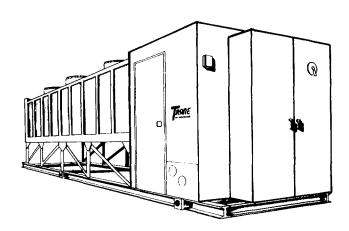


SERVICE LITERATURE FILE INFORMATION DIVISION TAB - TRANE REFRIGERATION PRODUCTS

PRODUCT TAB - LIQUID CHILLERS-CENTRIFUGAL Centravac


MODEL TAB - Model CVAC-Heat Recovery LITERATURE ITEM - Installation LITERATURE FILE NO.

CVAC-IN-2

INSTALLATION

Since The Trane Company has a policy of continuous product improvement, it reserves the right to change specifications and design without notice. The installation and servicing of the equipment referred to in this booklet should be done by qualified experienced technicians.

AUGUST, 1979

HEAT RECOVERY AIR COOLED CENTRAVAC® LIQUID CHILLERS CENTRIFUGAL

EXTENDED CAPACITY
HIGH EFFICIENCY
HIGH AMBIENT

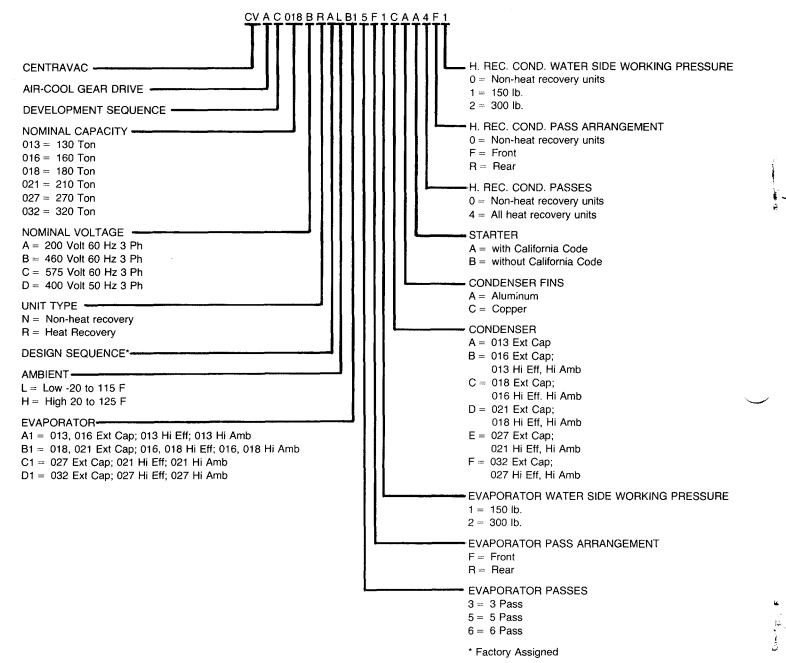
MODELS

CVAC-013

CVAC-016

CVAC-018

CVAC-021


CVAC-027

CVAC-032

TABLE OF CONTENTS

ITEM PAG	žΕ
Model Number Description2	
Shipment3	
Unit Dimensions4	
Flow Arrangements6	
Pass Arrangements and Dimensions7	
Unit Weights26	
Foundation Recommendations26	
Unit Location and Clearances31	
Rigging32	
Chilled Water Piping33	
Water Treatment33	1
Low Ambient Recommendations34	
Wiring Recommendations35	
Power Supply Circuit Description	
Chilled Water Pump Interlock42	
Fans and Fan Drives44	
Initial Start-Up44	

MODEL NOMENCLATURE

UNIT MODEL NUMBER DESCRIPTION

Following is a description of the CVAC Heat Recovery Air Cooled CenTraVac model number. Each CVAC has on its nameplate a 22 digit model number. With this model number and the descriptive diagram the major components may be identified. Other important information is also included. For example, in the 12th and 13th digit places the letters B1 are found. By following the correct line it is noted that if the evap-

orator is the B1 type, it is used on 180 and 210 ton Extended Capacity units, and on the 160 and 180 ton High Efficiency and High Ambient units. This numbering system will aid not only in ordering the correct parts but also in servicing the Heat Recovery Air Cooled CenTraVac. Familiarization with the model number is good standard operating procedure.

UNIT SHIPMENT -

The Model CVAC Heat Recovery Air Cooled CenTraVac is shipped as a single outdoor package which is completely factory-assembled, piped, wired and charged with refrigerant. It includes a compressor, evaporator, heat recovery condenser, air-cooled condenser, starter and weathertight equipment room, all mounted on a continuous structural steel base. Protective panels are placed over the outside of the condenser coil for protection during shipping and must be removed once the unit has been set in place. The only field connections required are external control circuitry, system water piping and electrical power supply. Instructions for making these field connections are included in this manual.

Figures 1 through 6 illustrate the units and give dimensional

information for these machines. Application of the information given in these figures and subsequent figures and tables is based on the nominal size of the unit, the type of evaporator and the type of condenser used. Cross reference the unit model number found on the unit nameplate with the unit model number description found on Page 2 to determine which figure or table applies to the unit being installed.

A loose parts box is shipped with the unit and is strapped to a center support under the unit. This box contains the following items:

- 12 Gallons oil
- 1 Set Lifting Components

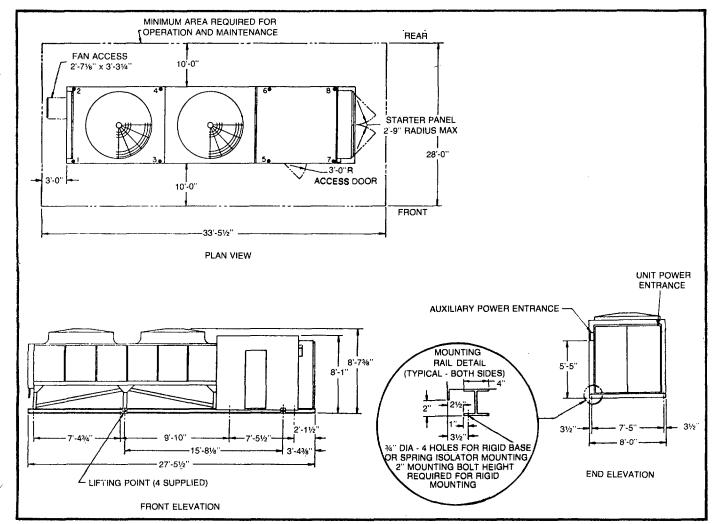


FIGURE 1 - Unit Dimension For: CVAC-013 with A1 Evaporator and A Condenser

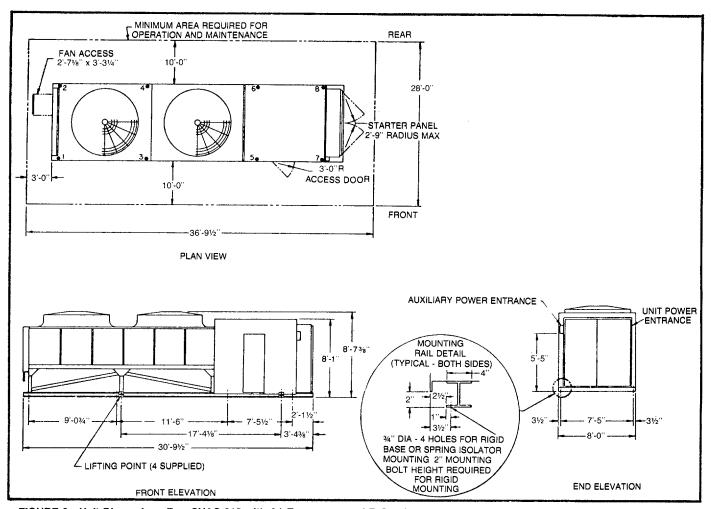


FIGURE 2 - Unit Dimensions For: CVAC-013 with A1 Evaporator and B Condenser CVAC016 with A1 Evaporator and B Condenser

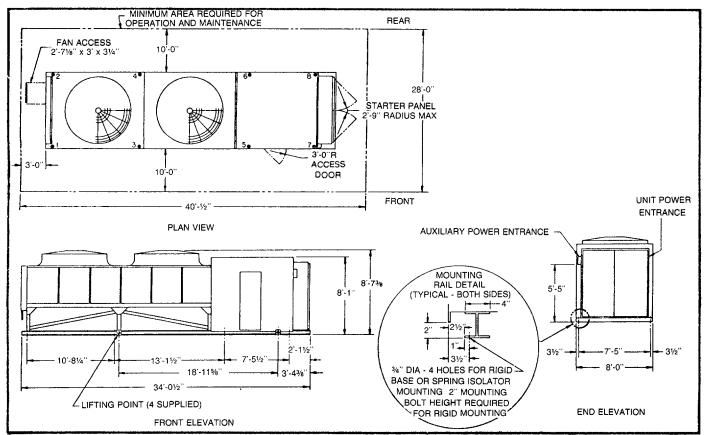


FIGURE 3 - Unit Dimensions For: CVAC with B1 Evaporators and C Condensers

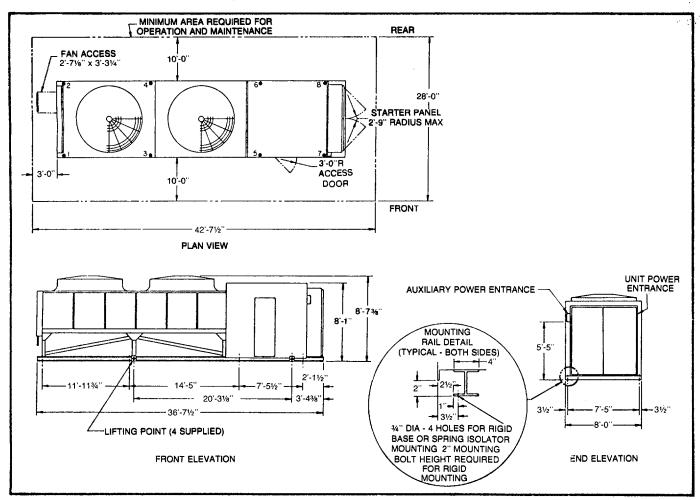


FIGURE 4 - Unit Dimensions For: CVAC-018 with B1 Evaporators and D Condensers CVAC 021 with B1 Evaporators and D Condensers

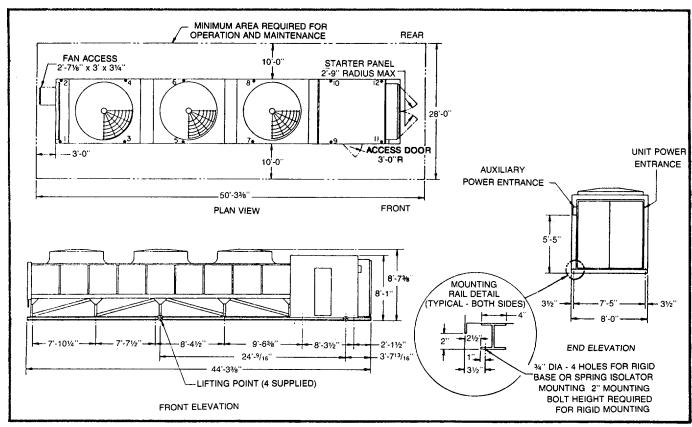


FIGURE 5 - Unit Dimensions For: CVAC-021 with C1 Evaporators and E Condensers CVAC-027 with C1 Evaporators and E Condensers

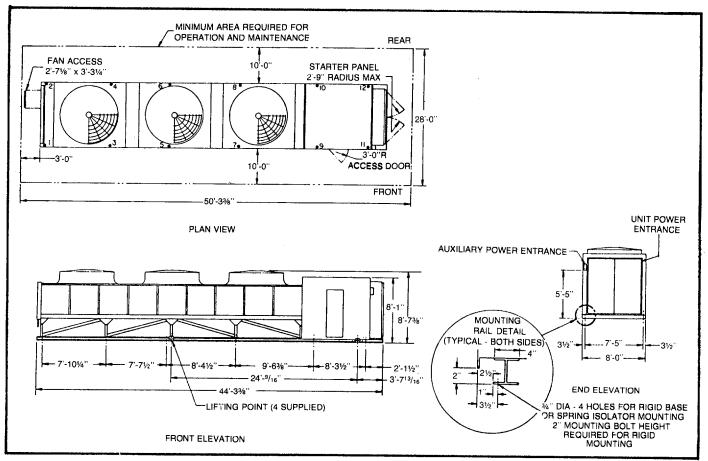


FIGURE 6 - Unit Dimensions For: CVAC-027 with D1 Evaporators and F Condensers CVAC-032 with D1 Evaporators and F Condensers

FLOW ARRANGEMENTS

Evaporator

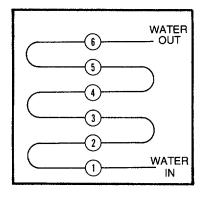
Three chilled liquid flow arrangements are available for the Heat Recovery Air Cooled CenTraVac evaporator. There are six-pass, five-pass and three-pass evaporators available. When installing the unit, pumps and piping must be sized to provide the proper flow rate to the unit. Table 1 lists the evaporator flow rate requirements in terms of minimum gallons per minute and maximum gallons per minute.

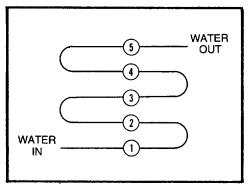
NOTE: The front of the evaporator is the door side of the equipment room.

Six-pass evaporators have same side connections for return and supply chilled liquid. Either front or rear connections are available with six-pass evaporators.

The five-pass and three-pass evaporators have opposite side connections for the return and supply chilled liquid. With five passes, the inlet must be specified as front or rear on the order.

On the six-pass and five-pass flow arrangements the inlet to


the evaporator is always the lower connection and the outlet to the cooling load is always the top connection.


Either connection may be used as the inlet to the evaporator in three-pass evaporators since both connections are at the same height.

Figures 7, 8 and 9 represent different pass arrangements.

TABLE 1 - Evaporator Flow Rate Requirements

Evap	6-P	ass	5-P	ass	3-Pass			
Туре				Max GPM		Max GPM		
A1	130	392	155	471	376			
B1 C1	174 220	527 668	209 265	632 800		1113 1394		
D1	260	788	312	945				

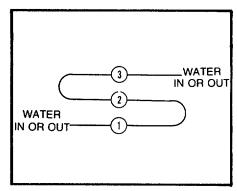


FIGURE 7 - Six-Pass Arrangement

FIGURE 8 - Five-Pass Arrangement

FIGURE 9 - Three-Pass Arrangement

Heat Recovery Condenser

The heat recovery condensers used on the Heat Recovery Air Cooled CenTraVac are of four-pass design. This pass arrangement has same side connections and is available with either front or rear connections. The front connection of the heat recovery condenser is the door side of the equipment room. The inlet to the heat recovery condenser is the lower connection and the outlet is the top connection. Piping and pumps must supply the proper liquid flow rates. Table 2 lists flow rate requirements.

Figure 10 illustrates the pass arrangement.

NOTE: It is the responsibility of the installing contractor to flush out all piping before connecting to the evaporator or heat recovery condenser. Debris left in the piping will cause equipment mal-performance and heat transfer problems due to plugging of tubes or tube erosion on the water side.

TABLE 2 - Heat Recovery Condenser Flow Requirements

Condenser Type	Minimum GPM	Maximum GPM			
Α	111	420			
В	134	507			
С	156	589			
D	178	673			
E	221	837			
F	266	1009			

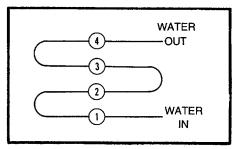


FIGURE 10 - Heat Recovery Condenser Pass Arrangement

WATER PASS ARRANGEMENTS AND DIMENSIONS

Figures 11 through 28 illustrate the different pass arrangements and dimensions. The dimensions given are to be used in bringing water piping to the evaporator and heat recovery condenser. Consult the unit nameplate and the unit model

number description on Page 2 of this manual for correct unit identification. This is important to insuring the correct system piping arrangements and connections.

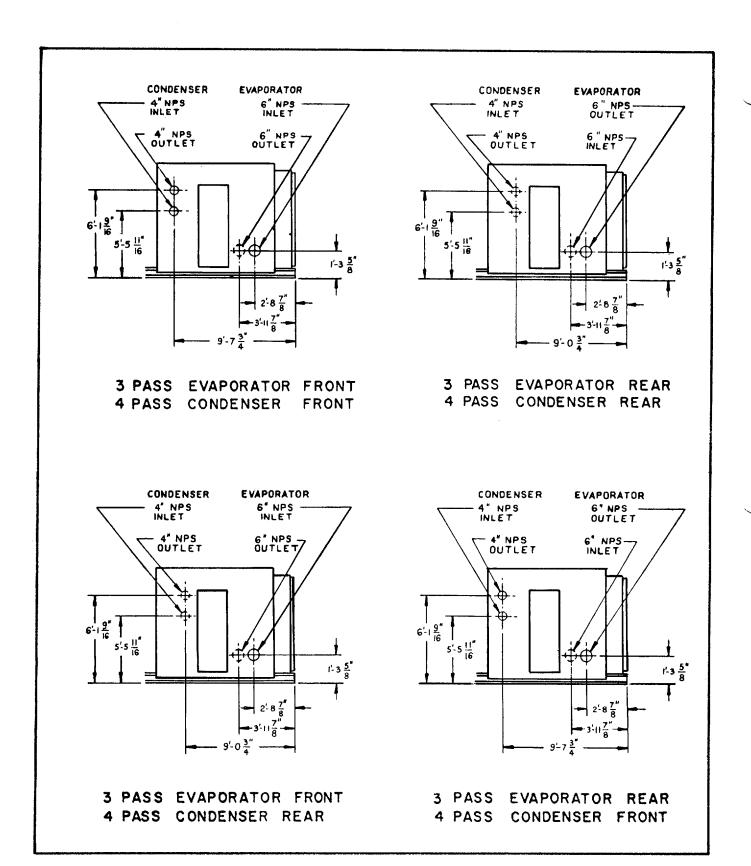


FIGURE 11 - Water Pass Arrangements and Dimensions, CVAC-013-A1-A

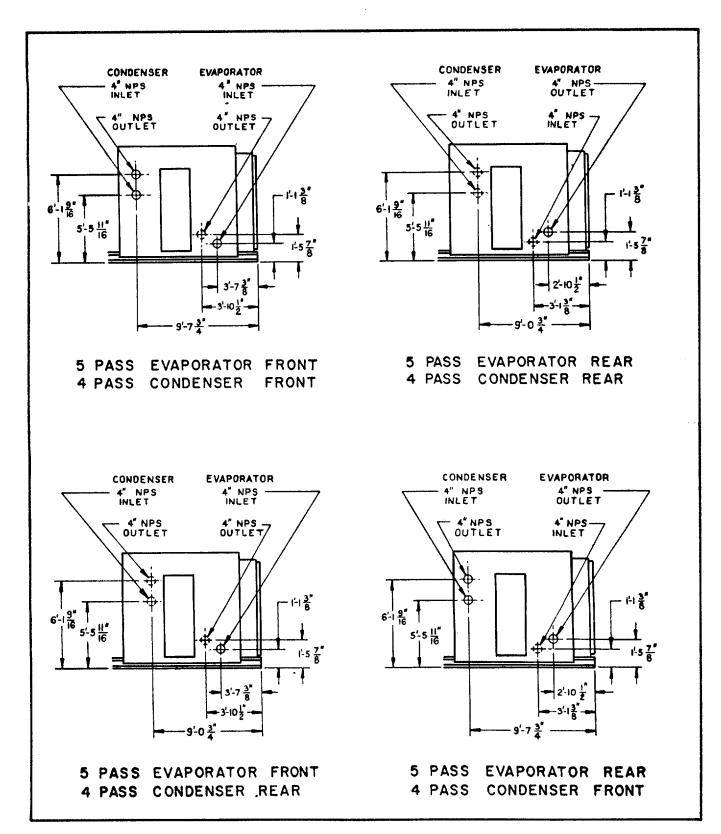


FIGURE 12 - Water Pass Arrangements and Dimensions, CVAC-013-A1-A

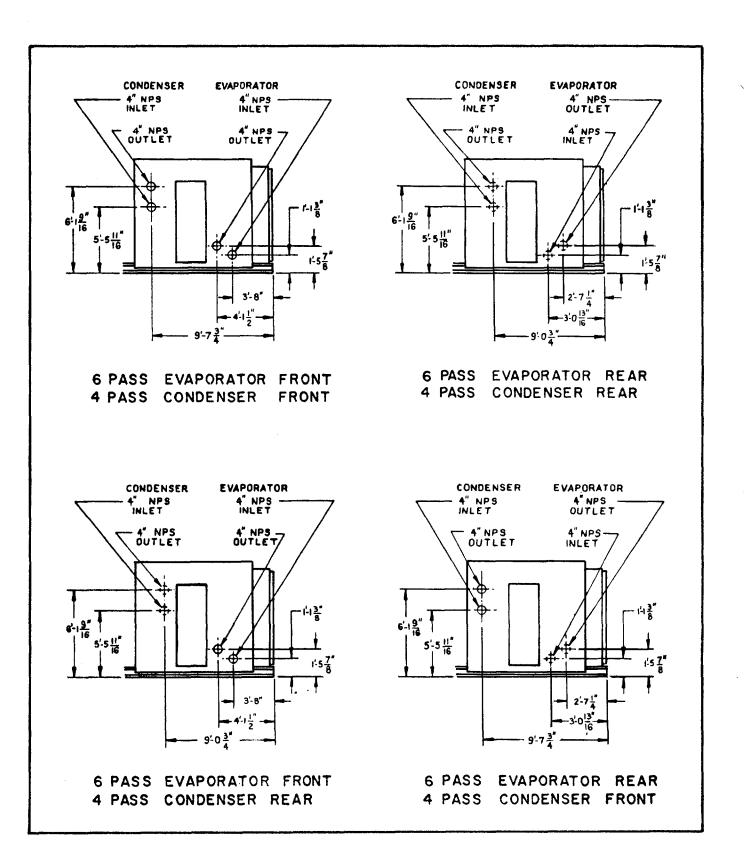


FIGURE 13 - Water Pass Arrangements and Dimensions, CVAC-013-A1-A

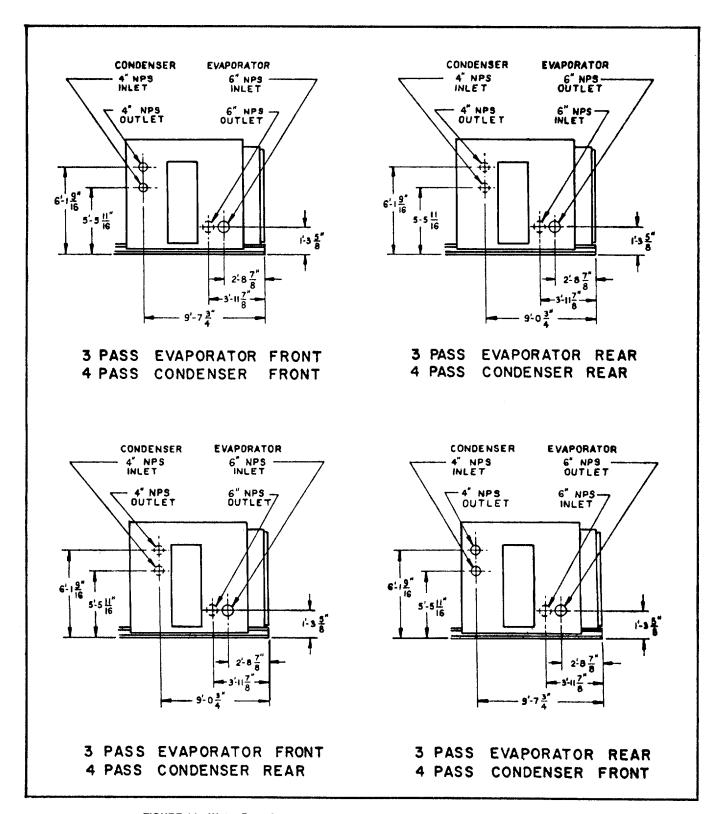


FIGURE 14 - Water Pass Arrangements and Dimensions, CVAC-013-A1-B, CVAC-016-A1-B

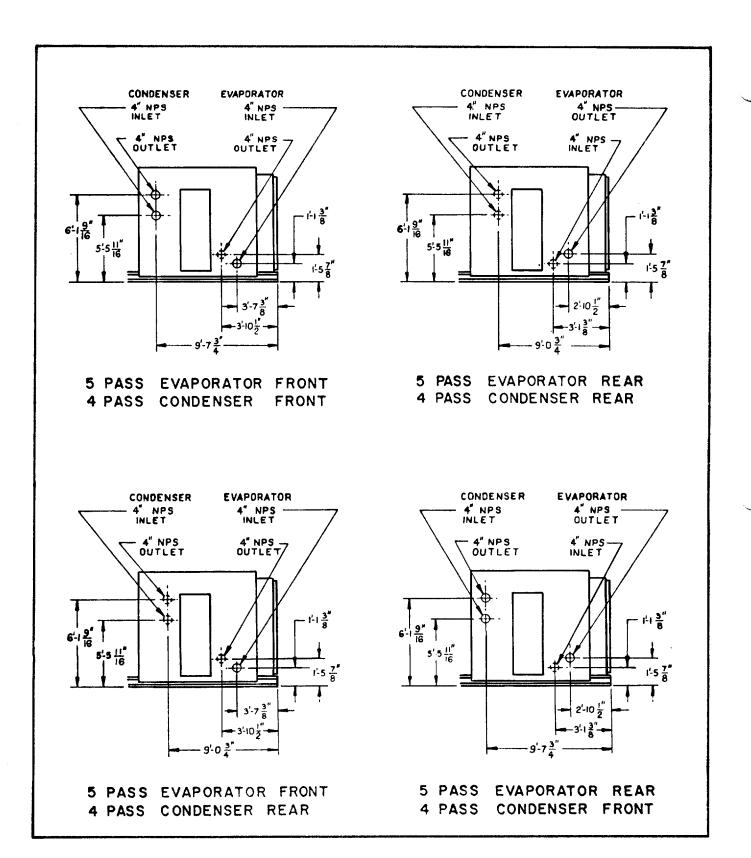


FIGURE 15 - Water Pass Arrangements and Dimensions, CVAC-013-A1-B, CVAC-016-A1-B

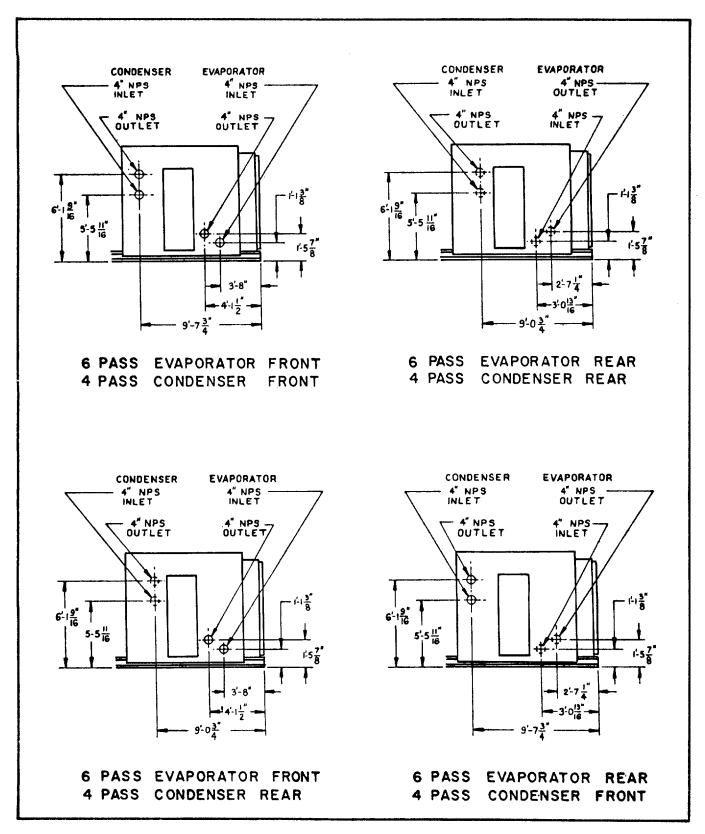


FIGURE 16 - Water Pass Arrangements and Dimensions, CVAC-013-A1-B, CVAC-016-A1-B

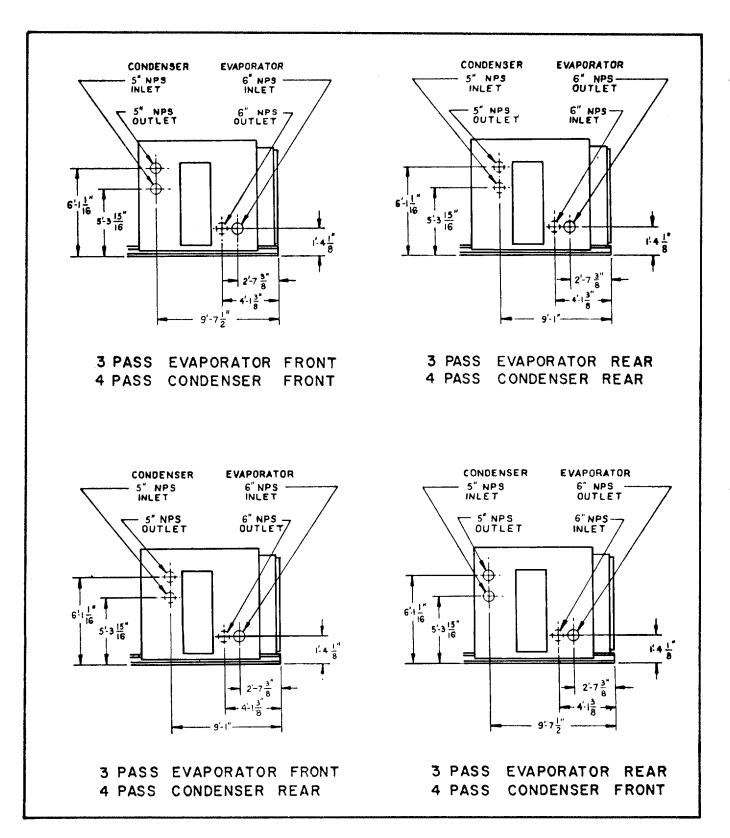


FIGURE 17 - Water Pass Arrangements and Dimensions, CVAC-016-B1-C, CVAC-018-B1-C

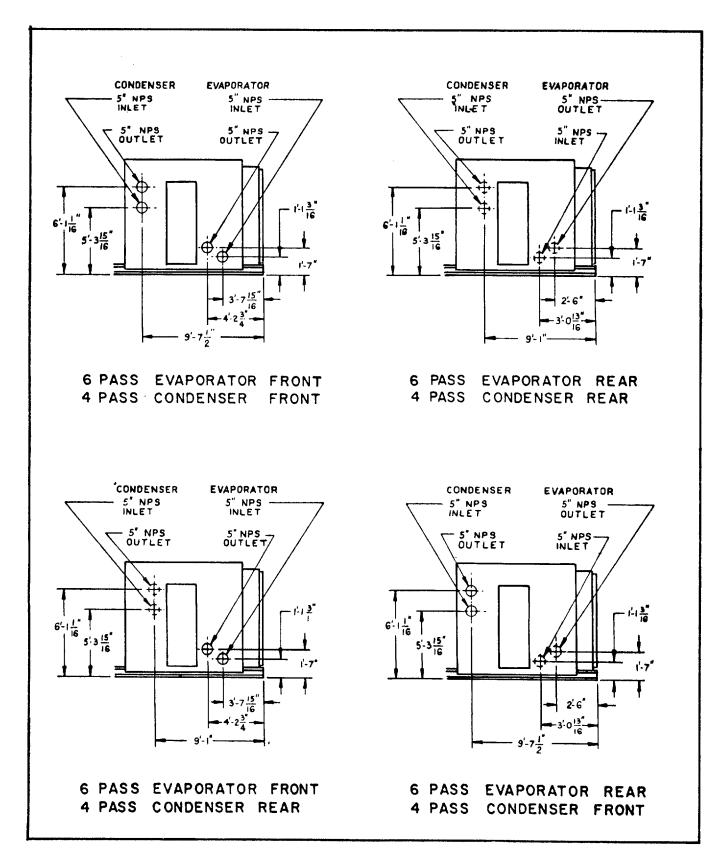


FIGURE 18 - Water Pass Arrangements and Dimensions, CVAC-016-B1-C, CVAC-018-B1-C

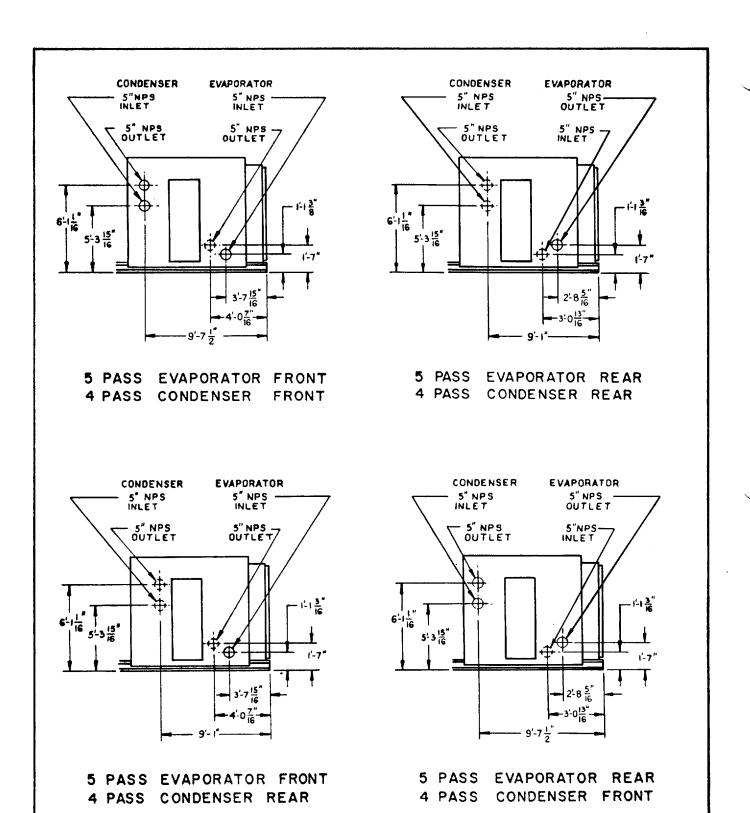


FIGURE 19 - Water Pass Arrangements and Dimensions, CVAC-016-B1-C, CVAC-018-B1-C

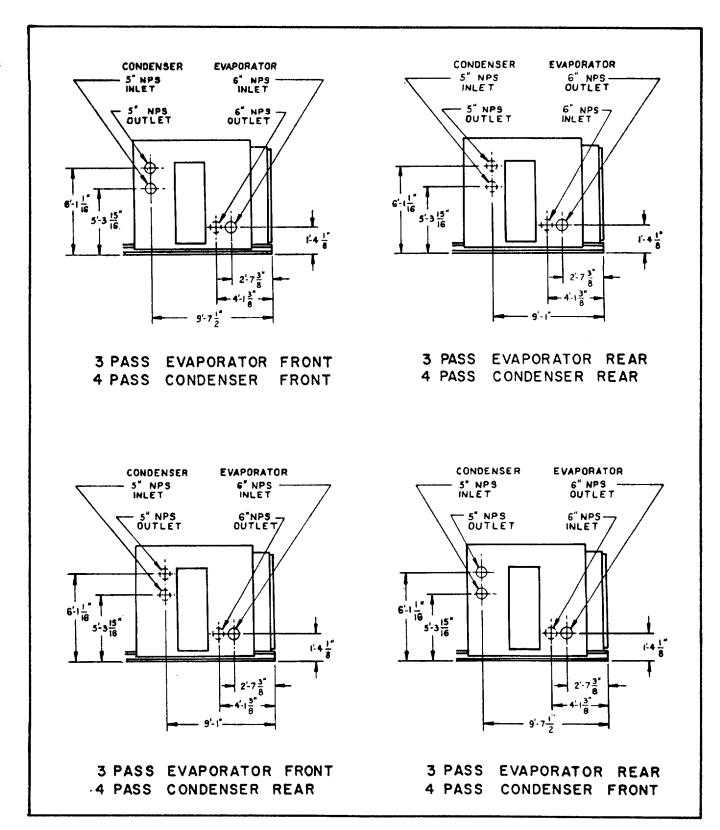


FIGURE 20 - Water Pass Arrangements and Dimensions, CVAC-018-B1-C, CVAC-021-B1-D

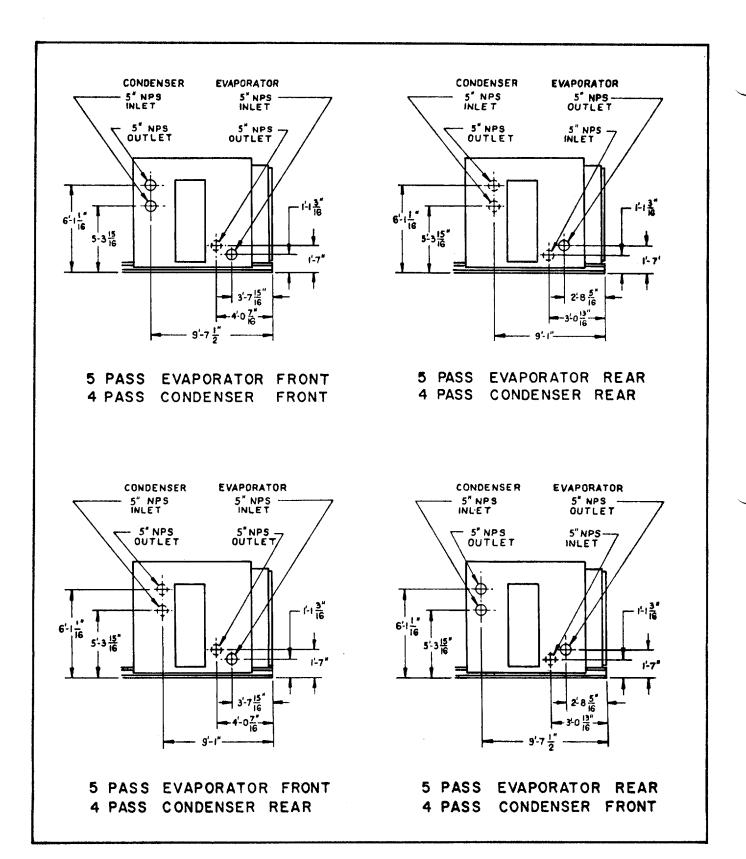


FIGURE 21 - Water Pass Arrangements and Dimensions, CVAC-018-B1-D, CVAC-021-B1-D

FIGURE 22 - Water Pass Arrangements and Dimensions, CVAC-018-B1-D, CVAC-021-B1-D

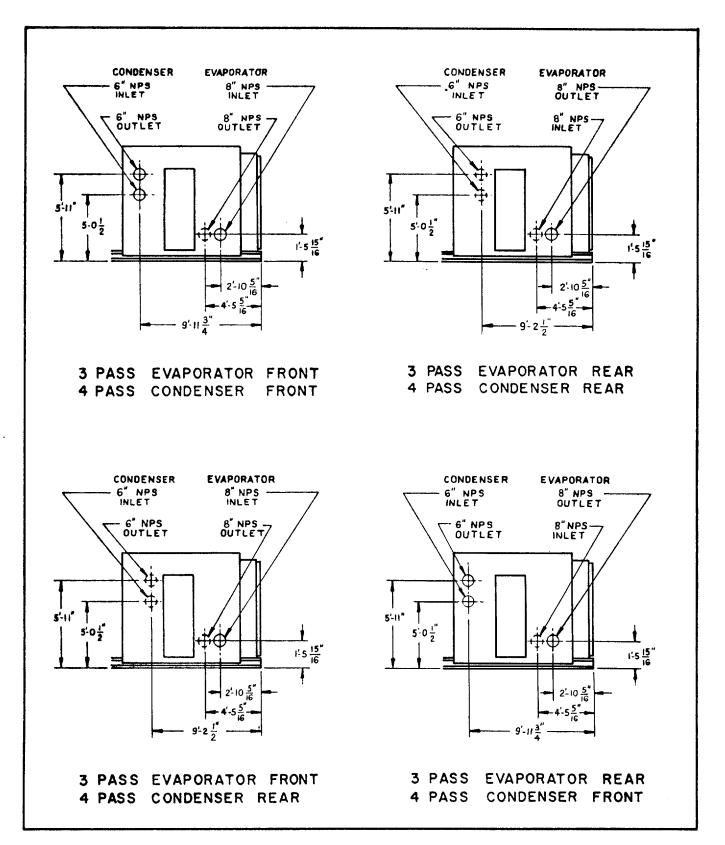


FIGURE 23 - Water Pass Arrangements and Dimensions, CVAC-021-C1-E, CVAC-027-C1-E

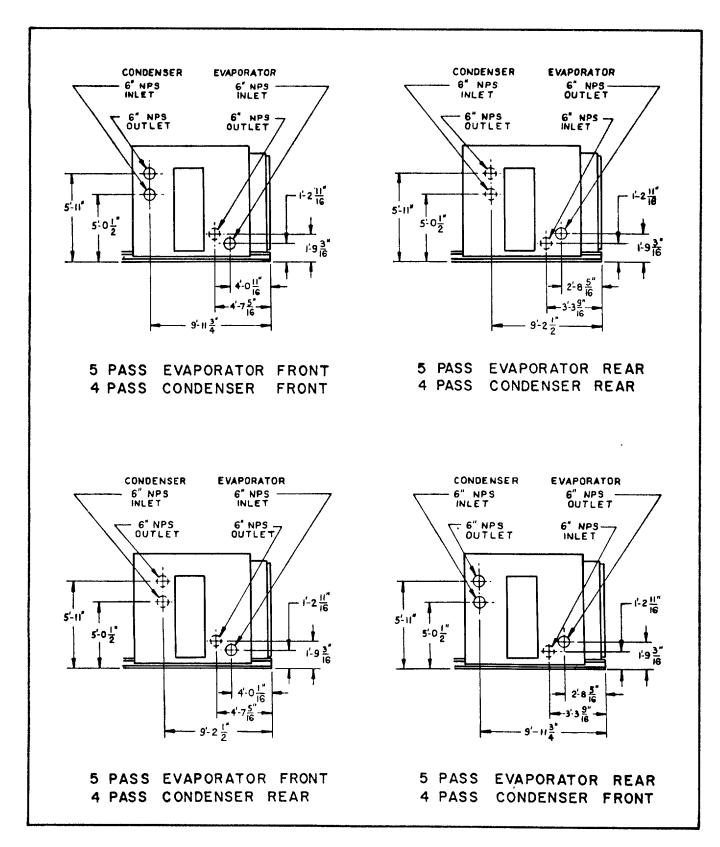


FIGURE 24 - Water Pass Arrangements and Dimensions, CVAC-021,C1-E, CVAC-027-C1-E

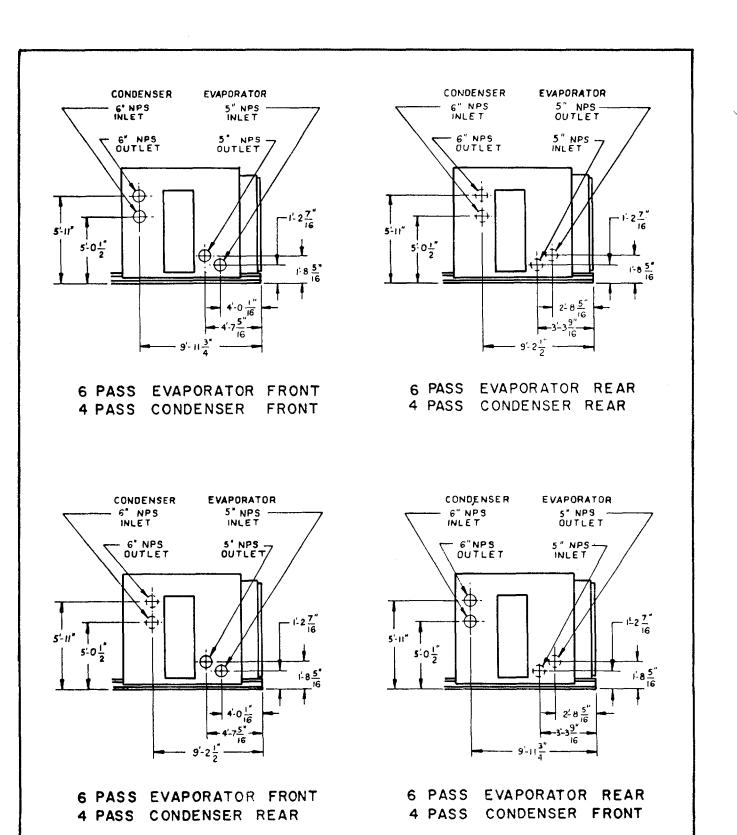


FIGURE 25 - Water Pass Arrangements and Dimensions, CVAC-021-C1-E, CVAC-027-C1-E

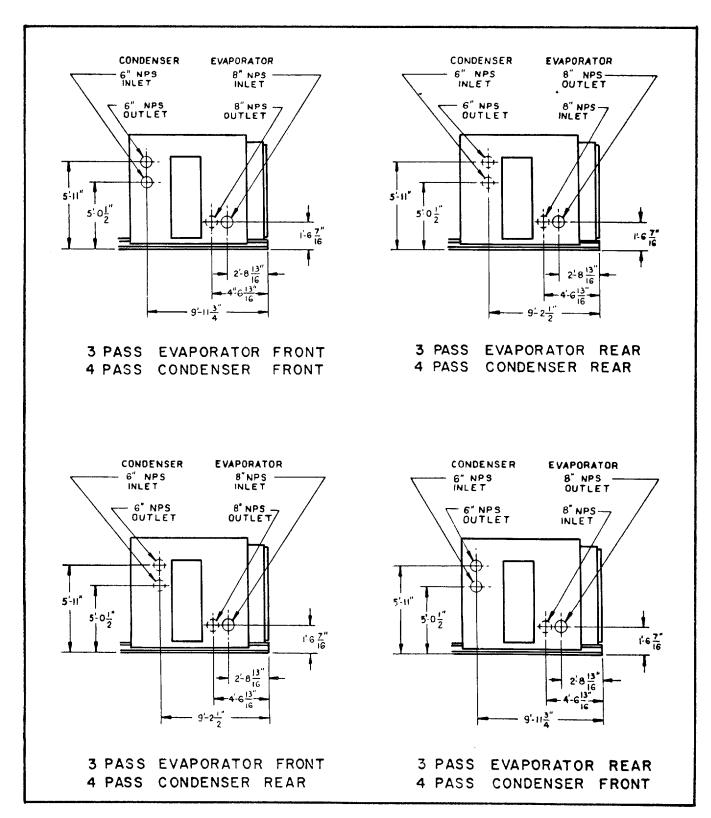


FIGURE 26 - Water Pass Arrangements and Dimensions, CVAC-027-D1-F, CVAC-032-D1-F

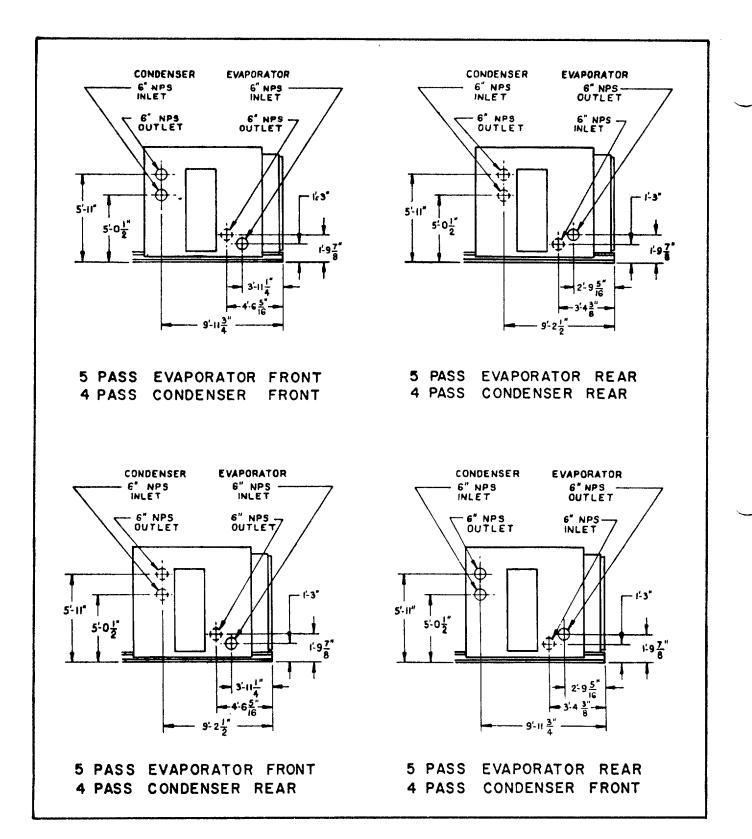


FIGURE 27 - Water Pass Arrangements and Dimensions, CVAC-027-D1-F, CVAC-032-D1-F

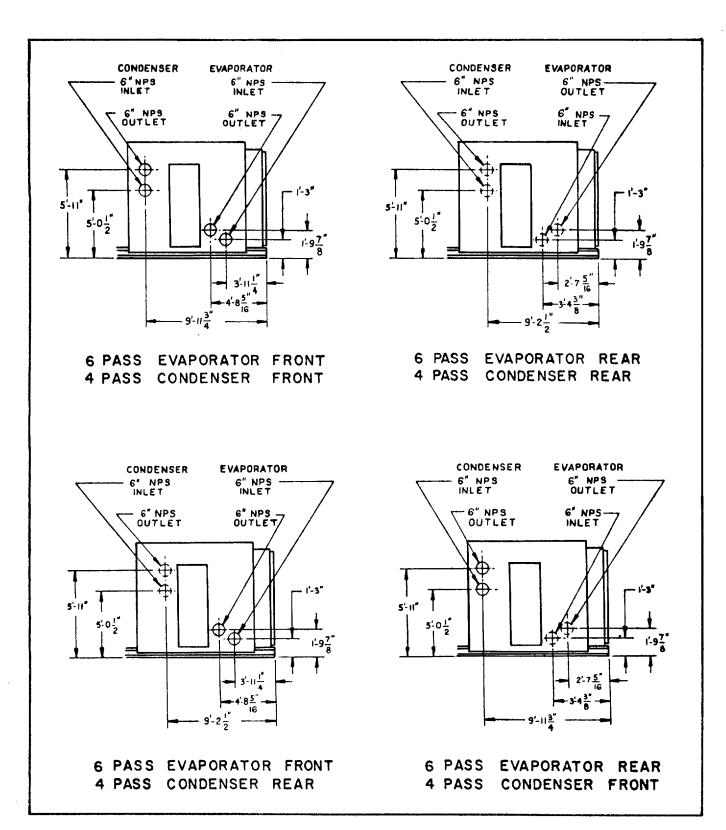


FIGURE 28 - Water Pass Arrangements and Dimensions, CVAC-027-D1-F, CVAC-032-D1-F

Table 3 gives total unit weights. The weights given include refrigerant and oil charges as shipped. The weight of water in the evaporator and heat recovery condenser is not included.

Note that those units which utilize copper fins in the air-cooled condenser are heavier than units with aluminum fins.

TABLE 3 - Unit Weights (Shipping and Operating)

Unit	Weight (lbs.) Aluminum Fins	Weight (lbs.) Copper Fins
CVAC-013-A1-A (Extended Capacity)	18,600	19,600
CVAC-013-A1-B (High Efficiency)	19,800	21,000
CVAC-013-A1-B (High Ambient)	19,800	21,000
CVAC-016-A1-B (Extended Capacity)	19,800	21,000
CVAC-016-B1-C (High Efficiency)	22,050	23,450
CVAC-016-B1-C (High Ambient)	22,050	23,450
CVAC-018-B1-C (Extended Capacity)	22,050	23,450
CVAC-018-B1-D (High Efficiency)	23,150	24,750
CVAC-018-B1-D (High Ambient)	23,150	24,750
CVAC-021-B1-D (Extended Capacity)	23,150	24,750
CVAC-021-C1-E (High Efficiency)	29,700	31,700
CVAC-021-C1-E (High Ambient)	29,700	31,700
CVAC-027-C1-E (Extended Capacity)	29,700	31,700
CVAC-027-D1-F (High Efficiency)	34,100	36,980
CVAC-027-D1-F (High Ambient)	34,100	36,980
CVAC-032-D1-F (Extended Capacity)	34,100	36,980

FOUNDATION RECOMMENDATIONS

Unless set on a roof, it is recommended that the Model CVAC Heat Recovery Air-Cooled CenTraVac be set on a concrete foundation. The concrete slab and the properly prepared sub-grade should be flat and level to within ¼". It should be of sufficient strength to support the concentrated weight of the unit, the connecting water piping filled with water, and the refrigerant and oil charge weight. CVAC shipping and operating weights are given in Table 3, Page 26. Note that units with copper fins in the air-cooled condenser section are heavier. When installed on a concrete foundation, the weight of the foundation should be no less than 1½ times the weight of the entire unit including piping with water, and oil and refrigerant charges. It is recommended that the unit be anchored to the concrete on ground level installations.

When spring isolators are used, the unit must be anchored to the isolators and the isolators anchored to the roof structure or concrete slab.

Heat Recovery Air Cooled CenTraVacs with two air-cooled condenser fans are provided with eight ¾" mounting holes in the bottom of the 4" x 4" steel beams on the bottom of the unit. The positions of the mounting holes are illustrated in Figures 1 through 6. CVAC units with three air-cooled condenser fans are provided with twelve ¾" mounting holes. Tables 4 through 9 and Figures 29 and 30 give weight distribution data at each of the mounting locations. Tables 4 through 9 also indicate the type isolator to be used at each point. The different isolator types are illustrated in Figures 31 through 34.

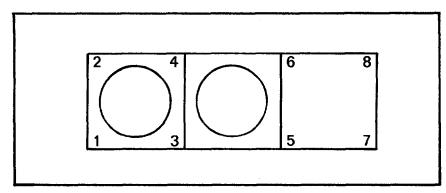


FIGURE 29 - Heat Recovery Air Cooled CenTraVac Weight Distribution Points (Units with Two Air-Cooled Condenser Fans)

TABLE 4 - Weight Distribution (Lbs.) and Isolator Recommendations

	Model																											
Size	Evap	CDS																										
013	A1	A	Extende	ed Capacity																								
					Poi	nt Numbers																						
			1	2	3	4	5	6	7	8																		
Weigh	nt(AL)		850	850	1595	1595	2539	2539	3815	4845																		
Isolate	or	CP-1-31		CP-1-31	CP-1-	CP		ļ									CP-	СР	CP-1-31	CP-1-31	CP-1-31	CP-1-31	CP-2-31	CP-2-31	CP-4-27	CP-4-27	CP-4-31	CP-7-28
Weight(CU)			945	945 945	945 945	945 945	945 945	1785	1785	2634	2634	3815	4845															
Isolate	or	CF	2-1-31	CP-1-31	CP-2-31	CP-2-31	CP-4-27	CP-4-27	CP-4-31	CP-7-28																		

TABLE 5 - Weight Distribution (Lbs.) and Isolator Recommendations

	Model																									
Size	Evap	CDS																								
013	A1	В	High Ef	fficiency																						
013	A1	В	High Ambient		High A	mbient																				
016	A1	В	Extende	ed Capacity																						
					Poi	nt Numbers																				
			1	2	3	4	5	6	7	8																
Weigl	ht(AL)	954		CP-2-27												954	954	954	954	954	1823	1823	2653	2653	3940	5000
Isolat	or		CP-													CP-				-2-27	CP-2-27	CP-2-32	CP-2-32	CP-4-28	CP-4-28	CP-4-32
Weigl	ht(CU)		069		1069	2053	2053	2768	2768	3940	5000															
Isolator C			2-2-27	CP-2-27	CP-2-32	CP-2-32	CP-4-28	CP-4-28	CP-4-32	CP-7-28																

TABLE 6 - Weight Distribution (Lbs.) and Isolator Recommendations

	Model									
Size	Evap	CDS								
016	B1	С	High Ef	ficiency						
016	B1	С	High Ar	mbient						
018	B1	С	Extende	ed Capacity						
					Poi	nt Numbers				
			1	9		nt Numbers	5	6	7	Ω
			1	2	3	4	5	6	7	8
Weigl	ht(AL)	1	1 065	2 1065		1	5 2965	6 2965	7 4370	8 5510
Weigl Isolat			1 065 2-2-27		3	4				
Isolat		CF		1065	3 2055	4 2055	2965	2965	4370	5510

TABLE 7 - Weight Distribution (Lbs.) and Isolator Recommendations

	Model									
Size	Evap	CDS								
018	B1	D	High Ef	ficiency						
018	В1	D	High Ambient							
021	B1	D	Extende	ed Capacity						
		ļ			~ .					
			*****		Poi	nt Numbers		· · · · · · · · · · · · · · · · · · ·		
			1	2	3	4	5	6	7	8
Weigl	ht(AL)	1	1	2 1157			5 3108	6 3108	7 4490	8 5650
		 	1 157 2-2-28		3	4			·	5650
Isolat		CF		1157	3 2240	4 2240	3108	3108	4490	

TABLE 8 - Weight Distribution (Lbs.) and Isolator Recommendations

	Model	100												
Size	Evap	CDS												
021	C1	E	High E	Efficiency										
021	C1	E	High A	Ambient										
027	C1	E												
							Poir	nt Numbers						
		1		2	3	4	5	6	7	8	9	10	11	12
Weigl	nt(AL)	808	5	805	1530	1530	1530	1530	1530	1530	3505	3505	5300	6600
Isolat	or	CP-2	-26 (CP-2-26	CP-2-31	CP-2-31	CP-2-31	CP-2-31	CP-2-31	CP-2-31	CP-4-31	CP-4-31	CP-7-28	CP-7-31
Weigl	nt(CU)	900)	900	1720	1720	1720	1720	1720	1720	3600	3600	5300	6600
Isolati	or	CP-2	-26 (CP-2-26	CP-2-31	CP-2-31	CP-2-31	CP-2-31	CP-2-31	CP-2-31	CP-4-31	CP-4-31	CP-7-28	CP-7-31

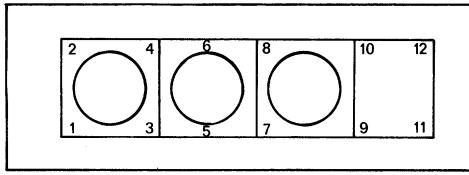


FIGURE 30 - Heat Recovery Air Cooled CenTraVac Weight Distribution Points (Units with Three Air-Cooled Condenser Fans)

TABLE 9 - Weight Distribution (Lbs.) and Isolator Recommendations

	Model													
Size	Evap	CDS	1											
027	D1 -	F	High	Efficiency										
027	D1	F	High	Ambient										
032	D1	F	Exte	nded Capa	acity									
							Poir	nt Numbers						
		1		2	3	4	5	6	7	8	9	10	11	12
Weigh	nt(AL)	987	7	987	1908	1908	1908	1908	1908	1908	3539	3539	6050	7550
Isolato	or	CP-2	-27	CP-2-27	CP-2-32	CP-2-32	CP-2-32	CP-2-32	CP-2-32	CP-2-32	CP-4-31	CP-4-31	CP-7-31	CP-7-32
Weigh	nt(AL)	111	2	1112	2158	2158	2158	2158	2158	2158	3664	3664	6050	7550
Isolate	or	CP-2	-27	CP-2-27	CP-2-32	CP-2-32	CP-2-32	CP-2-32	CP-2-32	CP-2-32	CP-4-31	CP-4-31	CP-7-31	CP-7-32

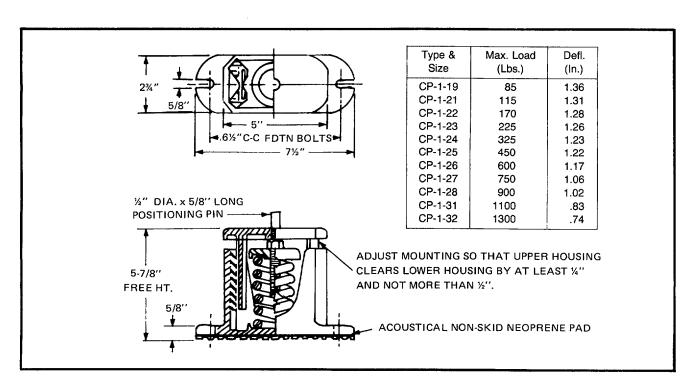


FIGURE 31 - Spring Isolator, Type CP-1

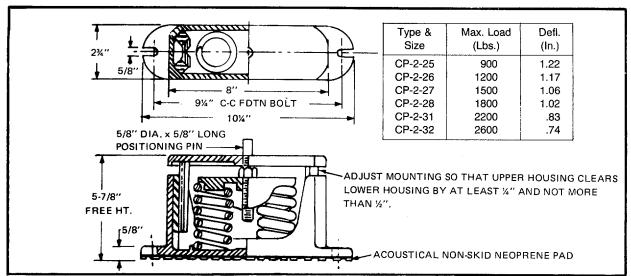


FIGURE 32 - Spring Isolator, Type CP-2

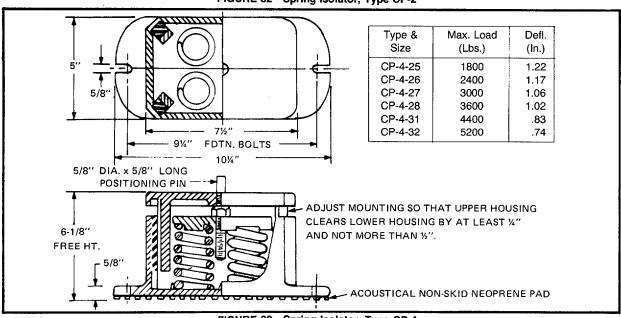


FIGURE 33 - Spring Isolator, Type CP-4

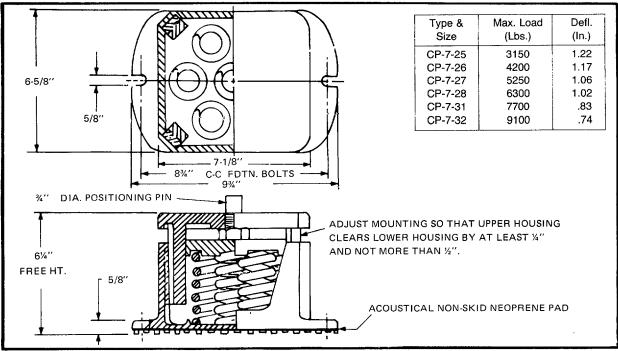


FIGURE 34 - Spring Isolator, Type CP-7

UNIT LOCATION AND CLEARANCES

The Heat Recovery Air-Cooled CenTraVac should be located where the air-cooled condenser air will flow, without obstruction, through the coil and away from the fan discharge. Do not place the unit under an overhang which could cause recirculation of the hot discharge air from the air-cooled condenser. See Figure 36 for recommendations regarding mounting in a well. It is important that in this situation the fan discharge is above the top of the well.

If the unit must be placed near a wall or other obstruction which will hinder proper air flow, sufficient clearance must be maintained between the unit and the obstruction. Allow at least 10 feet at both sides of the air-cooled condenser coil. If the installation includes two units side by side, clearance between the coils of the units must be at least 20 feet. See Figure 35.

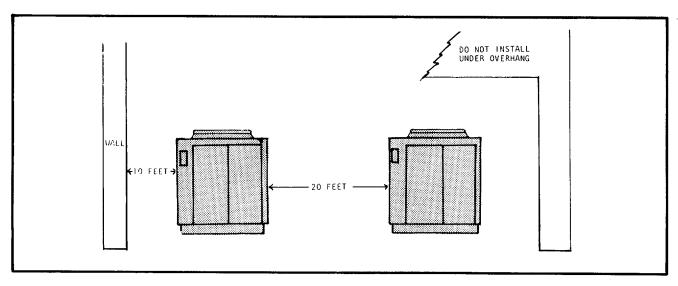


FIGURE 35 - Clearances Between Units and Obstructions

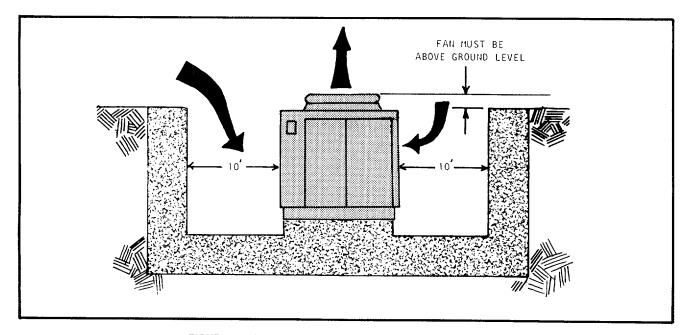


FIGURE 36 - Unit Installed In a Well or Walled Enclosure

RIGGING 4

Four lifting points are built into the unit, and the lifting pins are shipped in the loose parts box. Install lifting pins in each of the four lifting points built into the base of the unit. See Figure 37.

Assemble the lifting hardware as shown in Figure 37. The slings, spreader bar and 2x4's are to be provided by the rigger.

See Table 10 which gives sling lengths and loads for rigging and lifting purposes. The sling lengths given are consistent with the center of gravity as indicated by dimensions A and B from Figure 37. The recommended sling lengths allow proper clearance between the spreader bar and the upper surfaces of the Heat Recovery Air Cooled CenTraVac.

The minimum rated load capacity (vertical) of each sling shall be no less than the maximum sling load given for each unit in Table 10. The lifting capacity of the spreader bar shall be no less than the maximum unit weight as given in Table 10.

Wood 2x4's should be provided and used solely for the purpose of preventing scraping of the unit.

The position of the unit may vary plus or minus ten degrees from horizontal during lifting, depending on the weight of optional equipment included with the unit and the location of the refrigerant charge within the unit.

CAUTION: The Model CVAC Heat Recovery Air-Cooled CenTraVac must be lifted with the utmost care. Avoid shock loads by lifting slowly and evenly.

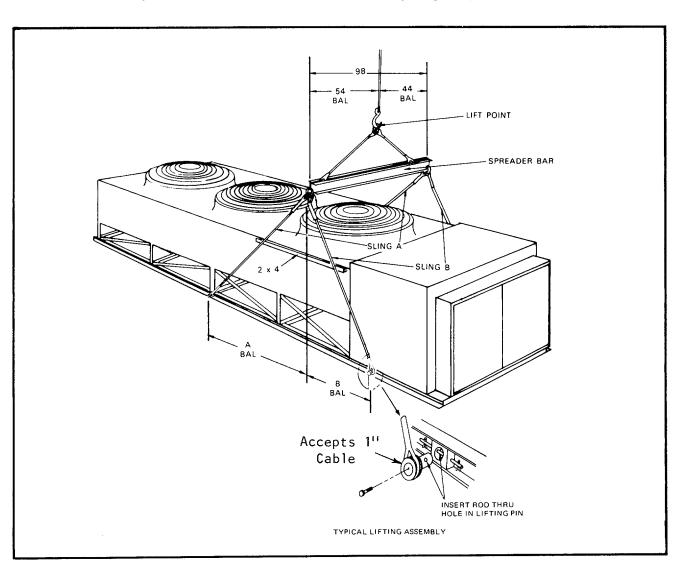


FIGURE 37 - Rigging and Lifting the Heat Recovery Air Cooled CenTraVac

TABLE 10 - Rigging and Lifting Data (See Figure 37)

Mod	lel Number De	escription a	and Digit No.						Max.	·Max.
Unit Size 5-6-7	Digit 9	Amb. Digit 11	Evap. Digit 12-13	Cond. Digit 17	"A" Bal (Inches)	"B" Bal (Inches)	Length Sling #1 (Feet)	Length Sling #2 (Feet)	Sling Load (Tons)	Unit Weight (Lbs.)
013	R	L	A1	Α	102.00	85.00	13.5	12	5.0	19,600
016	R	L	A1	В						
013	R	L	A1	В	111.00	96.00	14	13	5.5	21,000
013	R	Н	A1	В						
018	R	L	B1	С						
016	R	L	B1	С	122.00	104.00	15	13.5	5.0	23,450
016	R	Н	B1	С						
021	R	L	B1	D						
018	R	L	B1	D	126.00	116.00	15	14	6.0	24,750
018	R	Н	B1	D						
027	R	L	C1	E						
021	R	L	C1	E	146.00	142.00	16	15.5	6.5	31,700
021	R	Н	C1	E						1
032	R	L	D1	F						
027	R	L	D1	F	144.00	144.00	16	16	7.0	36,980
027	R	Н	D1	F						

CHILLED WATER PIPING -

Three chilled liquid flow arrangements are available for the Heat Recovery Air Cooled CenTraVac evaporator. They are six-pass, five-pass and three-pass arrangements.

NOTE: The front of the evaporator is on the door side of the equipment room. Six-pass evaporators have same side connections for return and supply chilled liquid. Either front or rear connections are available with six-pass evaporators.

The five-pass and three-pass evaporators have opposite side connections for the return and supply chilled liquid.

On the six-pass and five-pass flow arrangements the inlet to the evaporator is always the lower connection and the outlet to the cooling load is always the top connection. Either connection may be used as the inlet with three-pass evaporators.

Pressure gauge ports and two thermometer wells are required for proper machine trimming. The temperature control transmitter (Figure 38) must be installed in the leaving chilled water piping. As illustrated in Figure 39 the transmitter functions best when installed in the first elbow leaving the chiller. The chilled water demand switch (S3) bulb should be located in the entering evaporator water piping. Water pressure drop curves are listed in the sales catalog DS-CTV11. For proper performance of the machine, pressure drop must be set up according to the sales order write-up. The required vaporproof flow switch (S5) should be installed at least 21/2 pipe diameters from an elbow or construction. Figure 39 illustrates chilled liquid supply and return piping as well as heat recovery condenser piping.

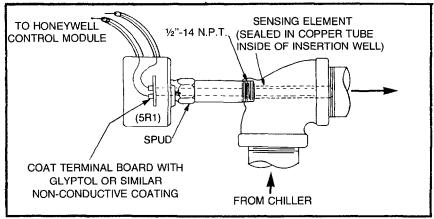


FIGURE 38 - Temperature Control Transmitter

WATER TREATMENT-

The use of untreated or improperly treated water in a Cen-TraVac may result in scaling, erosion, corrosion, algae or slime. It is recommended that the services of a qualified water treatment specialist be engaged to determine what treat- 33 ment, if any, is advisable. The Trane Company assumes no responsibility for equipment failures which are the result of untreated or improperly treated water.

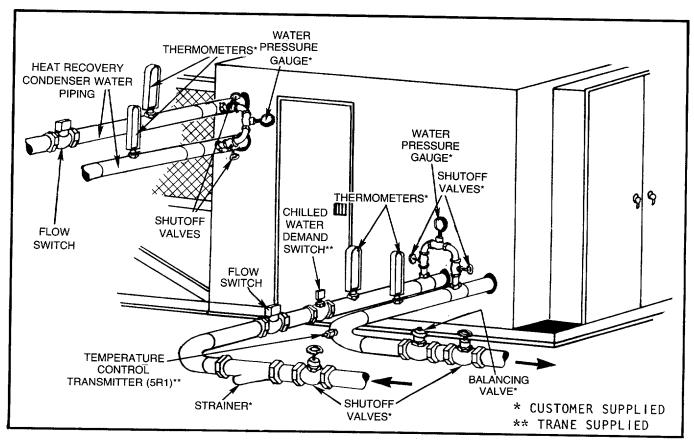


FIGURE 39 - Chilled Water and Heat Recovery Water Piping

LOW AMBIENT RECOMMENDATIONS

The following recommendations are made and must be followed if the CVAC Heat Recovery Air Cooled CenTraVac is to be installed where ambient conditions of below 40 F may be expected.

- 1. All clearances in the equipment room through which water piping enters the unit should be entirely sealed.
- All water piping to and from the unit must be adequately freeze-protected. This should include insulation and heat tape, if required. This will prevent the possibility of freezing any water in the pipes leading to or from the evaporator and heat recovery condenser.
- If a unit will be shutdown for the winter and temperatures of 40 F or less will be experienced at least one of the following recommendations should be carried out:
 - The water should be completely drained from the water system.
 - An ethylene-glycol solution should be added to the water circuits to adequately protect the unit to the minimum temperature expected.
 - c. The water pumps should be operated continuously, by thermostat, whenever the ambient temperature is below 40 F and the evaporator water temperature should be logged each day to confirm that it is above freezing. Also, it should be confirmed that the electric unit heater(s) in the equipment room is operating properly.
- 4. If a unit will be operated during the winter and temperatures of less than 40 F will be experienced, either "a" or "b", following should be carried out and "c" must be carried out.

- An ethylene-glycol solution should be added to the water circuits to adequately protect the unit down to the minimum temperature expected.
- b. The water pumps should be operated continuously.
- The evaporator water temperature should be logged each day to confirm that it is above freezing.
 Also, it should be confirmed that the electric unit heater(s) in the equipment room is operating properly.
- To provide freeze protection in the event of power failure the unit should be equipped in at least one of the following ways.
 - An ethylene-glycol solution should be added to the water circuits to adequately protect the unit down to the minimum temperature expected.
 - b. An alternate emergency power source to provide power to the unit heater(s) in the machine, and to provide power to the water pumps should be provided. The water pumps should be operated continuously.
- 6. The water pumps must not be used to start or stop the unit if the ambient temperature is 40 F or lower.
- The water pumps must operate for at least 30 minutes following unit shutdown when the ambient temperature is 40 F or below. See "Chilled Water Pump Interlock" page 42.
- 8. The water pumps must be on a separate, but interlocked electrical circuit.

CVAC-IN-2

WIRING RECOMMENDATIONS

Field completed wiring must be in accordance with all applicable codes and ordinances. The connection terminals on Trane equipment are designed for use with copper conductors per UL and NEC guidelines. The use of aluminum conductors is not recommended due to the possibility of galvanic corrosion as discussed in Engineering Bulletin MSCR-40.

Minimum conductor size is determined by minimum circuit ampacity and conductors should be sized according to NEC guidelines. Figure 40 illustrates the interconnecting wiring to be completed by the installing contractor. Figure 41 is a schematic drawing of the complete CVAC Heat Recovery electrical system. Table 11 includes electrical data. Table 12 provides electrical connection data.

TABLE 11 - Electrical Data

		U	NIT CHARACTERI	STICS1		co	MPRESSO	R	1	С	ONDENSER FA	N MOTOR	s
MODEL	RATED VOLTAGE	HZ	VOLTAGE UTILIZATION RANGE	MIN. CKT AMP. ²	REC. DUAL ELEMENT FUSE ³	NAMEPLATE RATED LOAD AMPS	LOCKED ROTOR AMPS ⁴	FULL LOAD KW	HP	NO.	NAMEPLATE FULL LOAD AMPS EACH	ACTUAL KW EACH	HP
CVAC-013 Extended Capacity	200 400 460	60 50 60	180-220 360-440 414-506	842 426 365	1000 500 450	593 300 257	3560 1860 1643	182 182 182	260 260 260	2 2 2	48.3 24.0 21.0	8.3 8.3 8.3	15 15 15
Сараслу	575	60	517-632	293	350	206	1360	182	260	2	17.0	8.3	15
CVAC-016 Extended Capacity	200 400 460 575	60 50 60 60	180-220 360-440 414-506 517-632	906 457 394 316	1200 600 450 400	644 325 280 224	3560 1860 1643 1360	208 208 208 208	260 260 260 260	2 2 2 2	48.3 24.0 21.0 17.0	9.9 9.9 9.9 9.9	15 15 15 15
CVAC-018 Extended Capacity	200 400 460 575	60 50 60 60	180-220 360-440 414-506 517-632	1060 534 461 370	1200 600 600 450	745 375 324 259	4270 2071 1945 1600	230 230 230 230	290 290 290 290	2 2 2 2	62.1 31.5 27.0 22.0	12.5 12.5 12.5 12.5	20 20 20 20
CVAC-021 Extended Capacity	200 400 460 575	60 50 60 60	180-220 360-440 414-506 517-632	1210 593 526 422	1600 700 600 500	865 422 376 301	5200 2560 2130 1625	266 266 266 266	330 330 330 330	2 2 2 2	62.1 31.5 27.0 22.0	15.5 15.5 15.5 15.5	20 20 20 20
CVAC-027 Extended Capacity	200 400 460 575	60 50 60	180-220 360-440 414-506 517-632	1431 733 634 508	1600 1000 800 600	1025 527 455 364	6210 3005 2500 1980	325 325 325 325	410 410 410 410	3 3 3 3	48.3 24.0 21.0 17.0	11.5 11.5 11.5 11.5	15 15 15 15
CVAC-032 Extended Capacity	200 400 460 575	60 50 60 60	180-220 360-440 414-506 517-632	1653 841 726 582	2000 1000 1000 700	1140 595 514 411	7060 3560 3080 2460	368 368 368 368	470 470 470 470	3 3 3 3	62.1 31.5 27.0 22.0	13.5 13.5 13.5 13.5	20 20 20 20
CVAC-013 High Efficiency	200 400 460 575	60 50 60 60	180-220 360-440 414-506 517-632	842 426 365 293	1000 500 450 350	593 300 257 206	3560 1860 1643 1360	182 182 182 182	260 260 260 260	2 2 2 2	48.3 24.0 21.0 17.0	9.9 9.9 9.9 9.9	15 15 15 15
CVAC-016 High Efficiency	200 400 460 575	60 50 60	180-220 360-440 414-506 517-632	934 472 406 326	1200 600 500 400	644 325 280 224	3560 1860 1643 1360	208 208 208 208	260 260 260 260	2 2 2 2	62.1 31.5 27.0 22.0	12.5 12.5 12.5 12.5	20 20 20 20
CVAC-018 High Efficiency	200 400 460 575	60 50 60	180-220 360-440 414-506 517-632	1060 534 461 370	1200 600 600 450	745 375 324 259	4270 2071 1945 1600	230 230 230 230	290 290 290 290	2 2 2 2	62.1 31.5 27.0 22.0	15.5 15.5 15.5 15.5	20 20 20 20

Unit Characteristics refer to entire unit main power supply. All unit amps include power for oil pump and controls.
 All models require separate source 230 volt single phase 3-wire supply as follows:

VOLTAGE MINIMUM CIRCUIT AMPACITY RECOMMENDED TIME DELAY FUSE 230 60 60

2. Minimum Circuit Ampacity per NEC 440-33.

3. Recommended Dual Element Fuse sized at approximately 150 percent of compressor rated load amps.

4. Locked Rotor Amps in Delta Connection.

TABLE 11 - Electrical Data Continued

	UNIT CHARACTERISTICS ¹				COMPRESSOR				CONDENSER FAN MOTORS				
MODEL	RATED VOLTAGE	HZ	VOLTAGE UTILIZATION RANGE	MIN. CKT AMP. ²	REC. DUAL ELEMENT FUSE ³	NAMEPLATE RATED LOAD AMPS	LOCKED ROTOR AMPS ⁴	FULL LOAD KW	HP	NO.	NAMEPLATE FULL LOAD AMPS EACH	ACTUAL KW EACH	HP
CVAC-021 High Efficiency	200 400 460 575	60 50 60 60	180-220 360-440 414-506 517-632	1231 602 535 429	1600 700 600 500	865 422 376 301	5200 2560 2130 1625	266 266 266 266	330 330 330 330	3 3 3 3	48.3 24.0 21.0 17.0	11.5 11.5 11.5 11.5	15 15 15 15
CVAC-027 High Efficiency	200 400 460 575	60 50 60 60	180-220 360-440 414-506 517-632	1472 756 652 523	2000 1000 800 600	1025 527 455 364	6210 3005 2500 1980	325 325 325 325	410 410 410 410	3 3 3 3	62.1 31.5 27.0 22.0	13.5 13.5 13.5 13.5	20 20 20 20
CVAC-013 High Ambient	200 400 460 575	60 50 60 60	180-220 360-440 414 ⁻ 506 517-632	906 457 394 316	1200 600 450 400	644 325 280 224	3560 1860 1643 1360	208 208 208 208	260 260 260 260	2 2 2 2	48.3 24.0 21.0 17.0	9.9 9.9 9.9 9.9	15 15 15 15
CVAC-016 High Ambient	200 400 460 575	60 50 60 60	180-220 360-440 414-506 517-632	1060 534 461 370	1200 600 600 450	745 375 324 259	4270 2071 1945 1600	230 230 230 230	290 290 290 290	2 2 2 2	62.1 31.5 27.0 22.0	12.5 12.5 12.5 12.5	20 20 20 20
CVAC-018 High Ambient	200 400 460 575	60 50 60 60	180-220 360-440 414-506 517-632	1210 593 526 422	1600 700 600 500	865 422 376 301	5200 2560 2130 1625	266 266 266 266	330 330 330 330	2 2 2 2	62.1 31.5 27.0 22.0	15.5 15.5 15.5 15.5	20 20 20 20
CVAC-021 High Ambient	200 400 460 575	60 50 60 60	180-220 360-440 414-506 517-632	1231 602 535 429	1600 700 600 500	865 422 376 301	5200 2560 2130 1625	266 266 266 266	330 330 330 330	3 3 3	48.3 24.0 21.0 17.0	11.5 11.5 11.5 11.5	15 15 15 15
CVAC-027 High Ambient	200 400 460 575	60 50 60 60	180-220 360-440 414-506 517-632	1653 841 726 582	2000 1000 1000 700	1140 595 514 411	7060 3560 3080 2460	368 368 368 368	470 470 470 470	3 3 3	62.1 31.5 27.0 22.0	13.5 13.5 13.5 13.5	20 20 20 20

^{1.} Unit Characteristics refer to entire unit main power supply. All unit amps include power for oil pump and controls. All models require separate source 230 volt single phase 3-wire supply as follows:

All models require separate source 250 volt single phase 5-wire supply

VOLTAGE MINIMUM CIRCUIT AMPACITY 230 60 RECOMMENDED TIME DELAY FUSE

60

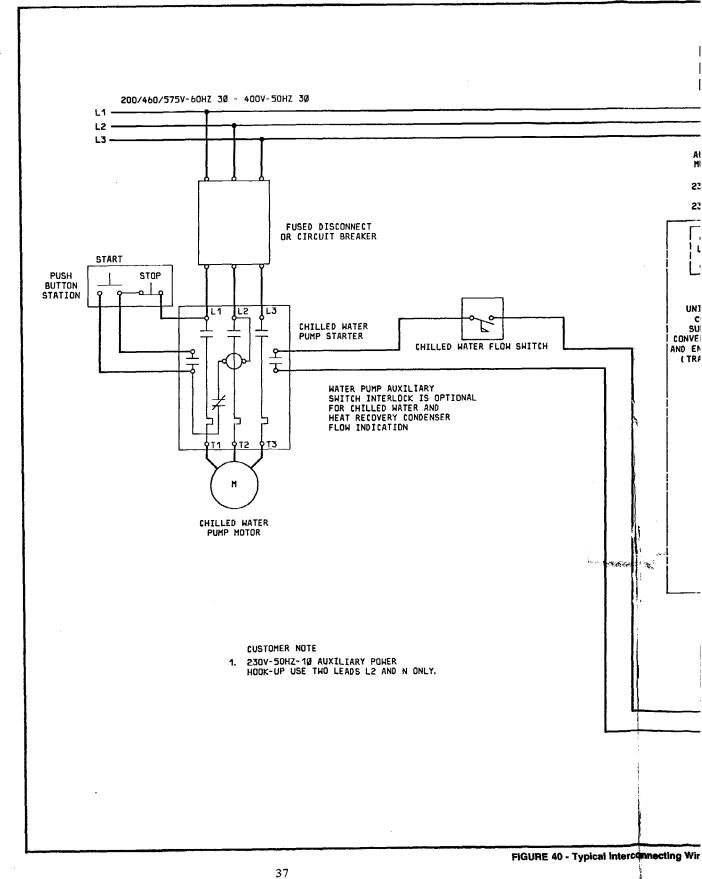
2. Minimum Circuit Ampacity per NEC 440-33.

3. Recommended Dual Element Fuse sized at approximately 150 percent of compressor rated load amps.

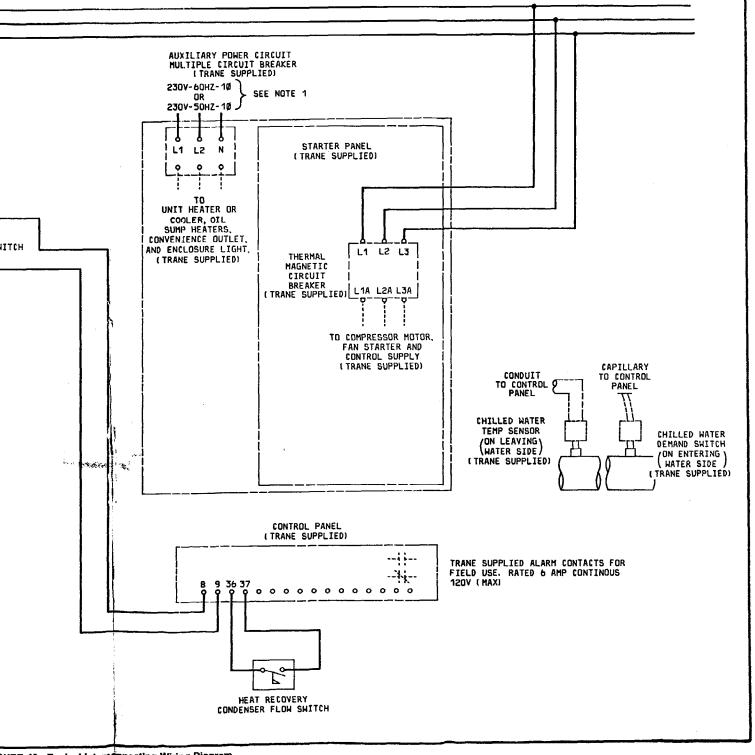
4. Locked Rotor Amps in Delta Connection.

POWER SUPPLY CIRCUIT DESCRIPTION-

Refer to Figures 40 and 41.


Circuit Number One

Circuit number one (auxiliary power) must be 230 volt, 3 wire, single phase of 60 amp capacity. This circuit supplies power for the space heaters, oil sump heater, convenience outlet and enclosure light. To provide added low ambient temperature protection, the space heaters are 6 Kw in capacity. This circuit also supplies power to the oil sump heater. To prevent excessive refrigerant absorption by the oil this must be a separate power source which must remain en-


ergized at all times after the oil is charged into the oil sump. Voltage variations must be limited to plus or minus 10%.

Circuit Number Two

The number two circuit is the three phase power circuit connected to the line side of the main circuit breaker. This circuit provides power to the CenTraVac compressor. This power supply must be a C-B-A (terminal sequence) phase rotation. The power supply limits are plus or minus 10% from the specified voltage. Figure 42 illustrates the starter panel on the end of the unit.

CAUTION- HAZARD OF ELECTRIC SHOCK-MORE THAN ONE DISCONNECT SWITCH MAY BE REQUIRED TO DE-ENERGIZE THIS EQUIPMENT FOR SERVICING

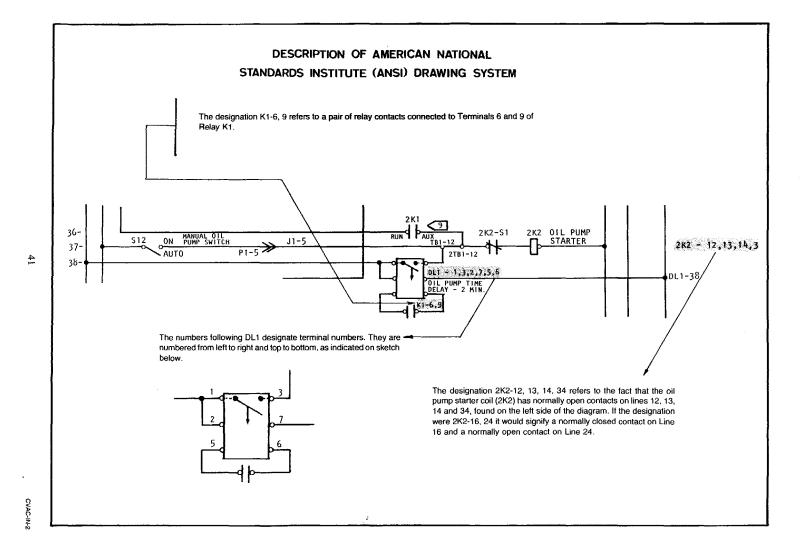


TABLE 12 - Electrical Connection Data¹

	Rated		Conductors	Conductor Size Range		
MODEL	Voltage	HZ	Per Phase	Minimum ²	Maximum ³	
CVAC-013	200	60	4	4/0	500 MCM	
Extended Capacity	400	50	2	250 MCM	500 MCM	
High Efficiency	460	60	2	3/0	250 MCM	
	575	60	1	250 MCM	500 MCM	
CVAC-013	200	60	4	4/0	500 MCM	
High Ambient	400	50	3	3/0	400 MCM	
CVAC-016	460	60	2	3/0	250 MCM	
Extended Capacity High Efficiency	575	60	2	3/0	250 MCM	
CVAC-016	200	60	4	4/0	500 MCM	
High Ambient	400	50	3	3/0	400 MCM	
CVAC-018	460	60	2	250 MCM	500 MCM	
Extended Capacity High Efficiency	575	60	2	3/0	250 MCM	
CVAC-018	200	60	4	4/0	500 MCM	
High Ambient	400	50	3	3/0	400 MCM	
CVAC-021	460	60	2	250 MCM	500 MCM	
Extended Capacity High Efficiency High Ambient	575	60	2	250 MCM	500 MCM	
CVAC-027	200	60	4	500 MCM	600 MCM	
Extended Capacity	400	50	3	3/0	400 MCM	
High Efficiency	460	60	3	3/0	400 MCM	
	575	60	2	250 MCM	500 MCM	
CVAC-027	200	60	4	500 MCM	600 MCM	
High Ambient	400	50	4	4/0	500 MCM	
CVAC-032	460	60	3	3/0	400 MCM	
Extended Capacity	575	60	2	250 MCM	500 MCM	

- Connection terminals on Trane equipment are designed for use with copper conductors per UL and NEC guidelines.
 We do not recommend the use of aluminum conductors due to the possibility of galvanic corrosion as discussed in EB MSCR-40.
- 2. Minimum conductor size determined by minimum circuit ampacity and conductor sizing per NEC guidelines.
- 3. Maximum conductor size determined by physical size of lug.

CHILLED WATER PUMP INTERLOCK •

When the Heat Recovery Air Cooled CenTraVac is to be operated at ambient temperatures below 40 F, an interlocking timer must be used to insure the chilled water pump operates for at least thirty minutes after compressor shut-

down. This is to prevent freeze-up of the tubes due to boil-off of refrigerant in the flooded evaporator. See Figures 44 and 45 for wiring reference.

POWER WIRING -

Figure 42 illustrates power wiring arrangements and shows the proper phase relationship in each conduit leading to the unit. There must be equal phase representation in each conduit.

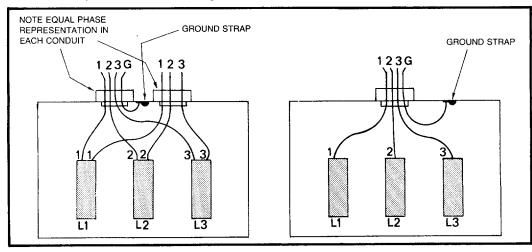


FIGURE 42 - Power Wiring Arrangements

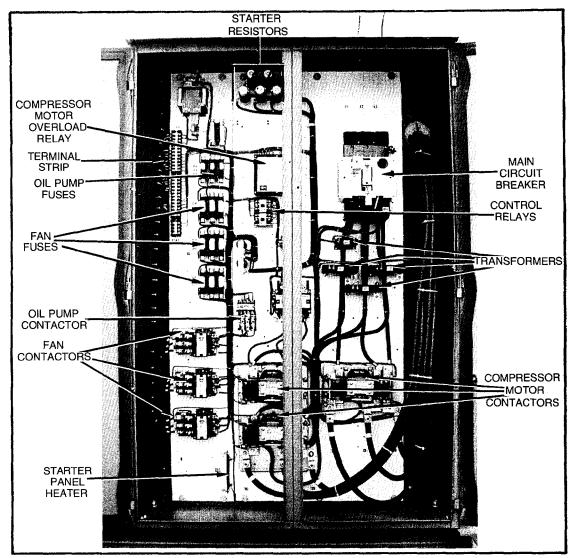


FIGURE 43 - Unit Starter Panel

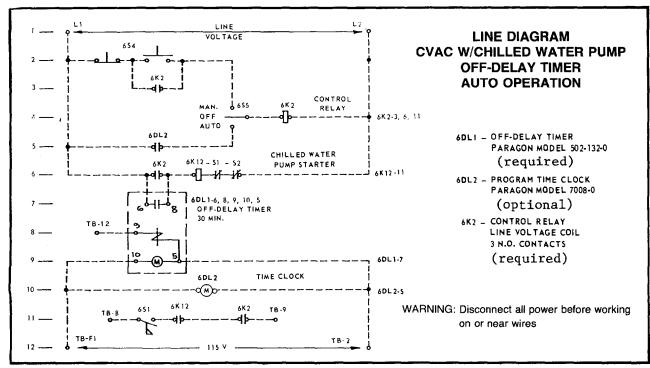


FIGURE 44 - Chilled Water Interlock Line Diagram

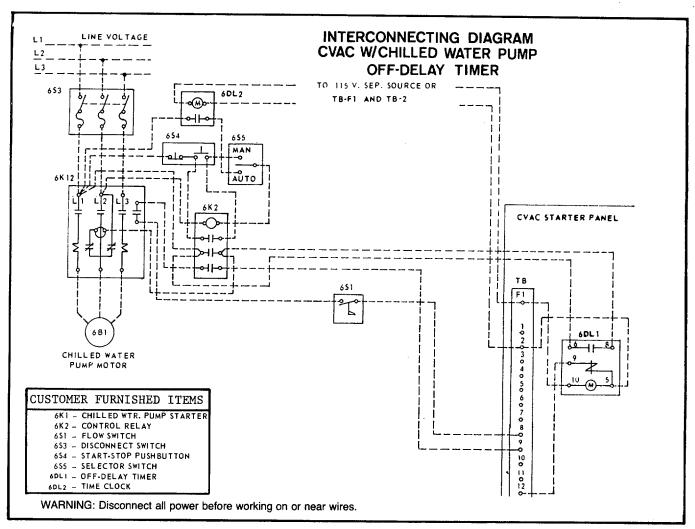


FIGURE 45 - Chilled Water Interlock Interconnecting Wiring

FANS AND FAN DRIVES

Prior to startup, check all fan drives for belt tightness and free rotation. That is, 6.5 to 8.5 pounds pressure at %" deflection using a Browning Belt Tension gauge. The tension should again be checked and set after a week of operation. See Figure 46.

The sheave hub retaining bolts and key set screws must be checked for tightness. Check the fan for proper scroll position and the hub bolts for tightness. See Figure 47.

WARNING: Disconnect all power before working on or near fan drives to avoid inadvertent startup and potential personal injury.

INITIAL START-UP-

All phases of the initial start-up are to be conducted under supervision of an authorized Trane Service Engineer. Upon near completion of the installation, the Air Cooled CenTraVac Check Sheet and Request for Serviceman, (Form No. 27.08-4) which is attached to this literature, must be

completed in advance to allow scheduling of the start-up as close the the requested date as possible.

This form should then be mailed to the local Trane Service Agency.

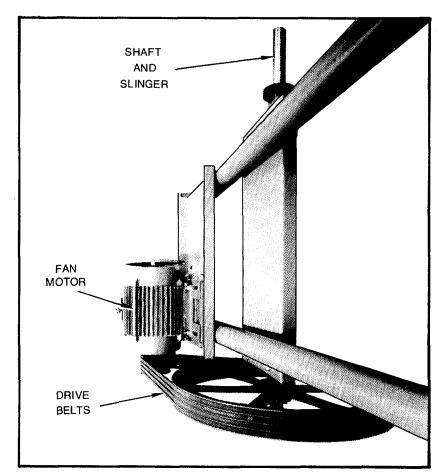


FIGURE 46 - Fan Assembly

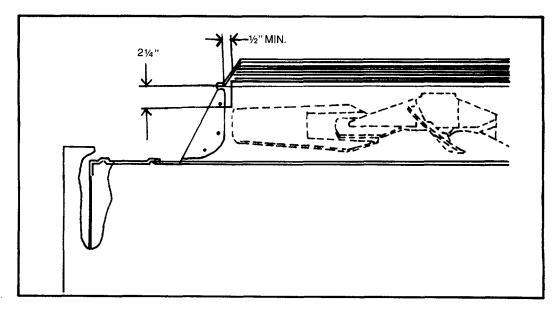


FIGURE 47 - Checking Scroll Position

HEAT RECOVERY AIR COOLED CENTRAVAC CHECK SHEET AND REQUEST FOR SERVICEMAN

TO:TRANE SERVICE AGENCY
PROJECT NAME:
The following items are being installed and will be completed by:
1. CVAC in place and leveled and anchored per instructions
2. Pipeline Chilled water pipeline connected to and filled: Evaporator
3. Wiring Circuit No. 1 complete and power available Circuit No. 2 complete and power available Interlocking control wiring complete.
4. All necessary gauges, thermometers and sensor wells installed
5. All coil protector covers removed
6. System can be operated under load conditions
7. Owners representative available for operators instructions
In accordance with your quotation and our Purchase Order Number, we will therefore require your serviceman on the job by *
This is to certify that the CenTraVac(s) has been properly and completely installed and the applicable items listed above have been completed.
Additional time required to complete the start-up and adjustment due to incompleteness of the installation will be invoiced at prevailing rates.
Check list completed by
Signed
Dated

*Advance notification is required to allow scheduling of the start-up as close to the requested start-up date as possible.