 1125 / 1500 1000 / 1188 1125 / 1563 1250 / 1625 1500 / 1750 1625 / 1813		05LG1													
D06AV41- DA 1063 / 1188 1063 / 1500 1125 / 1500 1000 / 1188 1125 / 1563 1250 / 1625 1500 / 1750 1625 / 1813	5TAMX-														
DA	D06AV41-	1063 / 1188	3 106	63 / 1500	1125 / 1500	0 1000	0 / 1188	1125 / 1563	125	50 / 1625		1500 /	1750	1625	5 / 1813
	DA				<u></u>										

Table 34. Airflow performance - model 5TAMXD06AV41DA

		5TA	MXD07A	V51DA A	irflow pe	constant CFM mode / constant torque mode								
Outdoor multiplier	Cool- ing	Air- flow	Exte	ernal stati c	c pressu onstant t	re (constant orque)	CFM /	Heat- ing	Airflow		External	static pro	essure	
(tons)	airflow setting	power	0.1	0.3	0.5	0.7	0.9	airflow setting	power	0.1	0.3	0.5	0.7	0.9
	290 CFM/	CFM Watts	1040 / 1151	1068 / 1056	1075 / 941	1066 / 799 247 / 175	1046 / 607	290 CFM/	CFM Watts	1039 95	1065 151	1071 203	1063 247	1045 283
	370	0514	1312/	1332 /	1336 /	4000 / 4000	1314 /	350	0514	10.17	4000	1070	1000	40.40
	CFM/	CEM Watts	1343	1264	1174	1329 / 1068 349 / 250	945	CFM/	CFM Watts	1247 150	1266 213	1270 270	1263 321	1248 363
3.5 tons	ton 0	mano	171 / 178	236/210	296 / 235 1429 /	0.07.200	392 / 251	ton 400	matto			2.0		
	CFM/	CFM	1496	1426	1346	1423 / 1256	1154	CFM/	CFM Watte	1407	1423	1426	1421	1409
	ton	vvallo	206 / 238	274 / 273	337/301	3937319	440 / 325	ton	vvalis	200	274	557	392	439
	450 CFM/	CFM	1650	15797	15647	1580 / 1432	1343	450 CFM/	CFM	1564	1578	1582	1578	1569
	ton	vvatts	274/312	348/348	416/378	477/398	529 / 407	ton	vvatts	274	348	416	476	529
	290 CFM/	CFM	11867	12087	12137	1206 / 1018	11897 887	CFM/	CFM	1185	1206	1210	1203	1187
	ton	Watts	131 / 164	192 / 196	248 / 220	297 / 234	337 / 233	ton	Watts	131	192	248	297	337
	370 CEM/	CFM	1480 / 1514	1495 / 1444	1499 / 1365	1495 / 1277	1482 /	350 CEM/	CFM	1407	1423	1426	1421	1409
4 topo	ton	Watts	235 / 245	306 / 280	372 / 308	430 / 327	479 / 334	ton	Watts	206	274	337	392	439
4 10115	400	CFM	1587 /	1602 /	1606 /	1602 / 1475	1592 /	400	CFM	1587	1600	1604	1601	1592
	ton	Watts	285/332	360 / 369	1554 429 / 399	490 / 420	1399 543 / 430	ton	Watts	285	360	428	490	543
	450	CFM	1770 /	1784 /	1789 /	1788 / 1675	1782 /	450	CFM	1770	1783	1788	1788	1782
	CFM/	Watts	1873 386 / 443	1813 468 / 481	1747 543 / 512	612 / 534	1597 671 / 546	CFM/	Watts	385	467	543	611	671
	290	CEM	1322 /	1340 /	1345 /	1338 / 1170	1323 /	290	CEM	1321	1338	13/12	1336	1322
	CFM/	Watts	1431	1358	1274	353 / 288	1069	CFM/	Watts	174	240	300	352	396
	370 †	0514	1646 /	1660 /	1665 /	4000 / 4454	1653 /	350	0514	4504	4570	4500	4570	4500
	CFM/	CEM Watts	1667	1602	1530	1662 / 1451 527 / 407	1363	CFM/	CFM Watts	1564 274	1578 348	1582 416	1578 476	1569 529
4.5 tons **†	ton 400		315/320	392/357	463 / 386 1789 /		582/417	ton 400 +						
	CFM/	CFM	1873	1813	1747	1788 / 1675	1597	CFM/	CFM Watte	1770	1783	1788	1788	1782
	ton	vvalis	386 / 443	468 / 481	543 / 512	012/334	671 / 546	ton	vvalis	305	407	545	011	0/1
	CFM/	CFM	2099	20047	1980	2013 / 1913	1842	CFM/	CFM	1989	2003	2011	2014	2011
	ton	vvatts	535/612	627 / 650	712/681	/88//03	855 / 716	ton	vvatts	534	626	711	788	856
	290 CFM/	CFM	14527	14697	14737	1468 / 1327	14557	290 CFM/	CFM	1452	1467	1471	1466	1454
	ton	Watts	224 / 265	294 / 301	358 / 329	415 / 348	463 / 356	ton	Watts	224	294	358	415	463
	370 CEM/	CFM	1817 /	1831 /	1837 /	1837 / 1624	1831 /	350 CEM/	CFM	1723	1736	1741	1740	1734
	ton	Watts	415 / 451	499 / 451	576 / 481	647 / 503	708 / 515	ton	Watts	357	437	511	578	636
5 tons	400	CFM	1964 /	1978 /	1986 /	1987 / 1886	1983 /	400	CFM	1964	1978	1985	1988	1985
	ton	Watts	2073 516 / 590	607 / 629	690 / 660	766 / 682	832 / 695	ton	Watts	515	606	690	766	833
	450	0514	2231/	2245/	2252 /		2185/	450	0514		00.15			
	CFM/	Watts	2347	2292	2233	2252/2171 1015/930	2104	CFM/	CFM Watts	2232 741	2245 842	2252 934	2252	2186
	ton		741 / 842	842 / 879	934 / 908		941	ton						
† Factory Se	etting						If the	air hand	ller is ann	lied in dow	nflow or hori	izontal con	figurations	the
 ** Not an act 	ual OD s	ize	400 0514		l		airflo	w should	I not exce	ed 2000 Cl	-M. Airflow	above 2000	CFM coul	d result
 Status LED airflow may 	be lower.	once per		requested	. In torque	mode, actual	in wa	ater blow-	-off.	ult to Cono	tent CEM			
Torque mode	e will redu	uce airflo	w when st	atic is abo	ve approx	imately 0.4"	 All n Cool 	ing airflo	v values	uit to Cons are with we	tant CEM. t coil no filt	er		
water colum	n.			ETAMY								51		
BAYEA(13/AC)														
	04BK1	<i>′</i>												
MODEL	EA(13/A0 04LG1	C) BAY	EA(13/AC)	BAYEA(1	13/AC) (1 BA	YEA(13/AC)	BAYEA(23/	BAYE	A(23/BC)	BAYEA	(23/BC)			
NO. BAY	EA(13/A0	C) BAY	EA(13/AC) BAYEA(1	13/AC)	10LG3	BC)15BK1	15	5LG3	20	BK1	BAYE	A(33/CC)25	iBK1
DAV	05BK1	~	08LG1	10LC	G1									
ВАҮ	⊏A(13/A0 05LG1)												
5TAMX-	014400	10	60 / 4500	4405 /	1500	000/4400	1105 / 1500	405	14005	4500	14750		60E / 4040	
D07AV51- 10 DA	07AV51- 1063 / 1188 1063 / 1500 1125 / 1500 1000 / 1188 1125 / 1563 1250 / 1625 1500 / 1750 1625 / 1813 DA													
		I		Witho	ut heat pu	mp / with heat	pump — see	air hand	ller name	plate				

Table 35. Airflow performance - model 5TAMXD07AV51DA

Heater Attribute Data

Notes:

- Heater size will be announced when using the resistor that is being provided with the BAYEA heater. Heater can also be configured in the UX360 User Interface or Diagnostics Mobile App.
- ++ can be **BK** or **LG** in the following tables.
- See Product Data or Air Handler nameplate for approved combinations of Air Handlers and Heaters.
- Heater model numbers may have additional suffix digits.

Table 36. Heater attribute data - model 5TAMXB02AV21DA

	5TAMXB02AV21DA													
				240 V	olt			208 Volt						
Heater Model No.	No. of	Capacity		Heater	Minimum	Maximum	Cap	acity	Heater Amps	Minimum	Maximum			
	Oncuits	kW	BTUH	Amps per Circuit	Ampacity	Overload Protection	kW	BTUH	per Circuit	Ampacity	Overload Protection			
No Heater	0	-	-	3.9 **	5	15	-	-	3.9 **	5	15			
BAYEA(13/AC)04++1	1	3.84	13100	16.0	25	25	2.88	9800	13.8	22	25			
BAYEA(13/AC)05++1	1	4.80	16400	20.0	30	30	3.60	12300	17.3	27	30			
BAYEA(13/AC)08++1	1	7.68	26200	32.0	45	45	5.76	19700	27.7	39	40			
BAYEA(13/AC)10++1 ^(a)	1	9.60	32800	40.0	55	60	7.20	24600	34.6	48	50			
BAYEA(13/AC)10LG3	1-3 PH	9.60	32800	23.1	33	35	7.20	24600	20.0	29	30			
Vote: ** Motor Amps ++ represents BK or LG														

(a) Heater not qualified for 208V when installed in horizontal left position without Heat Pump

Table 37. Heater attribute data - model 5TAMXC03AV31DA

5TAMXC03AV31DA													
				240 Volt			208 Volt						
Heater Model No.	No. of Circuits	Capacity		Heater	Minimum	Maximum	Capacity		Heater	Minimum	Maximum		
	oncuita	kW	BTUH	Circuit	Ampacity	Protection	kW	BTUH	Circuit	Ampacity	Protection		
No Heater	0	-	-	3.9 **	5	15	-	-	3.9 **	5	15		
BAYEA(13/AC)04++1	1	3.84	13100	16.0	25	25	2.88	9800	13.8	22	25		
BAYEA(13/AC)05++1	1	4.80	16400	20.0	30	30	3.60	12300	17.3	27	30		
BAYEA(13/AC)08++1	1	7.68	26200	32.0	45	45	5.76	19700	27.7	39	40		
BAYEA(13/AC)10++1	1	9.60	32800	40.0	55	60	7.20	24600	34.6	48	50		
BAYEA(13/AC)10LG3	1-3 PH	9.60	32800	23.1	33	35	7.20	24600	20.0	29	30		
BAYEA(23/BC)15LG3	1-3 PH	14.40	49100	34.6	48	50	10.80	36900	30.0	42	45		
BAYEA(23/BC)15BK1 - Circuit	<u> </u>	9.60	32800	40.0	55	60	7.20	24600	34.6	48	50		
Circuit 2	2	4.80	16400	20.0	25	25	3.60	12300	17.3	22	25		
Vote: ** Motor Amps ++ represents BK or LG													

(a) MCA and MOP for circuit 1 contains the motor amps

5TAMXD04AV31DA													
				240 Volt	:		208 Volt						
Heater Model No.	No. of	Capacity		Heater	Minimum	Maximum	Capacity		Heater	Minimum	Maximum		
	Circuits	kW	втин	per Circuit	Circuit Ampacity	Overload Protection	kW	втин	Amps per Circuit	Circuit Ampacity	Overload Protection		
No Heater	0	-	-	3.9 **	5	15	-	-	3.9 **	5	15		
BAYEA(13/AC)04++1	1	3.84	13100	16.0	25	25	2.88	9800	13.8	22	25		
BAYEA(13/AC)05++1	1	4.80	16400	20.0	30	30	3.60	12300	17.3	27	30		
BAYEA(13/AC)08++1	1	7.68	26200	32.0	45	45	5.76	19700	27.7	39	40		
BAYEA(13/AC)10++1	1	9.60	32800	40.0	55	60	7.20	24600	34.6	48	50		
BAYEA(13/AC)10LG3	1-3 PH	9.60	32800	23.1	33	35	7.20	24600	20.0	29	30		
BAYEA(23/BC)15LG3	1-3 PH	14.40	49100	34.6	48	50	10.80	36900	30.0	42	45		
BAYEA(23/BC)15BK1 - Circuit 1	0	9.60	32800	40.0	55	60	7.20	24600	34.6	48	50		
Circuit 2	2	4.80	16400	20.0	25	25	3.60	12300	17.3	22	25		
BAYEA(23/BC)20BK1 - Circuit 1	0	9.60	32800	40.0	55	60	7.20	24600	34.6	48	50		
Circuit 2	2	9.60	32800	40.0	50	50	7.20	24600	34.6	43	45		
Iote: ** Motor Amps ++ represents BK or LG													

Table 38. Heater attribute data - model 5TAMXD04AV31DA

(a) MCA and MOP for circuit 1 contains the motor amps

Table 39. Heater attribute data - model 5TAMXD05AV41DA

5TAMXD05AV41DA												
				240 Volt			208 Volt					
Heater Model No.	No. of Circuits	Сара	Capacity		Minimum	Maximum	Capacity		Heater	Minimum	Maximum	
	oncutto	kW	BTUH	Circuit	Ampacity	Overload Protection	kW	BTUH	Amps per Circuit	Ampacity	Protection	
No Heater	0	-	-	3.9 **	5	15	-	-	3.9 **	5	15	
BAYEA(13/AC)04++1	1	3.84	13100	16.0	25	25	2.88	9800	13.8	22	25	
BAYEA(13/AC)05++1	1	4.80	16400	20.0	30	30	3.60	12300	17.3	27	30	
BAYEA(13/AC)08++1	1	7.68	26200	32.0	45	45	5.76	19700	27.7	39	40	
BAYEA(13/AC)10++1	1	9.60	32800	40.0	55	60	7.20	24600	34.6	48	50	
BAYEA(13/AC)10LG3	1-3 PH	9.60	32800	23.1	33	35	7.20	24600	20.0	29	30	
BAYEA(23/BC)15LG3	1-3 PH	14.40	49100	34.6	48	50	10.80	36900	30.0	42	45	
BAYEA(23/BC)15BK1 - Circuit 1	0	9.60	32800	40.0	55	60	7.20	24600	34.6	48	50	
^(a) BAYEA(23/BC)15BK1 - Circuit 2	2	4.80	16400	20.0	25	25	3.60	12300	17.3	22	25	
BAYEA(23/BC)20BK1 - Circuit 1		9.60	32800	40.0	55	60	7.20	24600	34.6	48	50	
(a) BAYEA(23/BC)20BK1 - Circuit 2	2	9.60	32800	40.0	50	50	7.20	24600	34.6	43	45	
Note: ** Motor Amps ++ represents BK or LG												

(a) MCA and MOP for circuit 1 contains the motor amps

				5TAMXE	06AV41D	4							
				240 Volt			208 Volt						
Heater Model No.	No. of Circuits	Capacity		Heater	Minimum	Maximum	Capacity		Heater	Minimum	Maximum		
	onouno	kW	BTUH	Circuit	Ampacity	Protection	kW	BTUH	Circuit	Ampacity	Protection		
No Heater	0	-	-	5.7 **	7	15	-	-	5.7 **	7	15		
BAYEA(13/AC)04++1	1	3.84	13100	16.0	27	30	2.88	9800	13.8	24	25		
BAYEA(13/AC)05++1	1	4.80	16400	20.0	32	35	3.60	12300	17.3	29	30		
BAYEA(13/AC)08++1	1	7.68	26200	32.0	47	50	5.76	19700	27.7	42	45		
BAYEA(13/AC)10++1	1	9.60	32800	40.0	57	60	7.20	24600	34.6	50	50		
BAYEA(13/AC)10LG3	1-3 PH	9.60	32800	23.1	35	35	7.20	24600	20.0	31	35		
BAYEA(23/BC)15LG3	1-3 PH	14.40	49100	34.6	50	50	10.80	36900	30.0	44	45		
BAYEA(23/BC)15BK1 - Circuit 1 (a)	2	9.60	32800	40.0	57	60	7.20	24600	34.6	50	50		
BAYEA(23/BC)15BK1 - Circuit 2	2	4.80	16400	20.0	25	25	3.60	12300	17.3	22	25		
BAYEA(23/BC)20BK1 - Circuit 1 (a)	0	9.60	32800	40.0	57	60	7.20	24600	34.6	50	50		
BAYEA(23/BC)20BK1 - Circuit 2	2	9.60	32800	40.0	50	50	7.20	24600	34.6	43	45		
BAYEA(33/CC)25BK1 — Circuit 1		9.60	32800	40.0	57	60	7.20	24600	34.6	50	50		
(a) BAYEA(33/CC)25BK1 — Circu 2 BAYEA(33/CC)25BK1 — Circuit	3	9.60	32800	40.0	50	50	7.20	24600	34.6	43	45		
3		4.80	16400	20.0	25	25	3.60	12300	17.3	22	25		
Note: ** Motor Amps	•	•	•	•	•	•	•	•	•	•			

Table 40. Heater attribute data - model 5TAMXD06AV41DA

++ represents BK or LG

(a) MCA and MOP for circuit 1 contains the motor amps

Table 41. Heater attribute data - model 5TAMXD07AV51DA

	240 Volt 208 Volt												
Heater Model No.	No. of Circuits	Capacity		Heater	Minimum	Maximum	Сар	acity	Heater	Minimum	Maximum		
		kW	BTUH	Circuit	Ampacity	Protection	kW	BTUH	Circuit	Ampacity	Protection		
No Heater	0	-	-	6.9 **	9	15	-	-	6.9 **	9	15		
BAYEA(13/AC)04++1	1	3.84	13100	16.0	29	30	2.88	9800	13.8	26	30		
BAYEA(13/AC)05++1	1	4.80	16400	20.0	34	35	3.60	12300	17.3	30	30		
BAYEA(13/AC)08++1	1	7.68	26200	32.0	49	50	5.76	19700	27.7	43	45		
BAYEA(13/AC)10++1	1	9.60	32800	40.0	59	60	7.20	24600	34.6	52	60		
BAYEA(13/AC)10LG3	1-3 PH	9.60	32800	23.1	37	40	7.20	24600	20.0	33	35		
BAYEA(23/BC)15LG3	1-3 PH	14.40	49100	34.6	51	60	10.80	36900	30.0	45	45		
BAYEA(23/BC)15BK1 - Circuit 1 (a)	0	9.60	32800	40.0	59	60	7.20	24600	34.6	52	60		
BAYEA(23/BC)15BK1 - Circuit 2	2	4.80	16400	20.0	25	25	3.60	12300	17.3	22	25		
BAYEA(23/BC)20BK1 - Circuit 1 (a)	0	9.60	32800	40.0	59	60	7.20	24600	34.6	52	60		
BAYEA(23/BC)20BK1 - Circuit 2	2	9.60	32800	40.0	50	50	7.20	24600	34.6	43	45		
BAYEA(33/CC)25BK1 (b) - Circuit 1		9.60	32800	40.0	59	60	7.20	24600	34.6	52	60		
(a) BAYEA(33/CC)25BK1 - Circuit 2	3	9.60	32800	40.0	50	50	7.20	24600	34.6	43	45		
BAYEA(33/CC)25BK1 - Circuit 3		4.80	16400	20.0	25	25	3.60	12300	17.3	22	25		

++ represents BK or LG

(a) MCA and MOP for circuit 1 contains the motor amps
 (b) Heater not qualified for 208V when installed in horizontal left position without Heat Pump

Distance from Belly Band to Shaft Face of Motor for Minimum Vibration

MODEL	DIM " A "
5TAMXB02AV21DA	2–3/8
5TAMXC03AV31DA	2–3/8
5TAMXD04AV31DA	2–3/8
5TAMXD05AV41DA	2–3/8
5TAMXD06AV41DA	2–3/8
5TAMXD07AV51DA	2–3/8

Filters

Table 42. Filter considerations

- A filter must be installed within the system.
- A filter channel is provided in the unit at the bottom of the Blower/Filter compartment.
- For customer ease of filter maintenance, it is recommended that a
 properly sized remote filter grill(s) be installed for units that are difficult to
 access. Airflow should not exceed the maximum rated velocity of the filter
 being used.

Table 43. Filter sizes

Cabinet Width	17.5 -in.	21.0 -in.	23.5 -in.
Filter Size	16 x 20	20 x 20	22 x 20

System Start Up

1. Make sure all panels are securely in place and that all wiring has been properly dressed and secured.

2. Turn on electrical power disconnect(s) to apply power to the indoor and outdoor units.

3. Set the system thermostat to ON.	

Fault Reporting

The Air Handler Control (AHC) will show active faults and store historical faults in 24 volt mode. In 24 volt mode, the AHC will report active faults continuously and will report the last four faults stored after a power cycle of the unit. See the LED flash code or Diagnostics Mobile App for fault code identification. In Link Communicating mode, faults will report to the UX360 User Interface Service Menu and Diagnostics Mobile App.

Table 44. RED LED fault codes

Flash Code	Alarm Group	Alarm
2	Equipment Missing, Mismatch or Configuration Issue	No Model Number, Bad Model Number, No Valid Configuration
3	Blower Issue	Blower Communication, Low or No Airflow, Blower Motor Power High, Blower Motor Mismatch
4	EEV Issue	Coil is shorted or open, Valve Stuck, ET, GT, Low SH, High SH
5	Sensor Issue	SAT Sensor out of range, RA Static Pressure Sensor out of range
6	Indoor Heat Issue	CFG1–Electric Heat not detected, CFG2–Electric Heat not configured
7	External Switch	Switch 1 or Switch 2
8	Condensate Issue	
9	Frost Issue	

Unit Test Options

Table 45. 24 volt mode:

Г

Internal test can only be triggered using the Diagnostic Mobile App. There is not a local way to run any test mode manually. Tests available from the Diagnostics Mobile App are:	11:22 🧃 🕸 🖪 🗖	न्द्रिः _अ ॥ 45% 🛢
The monitor menu in the Diagnostic Mobile App will show important information while in test modes that prove the test is successful.	Test Modes	
Test Blower allows the user to select a specific airflow to run the blower at. It is selectable from a slider and is dynamic and will speed up or slow down as the user moves the slider.	Manual Testing	
Test Indoor Heat will test the different stages of indoor heat to prove they are working.	Test Blower	>
Open Indoor EEV test will open the TAMX EEV fully for 30 seconds. This can be verified by watching the monitor screens during this test.	Open Indoor EEV	>
Close Indoor EEV test will close the TAMX EEV completely for 90 seconds. If the system is running, you will see the refrigerant pressures react to a closed value and will likely fault on low pressure.	Close Indoor EEV	>
	DASHBOARD TEST MODES MONITOR	ALERTS MENU K

Т

Table 46. Link communicating mode:

All test modes can be run from the User Interface (UX360) or the Diagnostics Mobile App.

٦

ET / GT and Supply Air Temperature Sensor

Table 47. Thermal resistance and voltage table

TEMP F	TEMP C	THERMISTOR RESISTANCE (OHMS) *	Volts DC at plug J3 EVAP TEMP (ET) Orange to Orange GAS TEMP (GT) Black to Black	TEMP F	TEMP C	THERMISTOR RESISTANCE (OHMS) *	Volts DC at plug J3 EVAP TEMP (ET) Orange to Orange GAS TEMP (GT) Black to Black	TEMI F	TEMP C	THERMISTOR RESISTANCE (OHMS) *	Volts DC at plug J3 EVAP TEMP (ET) Orange to Orange GAS TEMP (GT) Black to Black
20	-6.67	45075.79	1.89	64	17.78	13476.21	1.17	108	42.22	4752.65	0.50
21	-6.11	43763.76	1.88	65	18.33	13138.29	1,15	109	42.78	4649.14	0.49
22	-5.56	42494.36	1.88	66	18.89	12809.93	1.13	110	43.33	4548,19	0.48
23	-5.00	41266.06	1.87	67	19.44	12490.82	1.11	111	43.89	4449.73	0.47
24	-4.44	40077.41	1.86	68	20.00	12180.67	1.09	112	44.44	4353.70	0.46
25	-3.89	38926.99	1.85	69	20.56	11878.94	1.07	113	45.00	4260.02	0.45
26	-3.33	37813.46	1.84	70	21.11	11585.67	1.06	114	45.56	4168.63	0.44
27	-2.78	36735.53	1.83	71	21.67	11300.63	1.04	115	46.11	4079.48	0.43
28	-2.22	35691.94	1.82	72	22.22	11023.53	1.02	116	46.67	3992.49	0.42
29	-1.67	34681.49	1.81	73	22.78	10754.14	1.00	117	47.00	3907.61	0.41
30	-1.11	33703.02	1.79	74	23.33	10492.21	0.98	118	47.88	3824.78	0.40
31	-0.56	32755.43	1.78	75	23.89	10237.51	0.96	119	48.33	3743.96	0.40
32	0.00	31837.65	1.77	76	24.44	9989.83	0.95	120	48.89	3665.67	0.39
33	0.56	30948.64	1.75	77	25.00	9748.93	0.93	121	49.44	3588.08	0.38
34	1.11	30087.41	1.74	78	25.56	9514.63	0.91	122	50.00	3512.92	0.37
35	1.67	29253.02	1.72	79	26.11	9287.72	0.89	123	50.56	3439.56	0.36
36	2.22	28444.53	1.71	80	26.67	9064.99	0.88	124	51.11	3367.95	0.36
37	2.78	27661.07	1.69	81	27.22	8849.27	0.86	125	51.67	3298.03	0.35
38	3.33	26901.79	1.67	82	27.78	8639.38	0.84	126	52.22	3229.76	0.34
39	3.89	26165.86	1.66	83	28.33	8435.31	0.83	127	52.78	3163.10	0.34
40	4.44	25452.49	1.64	84	28.89	8236.36	0.81	128	53.33	3098.01	0.33
41	5.00	24760.93	1.62	85	29.44	8042.90	0.80	129	53.89	3031.44	0.32
42	5.56	24090.44	1.60	86	30.00	7854.60	0.78	130	54.44	2972.36	0.31
43	6.11	23440.31	1.58	87	30.56	7671.30	0.77	131	55.00	2911.73	0.31
44	6.67	22809.87	1.57	88	31.11	7492.86	0.75	132	55.56	2852.50	0.30
45	7.22	22198.45	1.55	89	31.67	7319.12	0.74	133	56.11	2794.65	0.30
46	7.78	21605.43	1.53	90	32.22	7149.96	0.72	134	56.67	2738.13	0.29
47	8.33	21030.19	1.51	91	32.78	6985.24	0.71	135	57.22	2682.92	0.28
48	8.89	20472.15	1.49	92	33.33	6824.82	0.69	136	57.78	2928.98	0.28
49	9.44	19930.75	1.47	93	33.89	6668.58	0.68	137	58.33	2576.27	0.27
50	10.00	19405.43	1.45	94	34.44	6516.41	0.67	138	58.89	2524.77	0.27
51	10.56	18895.66	1.43	95	35.00	6368.17	0.65	139	59.44	2474.44	0.26
52	11.11	18400.95	1.41	96	35.56	6223.77	0.64	140	60.00	2425.25	0.26
53	11.67	17920.80	1.39	97	36.11	6083.08	0.63	141	60.56	2377.18	0.25
54	12.22	17454.74	1.37	98	36.67	5946.01	0.61	142	61.11	2330.20	0.25
55	12.78	17002.31	1.35	99	37.22	5812.44	0.60	143	61.67	2284.27	0.24
56	13.33	16563.08	1.33	100	37.78	5682.28	0.59	144	62.22	2239.38	0.24
57	13.89	16136.61	1.31	101	38.33	5555.43	0.58	145	62.78	2195.49	0.23
58	14.44	15622.51	1.29	102	38.89	5431.80	0.56	146	63.33	2152.59	0.23
59	15.00	15320.36	1.27	103	39.44	5311.29	0.55	147	63.89	2110.64	0.22
60	15.56	41929.80	1.25	104	40.00	5193.82	0.54	148	64.44	2069.63	0.22
61	16.11	14550.46	1.23	105	40.56	5079.31	0.53	149	65.00	2029.52	0.21
62	16.67	14181.97	1.21	106	41.11	4967.66	0.52	150	65.56	1990.31	_
63	17.22	13824.00	1.19	107	41.67	4858.80	0.51		Value	es should be wit	thin +/- 5%

Return Air Temperature Sensor

 Table 48.
 Thermal resistance and voltage table

TEMP ⁰ F	TEMP ⁰ C	THERMISTOR RESISTANCE (OHMS)	Volts DC at J13 pins 1&2 (pin to pin)
40	4.4	25452	1.85
45	7.2	22198	1.70
50	10.0	19405	1.55
55	12.8	17002	1.41
60	15.6	14930	1.28
65	18.3	13138	1.17
70	21.1	11586	1.06
75	23.9	10238	0.96
80	26.7	9065	0.87
85	29.4	8043	0.78
90	32.2	7150	0.71
95	35.0	6368	0.64
100	37.8	5682	0.58
105	40.6	5079	0.53
110	43.3	4548	0.48
115	46.1	4079	0.43
120	48.9	3665	0.39
125	51.7	3298	0.35

Stepper Motor Tables —For use with Low and High Superheat Troubleshooting

Table 1 — For use with FIG 1				
Common Terminal	to Terminal	Measurement		
Gray	Orange	46 ohms		
Gray	Red	46 ohms		
Gray	Yellow	46 ohms		
Gray	Black	46 ohms		

Table 2— For use with FIG 2				
Common Terminal	to Terminal	Measurement		
Brown	Blue	46 ohms		
Brown	Yellow	46 ohms		
Red	Orange	46 ohms		
Red	White	46 ohms		

Sequence of Operation

5TAMX can be used in either Link Communicating mode or 24 volt mode. In Link Communicating mode, all configurations are made by using the configuration menu in the User Interface (UX360) or from the Diagnostic Mobile App. In 24 volt mode, basic operation is configured from the factory with no defaults for accessories. All configurations for blower delays, accessories etc., need accomplished using the Diagnostic Mobile App.

Abbreviations

- AHC = Air Handler Control
- EEV = Electronic Expansion Valve
- **Note:** When in communicating mode, the system controller (SC360) controls indoor airflow and EEV starting position.
- **Note:** Use variable speed outdoor Sequence of Operation in conjunction with the 5TAMX Sequence of Operation.

The installing and servicing technician should have an understanding of the sequence of operation to be able to properly setup and diagnose functions of the air handler.

See unit, electric heat, and field wiring diagrams for additional information.

Continuous Fan

- *Important:* If the indoor air exceeds 60% relative humidity or simply feels uncomfortably humid, it is recommended that the indoor fan only be used in the AUTO mode.
- When a fan request is received from the thermostat, the AHC sends a command to the serial communicating blower motor to run. Airflow can be adjusted through the thermostat.
- 2. Humidity Control When enabled at the thermostat, this feature will disable any blower off delays and disable continuous fan mode when the humidity is above the dehumidification set point. This will help prevent coil condensation from being evaporated back into the air stream.

Cooling Mode - 24 Volt Mode

Cooling Mode

- When a request for 1st stage cooling is received, the AHC sends a command to the serial communicating blower motor to run at 1st stage cooling airflow. (Delay profiles found in the UX360 User Interface or Diagnostics Mobile App may change blower motor timing and actual airflow demand)
- 2. The AHC will receive input from the two temperature sensors and start to control 1st stage superheat.
- 3. When a request for 2nd stage cooling is received, the AHC sends a command to the serial communicating blower motor to run at 100 % cooling airflow.

- 4. The AHC will now control superheat for 2nd stage.
- 5. When a request for cooling is removed, the AHC will turn off the blower motor after any user selected fan-off delays have expired.
- **Note:** Delay profiles found in the UX360 User Interface or Diagnostics Mobile App may change blower motor timing and actual airflow demand.

Heat pump (compressor only) - 24 Volt Mode

Heat pump (compressor only)

- 1. When a request for 1st stage heat is received, the AHC sends a command to the serial communicating blower motor to run at 1st stage heating airflow.
- 2. The AHC will drive the EEV to the heating position and refrigerant will flow in the reverse cycle.
- 3. When a request for 2nd stage mechanical heat is received, the AHC sends a command to the serial communicating blower motor to run at 100 % heating airflow.
- 4. When a request for heat pump is removed, the AHC will turn off the blower motor after any user selected fan-off delays have expired.
- **Note:** Delay profiles found in the UX360 User Interface or Diagnostics Mobile App may change blower motor timing and actual airflow demand.

Electric Heat

- When a request for electric heat is received, the AHC will energize the on board 24 volt relays per the amount of heat requested from the thermostat and the size of the heater installed.
- 2. The AHC sends a command to the serial communicating blower motor to run proper airflow and close the blower interlock relay on the AHC.

Hydronic Heat

- 1. When a request for hydronic heat is received, the AHC will energize the on board W1 relay.
- 2. The AHC sends a command to the serial communicating blower motor to run at the requested CFM.

Defrost

- 1. The OD unit will initiate defrost and send a message to the AHC.
- The AHC will communicate to the EEV that the OD is in defrost and the EEV will start to control the correct superheat.
- 3. Electric or hydronic heat will be energized to help temper the air.

Freeze Protection

- The AHC control has the ability to sense when the indoor coil is beginning to ice. If this event should occur, the AHC will send a message to de-energize the OD unit.
- 2. The indoor blower motor will continue running to aid in defrosting the coil.
- 3. After 5 minutes, the OD will be turned back on.

5TAMX has the ability to use the Diagnostics Mobile App to access internal features. The Diagnostics Mobile App connects to the unit through a Bluetooth Low Energy (BLE) connection using an onboard radio which talks to a app that is loaded to the technician's smart phone or tablet device.

The Diagnostics Mobile App can be found in the device app store when searching Trane Diagnostic or American Standard Diagnostics or by scanning a QR code that is located on the inside of the blower door.

24 volt mode:

Diagnostics Mobile App is available to read fault codes and to monitor live internal operation. Diagnostics Mobile App is necessary to configure accessories and external switches. If you choose to configure blower delays or to change CFM/ton etc., this will need done from the Diagnostics Mobile App.

Replacement Air Handler Control boards are generic and need to be configured. The Diagnostics Mobile App is the easiest way to accomplish this by simply choosing the model number of your unit in the configuration menu. The unit will then run with the correct blower speeds and EEV control etc. As a backup- there is a button press method for programming the unit size. This information is included in this units Service Facts and in the Installation Guide for the replacement Air Handler Control board. For 2 stage outdoor units, 1st stage airflow will be 70% of maximum airflow. Unit comes defaulted for HP operations and can be changed to AC by moving dipswitch #1 from OFF to ON. All other adjustments/ configurations need completed using the configuration menu in the Diagnostics Mobile App.

The BLE Radio will be on continuously until 24 hours after the user setup wizard has been completed inside the Diagnostics Mobile App. To turn the radio back on, simply push the S1 switch 1 time and is located on the bottom of the AHC. It will stay on for 24 hours and then automatically turn off.

Link Communicating Mode:

The BLE radio on the Air Handler Control board is 1 of 3 radios in the complete system and is used as an access point for the Diagnostics Mobile App. The Diagnostics Mobile App will continually monitor which radio provides the best signal strength and automatically switch to that stronger signal live. In communicating mode, the Diagnostics Mobile App Monitor Menu will show complete system operation. Diagnostics Mobile App can be used to configure accessories and external switches as well as run test modes, read active and historical faults and configure several unit parameters.
Checkout Procedures

The final phase of the installation is the system Checkout Procedures. The following list represents the most common items covered in a Checkout Procedure. Confirm all requirements in this document have been met.

All wiring connections are tight and properly secured.	Supply registers and return grilles are open, unobstructed, and air filter is installed.
Voltage and running current are within limits.	Indoor blower and outdoor fan are operating smoothly and without
Heater size resistor installed in the electric heat harness if used.	obstruction.
All refrigerant lines (internal and external to equipment) are isolated, secure, and not in direct contact with each other or structure.	Indoor blower motor set on correct speed setting to deliver required CFM.
All braze connections have been checked for leaks. A vacuum of 350	Cover panels are in place and properly tightened.
microns provides confirmation that the refrigeration system is leak free and dry.	For gas heating systems, manifold pressure has been checked and all gas line connections are tight and leak free.
Final unit inspection to confirm factory tubing has not shifted during shipment. Adjust tubing if necessary so tubes do not rub against each	For gas heating systems, flue gas is properly vented.
other or any component when unit runs.	System functions safely and properly in all modes.
Ductwork is sealed and insulated.	Owner has been instructed on use of system and given manual.
All drain lines are clear with joints properly sealed. Pour water into drain pan to confirm proper drainage.	

Troubleshooting

Troubleshooting Low Superheat Perform these steps if Superheat is less than 3°F

Notices

FCC Notice

Contains FCC ID: WAP3025

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. The antenna(s) used for this transmitter must be installed to provide a separation distance of at least 20 cm from all persons and must not be collocated or operating in conjunction with any other antenna or transmitter. This equipment has been tested and found to comply with the limits for Class B Digital Device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures.

- Reorient or relocate the receiving antenna
- Increase the separation between the equipment and receiver
- Connect the equipment into an outlet on a circuit
 different from that to which the receiver is connected
- Consult the dealer or an experienced radio/TV technician for help

Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

IC Notice

Contains IC ID: 7922A-3025

This device complies with Industry Canada license exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Le present appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de license. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil de doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

About Trane and American Standard Heating and Air Conditioning

Trane and American Standard create comfortable, energy efficient indoor environments for residential applications. For more information, please visit www.trane.com or www.americanstandardair.com.

The manufacturer has a policy of continuous data improvement and it reserves the right to change design and specifications without notice. We are committed to using environmentally conscious print practices.