

Product Catalog **Packaged Rooftop Air Conditioners Foundation**[™]

Cooling and Gas/Electric 3 to 5 Tons, 60 Hz

RT-PRC111B-EN

Introduction

Packaged Rooftop Air Conditioners

Through the years, Trane has designed and developed the most complete line of Packaged Rooftop products available in the market today.

Trane customers demanded a product that provided exceptional reliability, was easy to install, and was competitively priced.

Trane listened and is proud to introduce the new Foundation[™] Light Commercial rooftop unit. With Foundation, Trane continues to provide the highest standards in quality and reliability, comfort, performance, and ease of installation.

Copyright

This document and the information in it are the property of Trane, and may not be used or reproduced in whole or in part without written permission. Trane reserves the right to revise this publication at any time, and to make changes to its content without obligation to notify any person of such revision or change.

Trademarks

All trademarks referenced in this document are the trademarks of their respective owners.

Table of Contents

Features and Benefits
Standard and Optional Features 5
Outstanding Standard Features 6
Variety of Options
Application Considerations 12
Barometric Relief
Clearance Requirements 12
Complete Coat™ Microchannel Condenser Coil
Condensate Trap
Heating Operation
Optional Stainless Steel Heat Exchanger
Low Ambient Cooling
Unit Pitch
Selection Procedure
Cooling Capacity
Heating Capacity
Air Delivery Selection
Model Number Description 15
General Data
Performance Data
Gross Cooling Capacities
Evaporator Fan Performance
Controls
Economizer Controls
Thermostats
Electrical Data
Jobsite Connections
Dimensional Data
Weights

Mechanical Specifications	52
General	52
Standard Features	52
Factory Installed Options	54
Factory or Field Installed Options	54
Field Installed Options	56

Features and Benefits

Equipment feature availability is dependent on unit configuration.

Standard and Optional Features

		Optio	Options ^(a)				
	Standard	Factory Installed	Field Installed				
1-year Limited Parts Warranty	x						
5-year Limited Compressor Warranty	Х						
5-year Limited Heat Exchanger Warranty	Х						
10-year Limited Stainless Steel Heat Exchanger Warranty		х					
5K SCCR	х						
Barometric Relief Damper			х				
Barometric Relief Damper for Low Leak Economizer		х	х				
Belt Drive Motors	х						
CO ₂ sensor - Demand Control Ventilation (DCV)			х				
Colored Connectors and Wiring	Х						
Complete Coat Microchannel Condenser Coil		Х					
Compressor Discharge Temperature Limit (DTL)	Х						
Condensate Overflow Switch		х	Х				
Convertible Airflow	Х						
Crankcase Heaters			Х				
Disconnect Switch		Х	Х				
Easy Access Low Voltage Connections	Х						
Economizer (Downflow)		х	х				
Economizer (Horizontal)			Х				
Electric Heaters		Х	х				
Fan Failure Switch ^(b)	х						
Filters	Х						
Frostat™			Х				
Tool-less Hail Guards			Х				
High Efficiency Filters (MERV 13)		х	Х				
High Pressure Control	Х						
High Static Motor Kit ^(c)		х	Х				
IAQ Dual Sloped and Removable Drain Pans	х						
Insulation - 1/2-inch, 1-lb Density	х						
Liquid Line Refrigerant Drier	х						
Low Ambient Cooling			Х				
Low Leak Economizer (Downflow)		х	Х				
Low Leak Economizer (Horizontal)			Х				
Low Pressure Control	х						
Low Voltage Circuit Protection	х						
LP Conversion Kit			х				

		Optio	ns ^(a)
	Standard	Factory Installed	Field Installed
Manual Outside Air Damper		X	Х
Motorized 2-Position Damper		х	Х
Phase Loss/Reversal Monitor	х		
Powered Exhaust			Х
Quick Access Panels	х		
Remote Potentiometer			Х
Roof Curb			Х
Scroll Compressors	x		
Single Point Power	х		
Single Side Service	х		
Standardized Components	х		
Thermal Expansion Valve	х		
Thermostats			Х
Through-the-Base Electrical and Gas Connection Provisions		х	Х

(a) Refer to model number description for option availability or contact Product Support.

(b) Fan Failure Switch is standard design in Cooling only and Cooling only with Electric Heat unit. Not needed for Gas Heat unit.

(c) Available on constant volume units only. See Accessories chapter for more information.

Outstanding Standard Features

Colored and Numbered Wiring

Save time and money tracing wires and diagnosing the unit.

Compressors

Foundation[™] contains the best compressor technology available to achieve the highest possible performance.

Controls – Electromechanical

This 24-volt control includes the control transformer and contactor pressure lugs for power wiring.

Convertible Units

Foundation [™] 3 to 5 tons units ship in downflow configuration. The convertible design makes it easy to convert them to a horizontal airflow configuration without any kit or tool.

Discharge Line Thermostat

A bi-metal element discharge line thermostats is a standard feature on the discharge line of each compressor. This provides extra protection to the compressors against high discharge temperatures in

case of loss of charge, extremely high ambient, and other conditions which could drive the discharge temperature higher.

Efficiency

Product efficiencies meet the requirements of ASHRAE 90.1-2022.

Easy Access Low Voltage Terminal Board

The Foundation[™] low voltage terminal board is mounted outside the main electrical control cabinet. Save time by attaching the thermostat control wiring and testing operation of all unit functions.

Fan Failure Switch

In electric heat mode, heaters will not be energized until differential pressure switch proves airflow. The factory set point is 0.07-inch w.c.

Insulation

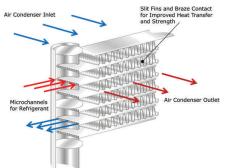
All panels in the evaporator section have foil-faced, glass fiber insulation. All base panels have foilfaced, glass fiber insulation. All edges are either captured or sealed to confirm no insulation fibers get into the airstream.

Heat Exchanger

The cabinet features a tubular heat exchanger in low and medium heat capacities – all available for vertical and horizontal discharge directions. The heat exchanger is fabricated using aluminized steel burners and corrosion-resistant, aluminized steel tubes as standard on all models. As part of the heat exchanger assembly, an induced draft blower is used to pull the gas mixture through the burner tubes. A direct spark ignition system, which doubles as a safety device to prove the flame, is used to ignite the gas mixture.

Low Ambient Cooling

All Foundation units have cooling capabilities down to 45°F as standard.


Low Voltage Connections

The wiring of the low voltage connections to the unit and the thermostat is as simple as R-R, G-G, Y-Y, and W-W.

Microchannel Condenser Coil

Microchannel condensing coils are all-aluminum coils with fully-brazed construction. This design reduces risk of leaks and provides increased coil rigidity – making them more rugged on the jobsite. Their flat streamlined tubes with small ports and metallurgical tube-to-fin bond allow for exceptional heat transfer. Microchannel all-aluminum construction provides several additional benefits:

- Light weight (simplifies coil handling)
- Easy to recycle
- Minimize galvanic corrosion

Motors

Indoor fan motors are belt drive as standard.

Pressure Cutouts

Low and high pressure cutouts are standard on all Foundation[™] models.

Phase Monitor

Foundation features a three-phase line monitor module that protects against phase loss, phase reversal, and phase unbalance. It is intended to protect compressors from reverse rotation. It has an operating input voltage range of 180 to 600 Vac, and LED indicators for ON and FAULT. There are no field adjustments and the module will automatically reset from a fault condition.

Quick-Access Panels

Remove four screws (four or fewer) for access to the standardized internal components and wiring.

Quick-Adjust Fan Motor Mounting Plate

With the quick-adjust slider plate, the belt and sheaves can be quickly adjusted without moving the mounted fan motor. This results in reduced time spent on routine maintenance.

Single Point Power

A single electrical connection powers the unit and all on-board options.

Single Side Service

Single side service is standard on all units.

Sloped Drain Pans

Every Foundation[™] unit has a non-corrosive, sloped drain pan made of rigid PVC - standard on all units and removable for easy cleaning.

Standardized Components

Components are placed in the same location on all Foundation units. With standard components across Foundation, contractors/owners can stock fewer parts.

Variety of Options

Factory Installed Options

Complete Coat™ Condenser Coil

The cathodic epoxy type electrodisposition coating is formulated for high edge build to a number of different types of heat exchangers. The coating is selected to provide excellent resistance and durability to corrosive effects of alkalies, acids, alcohols, petroleum, seawater, salt air, and corrosive environments.

Stainless Steel Heat Exchanger

The optional stainless steel heat exchanger is constructed of 304 stainless steel tubes and 439 stainless steel burners. It is resistant to corrosion, oxidation, and easy to clean. The high strength to weight ratio allows for high ventilation rates with gas units and comes standard with a modulating gas heat option. With this option, a 10-year stainless steel heat exchanger warranty is standard.

Factory or Field Installed Options

Barometric Relief

Designed to be used on downflow units, barometric relief is an unpowered means of relieving excess building pressure.

Note: The factory installed barometric relief is for downflow low leak economizer units only.

Condensate Overflow Switch

A condensate overflow switch is available to shut the unit down in the event that the condensate drain becomes clogged. This option protects the unit from water overflowing from the drain pan and entering the base of the unit.

Disconnect Switch

This accessory can be utilized as a convenient way to stock standard product without a disconnect and have the ability to use the through-the-base/disconnect offering. The standard disconnect is non-fused, 3-pole, case molded switch.

Economizer - Downflow

Economizers are equipped with either dry bulb, reference, or comparative enthalpy sensing. These economizers provide free cooling as the outdoor temperature and/or humidity decreases. Correctly installed, they offer valuable energy savings.

Factory-installed economizers save time and ensure proper installation.

Note: Factory-installed economizers require some field setup.

Electric Heaters

Electric heat is available as a factory or field installed option.

Note: For EDK036-060 cooling only units.

High Efficiency Filters

Two-inch MERV 13 media filters available on all models.

Low Leak Economizer with Fault Detection and Diagnostics - Downflow

This economizer meets the damper leakage requirements for ASHRAE 90.1, IECC, and California Title 24 standards (3 cfm/ft² at 1.0 in. w.g. for outside air dampers and 4 cfm/ft² for return dampers).

Also, Fault Detection and Diagnostic information per California Title 24 is provided with this option. Barometric relief must be field installed with this option. Horizontal airflow configurations may only be field installed.

Manual Outside Air Damper

A 0 to 50 percent manual air damper is available.

Motorized Outside Air Damper

A 0 to 50 percent motorized outside air dampers is available.

Oversized Motors and Drive

Factory or field installed oversized motors are available for high static applications.

Reference or Comparative Enthalpy

Measures and communicates humidity while maximizing comfort control.

Through-the-Base Electrical Utility Access

An electrical service entrance is provided, allowing access for both control and main power connections inside the curb and through-the-base of the unit. This option will allow for field installation of liquid-tight conduit and an external field installed disconnect switch.

Factory provided through-the-base openings simplify wiring and piping. Because these utility openings frequently minimize the number of roof penetrations, the integrity of roofing materials is enhanced.

Through-the-Base Gas Piping (Gas Heat Units Only)

This option has all necessary piping including black steel, manual gas shut-off valve, elbows, and union. This assembly will require minor field labor to install.

Field Installed Options

Barometric Relief

Designed to be used on downflow and horizontal configuration for both standard and low leak economizer units, barometric relief is an unpowered means of relieving excess building pressure.

CO₂ Sensor - Demand Control Ventilation (DCV)

Demand-controlled ventilation (DCV) is a control strategy that responds to the actual demand (need) for ventilation by regulating the rate at which the HVAC system brings outdoor air into the building. A CO_2 sensor measures the concentration (parts per million, ppm) of CO_2 in the air. As the CO_2 concentration changes, the outside air damper modulates to meet the current ventilation needs of the zone. DCV is a passive system; direct control of the indoor fan is not possible with standard or low leak economizers. The CO_2 sensor kit is available as a field installed accessory.

Crankcase Heaters

These band heaters provide improved compressor reliability by warming the oil to prevent migration during off-cycles or low ambient conditions.

Economizer - Horizontal

Economizers are equipped with either dry bulb or reference or comparative enthalpy sensing. These economizers provide free cooling as the outdoor temperature and/or humidity decreases. Correctly installed, they offer a valuable energy savings.

Frostat™

This switch, attached to the tube of the evaporator coil, monitors coil temperature to prevent evaporator icing and protect the compressor. Recommended for applications with low leaving air temperatures, low airflow and/or high latent load applications.

Low Ambient Kit

Allows system to operate in cooling below 45 degrees by maintaining head pressure by cycling the outdoor fan motor allowing safe system operation without indoor coil icing.

Low Leak Economizer with Fault Detection and Diagnostics - Horizontal

This economizer meets the damper leakage requirements for ASHRAE 90.1, IECC, and California Title 24 standards (3 cfm/ft² at 1.0 in. w.g. for outside air dampers and 4 cfm/ft² for return dampers).

Also, Fault Detection and Diagnostic information per California Title 24 is provided with this option. Barometric relief must be field installed with this option. Horizontal airflow configurations may only be field installed.

LP Conversion Kit

Provided for field conversion of gas heat units from natural gas to propane.

Power Exhaust

This option is available on downflow units and provides exhaust of the return air, when using a downflow economizer, to maintain proper building pressurization. This is an excellent option for relieving most building overpressurization problems.

Remote Potentiometer

When installed in the economizer control circuitry, this accessory provides a method to remotely adjust the minimum damper position.

Roof Curbs

Available for downflow units. Only one roof curb for the entire Foundation[™] line simplifies curb selection.

Thermostats

Available in programmable and non-programmable.

Tool-less Hail Guards

Tool-less, hail protection quality coil guards are field-installed for condenser coil protection. This option protects the condenser coil from vandalism and/or hail damage.

Other Benefits

Cabinet Integrity

For added water integrity, Foundation[™] has a raised 1-1/8 inch lip around the supply and return of the downflow units to prevent water from blowing into the ductwork.

Easy to Install, Service and Maintain

Because owners today are very cost-conscious when it comes to service and maintenance, Foundation was designed with direct input from service contractors. This valuable information helped to design a product to get the service technician off the job quicker and save the owner money. Foundation does this by offering outstanding standard features enhanced by a variety of factory and field installed options, multiple control options, rigorously tested proven designs, and superior product and technical support.

Outstanding Adaptability

The Foundation 3 to 5 ton units match the footprint of specific Carrier WeatherMaker™ units.

Rigorous Testing

All Foundation designs were rigorously rain tested at the factory to confirm water integrity. Units incorporate either a one piece top or the Trane-Tite-Top (T3). Each part of the top overlaps so water cannot leak into the unit. Overlapped edges are gasketed and sealed to confirm superior water integrity.

Actual shipping tests were performed to determine packaging requirements. Units were test shipped around the country to determine the best packaging. Factory shake and drop tests were used as part of the package design process to help assure that the unit arrives at the job site in top condition.

Rigging tests include lifting a unit into the air and letting it drop one foot, to confirm lifting lugs and rails hold up under stress. For the microchannel coils, the supplier will perform the leak check at 450 psig. The completely assembled refrigerant system is leak tested at a minimum of 225 psig with a refrigerant and nitrogen mixture.

All parts are inspected at the point of final assembly. Sub-standard parts are identified and rejected immediately. Every unit receives a 100 percent unit run test before leaving the production line to meet rigorous requirements.

Application Considerations

Application of this product should be within the cataloged airflow and cooling considerations.

Barometric Relief

This product line offers an optional barometric relief damper for use in conjunction with economizer option. This accessory consists of gravity dampers which open with increased pressure. As building pressure increases, the pressure in the unit return air section also increases, opening the dampers and relieving the conditioned space.

Notes:

- The effectiveness of barometric relief damper during economizing operation is system related.
- Pressure drop of the return air system should be considered to control building pressurization.

Clearance Requirements

The recommended clearances identified with unit dimensions should be maintained to confirm adequate serviceability, maximum capacity, and peak operating efficiency. Review clearances with local sales personnel.

Complete Coat[™] Microchannel Condenser Coil

The cathodic epoxy type electrodisposition coating is formulated for high edge build to a number of different types of heat exchangers. The coating is selected to provide excellent resistance and durability to corrosive effects of alkalies, acids, alcohols, petroleum, seawater, salt air, and corrosive environments. This coating is available on microchannel condenser coils.

Condensate Trap

The evaporator is a draw-through configuration. A trap must be field provided prior to start-up on the cooling cycle.

Heating Operation

The heat exchanger is manufactured with aluminized steel.

To prevent condensation within the heat exchanger, do not exceed 50 percent outside air or a minimum mixed air temperature of 40°F.

Optional Stainless Steel Heat Exchanger

The optional stainless steel heat exchanger is manufactured with 304 stainless steel tubes and 439 stainless steel burners. To prevent corrosion and prolong heat exchanger reliability, the minimum mixed air temperature allowed across the heat exchanger is 40°F. When high outside air or outside applications exist, this option should be utilized.

Low Ambient Cooling

Foundation[™] line features low ambient cooling down to 45°F. Consider these options when low ambient applications are required: continuous fan operation, crankcase heaters, or frostat.

Unit Pitch

Units have sloped condensate drain pans, must be installed level, and any unit slope must be toward the access side of the unit.

Selection Procedure

Cooling Capacity

Note: Cooling capacity procedure is the same for cooling (E) and gas/electric (G).

 Calculate the building's total and sensible cooling loads for the building at design conditions. Use the following calculation methods or any other standard accepted method.

Factors used in unit selection:

- Total Cooling Load: 61 MBh
- Sensible Cooling Load: 45 MBh
- Airflow: 2000 cfm
- Electrical Characteristics: 460/60/3
- Summer Design Conditions: Entering Evaporator Coil: 80°F DB/67°F WB
- Outdoor Ambient: 95°F
- External Static Pressure: 0.36 in. wg
- Rooftop downflow configuration
- Efficiency: 13.4 SEER
- Accessories: Economizer, Roof Curb, Electric Heat
- 2. As a starting point, a rough determination must be made of the size of the unit. The final selection will be made after examining the performance at the given conditions. Divide the total cooling load by nominal Btuh per ton (12 MBh per ton); then round up to the nearest unit size.

61 Mbh / 12 MBh = 5.0 tons

3. Table 5, p. 20 shows that a EDK060A has a gross cooling capacity of 61.9 MBh and 47.3 MBh sensible capacity at 2000 cfm and 95 DB outdoor ambient with 80 DB, 67 WB air entering the evaporator.

Find capacity at intermediate conditions not in the table

When the design conditions are between two numbers that are in the capacity table, interpolation is required to approximate the capacity.

Note: Extrapolation outside of the table conditions is not recommended.

4. In order to select the correct unit which meets the building's requirements, the fan motor heat must be deducted from the gross cooling capacity. The amount of heat that the fan motor generates is dependent on the effort by the motor - cfm and static pressure. To determine the total unit static pressure you add the external static pressure to the additional static related by the added features:

External Static Duct System	0.36 wg
Standard Filter 2 in. from Table 26, p. 39	0.06 wg
Economizer (100% Return Air) from Table 26, p. 39	0.07 wg
Electric Heater Size kW from Table 26, p. 39	0.07 wg
Total Static Pressure	0.56 wg

Note: Reference heating capacity section on this page for determination of heater size. No additional static add for gas/heat exchanger.

Note: The evaporator fan performance Table 18, p. 33 has already accounted for the pressure drop for standard filters and wet coils (see note below in Table 18, p. 33). The actual total static pressure is 0.56 - 0.06 (from Table 26, p. 39) = 0.50 wg.

With 2000 cfm and 0.50 wg.Table 18, p. 33 shows 0.83 bhp for this unit. Note below is the formula to calculate fan motor heat.

```
2.8328 x Fan bhp + 0.4714.
```

2.8328 x 0.83 + 0.4714 = 2.82 MBh

Now subtract the fan motor heat from the gross cooling capacity of the unit:

Net Total Cooling Capacity = 61.9 MBh - 2.82 = 59.08 MBh.

Net Sensible Cooling Capacity = 47.3 MBh - 2.82 = 44.48 MBh.

5. Compare your resulting capacities to the building load. If the performance will not meet the required load of the building's total or sensible cooling load, try a selection at the next higher size unit.

Heating Capacity

Note: Heating capacity procedures DIFFER for cooling (E) and gas/electric (G) units.

- 1. Calculate the building heating load.
- 2. Size the system heating capacity to match the calculated building heating load.

The electric heat accessory capacities are listed in Table 28, p. 39. From the table, a 10 kW heater will deliver 34.14 MBh at 480 volts. In order to determine capacity at 460 volts, the heater voltage correction factor from Table 29, p. 40 must be used. Therefore, 34.14 MBh x 0.92 (voltage correction factor) = 31.41 MBh.

Air Delivery Selection

Note: Air delivery procedures is the same for cooling (E) and gas/electric (G) units.

External static duct pressure drop through the air distribution system has been calculated to be 0.36 inches of water. From Table 26, p. 39 static pressure drop through the economizer is 0.07 and the 10kW heater is 0.07 inches of water. Therefore the total static pressure is 0.36 + 0.07 + 0.07 = 0.50 inches. Enter Table 18, p. 33 for a EDK060A at 2000 cfm and 0.50 static pressure. The standard motor at 957 rpm will give the desired airflow at a rated bhp of 0.83.

Model Number Description

Digit 1 — Unit Function	Digit 11 — Minor Design Sequence
E = DX Cooling G = DX Cooling, Gas Heat	
Digit 2 — Cooling Efficiency	Digit 12,13 — Service Sequence
D = Standard Efficiency	00 = None
Digit 3 — Airflow Configuration / Refrigerant	Digit 14 — Fresh Air Selection ³ , ⁴
K = R-454B	0 = No Fresh Air A = Manual Outside Air Damper 0-50%
Digit 4, 5, 6 — Nominal Gross Cooling Capacity (MBh)	 B = Motorized Outside Air Damper 0-50% C = Economizer, Dry Bulb 0-100% without Barometric Relief
036 = 3 Ton 048 = 4 Ton	E = Economizer, Reference Enthalpy 0-100% without Barometric Relief
060 = 5 Ton	G = Economizer, Comparative Enthalpy 0-100% without Barometric Relief
Digit 7 — Major Design Sequence	J = Downflow Low Leak Economizer, Dry Bulb without Barometric Relief
A = Rev A	K = Downflow Low Leak Economizer, Dry Bulb with Barometric Relief
Digit 8 — Voltage Selection	L = Downflow Low Leak Economizer, Reference Enthalpy without Barometric Relief
3 = 208-230/60/3 4 = 460/60/3 W = 575/60/3	 M = Downflow Low Leak Economizer, Reference Enthalpy, with Barometric Relief N = Downflow Low Leak Economizer, Comparative Enthalpy without Barometric Relief
Digit 9 — Unit Controls	P = Downflow Low Leak Economizer, Comparative Enthalpy, with Barometric Relief
E = Electromechanical	Digit 15 — Supply Fan/Motor
Digit 10 — Heating Capacity	0 = Standard Motor 1 = Oversized Motor
Note: Applicable to Digit 1 = E models only 0 = No Heat	Digit 16 — Fork Access/ Unit Access/ Filters

- 0 = Standard Filters
- 0 = Standard Coil 4 = CompleteCoat™ Condenser Coil

Digit 18 — Through-the-Base Provisions

Note: Applicable to Digit 1 = E models only

- 0 = No Through-the-Base Provisions
- A = Through-the-Base Electric
- Note: Applicable to Digit 1 = G models only
- 0 = No Through-the-Base Provisions
- A = Through-the-Base Electric
- B = Through-the-Base Gas¹
- C = Through-the-Base Electric/Gas

Digit 19 — Disconnect

0 = No Disconnect

1 = Unit Mounted Non-Fused Disconnect Switch²

Digit 20-24

Not Used

Digit 25 — System Monitoring Controls

0 = No Monitoring Controls

A = Condensate Drain Pan Overflow Switch

Digit 26 — System Monitoring Controls

0 = No Economizer Fault Detection and Diagnostics (FDD) B = Economizer Fault Detection and Diagnostics (FDD)⁵

- 0 = No Heat
- A = 5 kW Electric Heat
- B = 7.5 kW Electric Heat
- C = 10 kW Electric Heat
- D = 14.4 kW Electric Heat
- E = 20 kW Electric Heat F = 25 kW Electric Heat

Note: Applicable to Digit 1 = G models only

- L = Gas Heat Low
- M = Gas Heat Medium
- X = Gas Heat SS Ht Ex Low
- Y = Gas Heat SS Ht Ex Medium

Model I	Number	Notes
---------	--------	-------

Notes:

- 1. Some field setup required.
- 2. Must be ordered with Through-the-Base Electrical option.
- 3. All Factory Installed Options are Built-to-Order. Check order services for estimated production cycle.
- 4. Factory installed economizers only available in downflow configuration.
- 5. Fault Detection and Diagnostics (FDD) is available on Low Leak Economizers only.

D = 2 inch MERV 13 Filters Digit 17 — Coil Protection

General Data

Table 1. General data – 3 to 5 tons

Cooling Performance(a) Gross Cooling Capacity ER(b)/EER2(c) Iominal Airflow CFM / AHRI Rated CFM HRI Net Cooling Capacity EER(b)/SEER2(c)	E/GDK036 38,000 12.0 / 10.6	E/GDK048	E/GDK060	
Bross Cooling Capacity ER ^(b) /EER2 ^(c) Iominal Airflow CFM / AHRI Rated CFM HRI Net Cooling Capacity	,	51,300		
ER ^(b) /EER ^{2(c)} Iominal Airflow CFM / AHRI Rated CFM HRI Net Cooling Capacity	,	51,300	50 500	
lominal Airflow CFM / AHRI Rated CFM HRI Net Cooling Capacity	12.0 / 10.6		59,500	
HRI Net Cooling Capacity		12.0 / 10.6	12.0 / 10.6	
	1200 / 1050	1600 / 1400	2000 / 1600	
	36,600	49,500	57,500	
	14.0 / 13.4	14.0 / 13.4	14.0 / 13.4	
system Power (kW)	3.45	4.67	5.42	
Compressor				
lumber/Type	1 / Scroll	1 / Scroll	1 / Scroll	
ound	L	1		
Dutdoor Sound Rating (dBA) ^(d)	79	80	81	
Outdoor Coil	L	1		
уре	Microchannel	Microchannel	Microchannel	
Coil Width (in.)	0.63	0.63	0.71	
ace Area (sq. ft.)	11.33	13.46	15.92	
Rows/FPI	1/23	1 / 23	1 / 23	
ndoor Coil	k			
уре	Microchannel	Microchannel	Microchannel	
Coil Width (in.)	0.63	0.63	0.81	
ace Area (sq. ft.)	6.44	6.44	6.44	
Rows/FPI	2 / 16	2 / 16	2 / 16	
Refrigerant Control	Thermal Expansion Valve	Thermal Expansion Valve	Thermal Expansion Valve	
Prain Connection Number/Size (in.)	1 / ¾-14 NPT	1 / ¾-14 NPT	1 / ¾-14 NPT	
Outdoor Fan	k			
уре	Propeller	Propeller	Propeller	
lumber Used/Diameter (in.)	1/23	1 / 23	1 / 23	
Prive Type/No. Speeds	Direct / 1	Direct / 1	Direct / 1	
fm	4000	4000	4000	
lumber Motors/hp	1/0.33	1 / 0.33	1 / 0.33	
1otor rpm	1100	1100	1100	
ndoor Fan	k			
уре	FC Centrifugal	FC Centrifugal	FC Centrifugal	
lumber Used/Diameter (in.)	1 / 11x11	1 / 11x11	1 / 11x11	
Prive Type/No. Speeds	Belt / 1	Belt / 1	Belt / 1	
lumber Motors	1	1	1	
lotor hp (Standard/Oversized)	1.0 / 2.0	1.0 / 2.0	1.0 / 2.0	
lotor rpm (Standard/Oversized)	1750 / 1750	1750 / 1750	1750 / 1750	
Iotor Frame Size (Standard/Oversized)	56 / 56	56 / 56	56 / 56	
ilters	I	L	L	
ype Furnished	Throwaway	Throwaway	Throwaway	
lumber Size Recommended	(4) 16x16x2	(4) 16x16x2	(4) 16x16x2	
efrigerant Charge (Pounds of R-454B) ^(e)	.	<u> </u>	<u> </u>	
(Founds of R-454B)(*)				

(a) Cooling Performance is rated at 95°F ambient, 80°F entering dry bulb, 67°F entering wet bulb. Gross capacity does not include the effect of fan motor heat. ARI capacity is net and includes the effect of fan motor heat. Units are suitable for operation to ±20% of nominal cfm. Certified in accordance with the Unitary Air-Conditioner Equipment Certification Program, which is based on AHRI Standard 210/240.

(b) EER and SEER are rated at AHRI conditions and calculated in accordance with AHRI Standard 210/240-2017. Airflow and net cooling capacity not shown.

(c) EER2 and SEER2 are rated at AHRI conditions and certified in accordance with AHRI Standard 210/240-2023.

^(d) Outdoor Sound Rating shown is tested in accordance with AHRI Standard 270 or 370.

(e) Refrigerant charge is an approximate value. For a more precise value, see unit nameplate and service instructions.

Table 2. General data – heating performance – 3 to 5 tons

	Heating Performance ^(a)										
	3 T	ons	4 T	ons	5 Tons						
Heating Models	Low	Medium	Low	Medium	Low	Medium					
Heating Input (Btu/h)	72.000	100,000	72.000	115,000	72.000	115,000					
1 st Stage (Btu)	72,000	80,000	72,000	92,000	72,000	92,000					
Heating Output (Btu/h)	E7 600	80,000	57.600	92,000	E7 600	92,000					
1 st Stage (Btu)	57,600	64,000	57,000	73,600	57,600	73,600					
Steady State Efficiency %	80	80	80	80	80	80					
No. Burners	2	3	2	3	2	3					
No. Stages	1	2	1	2	1	2					
Gas Supply Line Pressure (in. wc)	4.0 / 14.0	4.0 / 14.0	4.0 / 14.0	4.0 / 14.0	4.0 / 14.0	4.0 / 14.0					
Natural Gas (minimum/maximum)	11.0 / 14.0	11.0 / 14.0	11.0 / 14.0	11.0 / 14.0	11.0 / 14.0	11.0 / 14.0					
Gas Connection Pipe Size (in.)	1/2	1/2	1/2	1/2	1/2	1/2					

(a) Heating Performance limit settings and rating data were established and approved under laboratory test conditions using American National Standards Institute standards (ANSI). Ratings shown are for elevations up to 2000 feet. For elevations above 2000 feet, ratings should be reduced at the rate of 4% for each 1000 feet above sea level.

Performance Data

Gross Cooling Capacities

Table 3. Gross cooling capacities 3 tons - E/GDK036A3,4,W

			Ambie	ent Terr	nperatu	re (°F)			Ambie	ent Terr	peratu	re (°F)			Ambie	ent Terr	peratu	re (°F)		
	Ent	85									105									
CFM	DB (°	-							Enterin	g Wet I	Bulb Te	mp (°F)	Entering Wet Bulb Temp (°F)						
	F)	6	1	6	7	7	3	6	61	6	7	7	3	6		-	7		3	
		MBh	SHC	MBh	SHC	MBh	SHC	MBh	SHC	MBh	SHC	MBh	SHC	MBh	SHC	MBh	SHC	MBh	SHC	
	75	35.0	27.9	39.6	22.1	44.6	15.8	33.0	26.8	37.4	21.0	42.2	14.8	30.8	25.7	35.1	19.9	39.6	13.7	
000	80	35.1	32.8	39.6	27.2	44.6	21.1	33.2	31.7	37.5	26.1	42.2	20.1	31.1	30.5	35.2	25.0	39.7	18.9	
960	85	36.3	36.3	39.6	32.2	44.6	26.3	34.7	34.7	37.5	31.1	42.3	25.2	32.9	32.9	35.2	30.0	39.7	24.1	
	90	38.4	38.4	39.7	36.0	44.7	31.4	36.8	36.8	37.7	36.0	42.3	30.3	35.0	35.0	35.4	34.8	39.8	29.2	
	75	35.9	29.8	40.6	23.3	45.6	16.2	33.9	28.7	38.3	22.2	43.1	15.2	31.6	27.5	35.9	21.0	40.4	14.2	
1080	80	36.1	35.2	40.6	28.9	45.6	22.2	34.2	34.1	38.4	27.9	43.2	21.1	32.3	32.3	36.2	26.8	40.5	19.9	
1000	85	38.0	38.0	40.6	34.6	45.7	27.9	36.3	36.3	38.4	33.5	43.2	26.8	34.4	34.4	36.1	32.1	40.5	25.7	
	90	40.3	40.3	40.9	39.9	45.7	33.6	38.6	38.6	38.8	38.8	43.3	32.5	36.6	36.6	36.7	36.7	40.6	31.3	
	75	36.7	31.7	41.4	24.4	46.4	16.8	34.6	30.5	39.1	23.3	43.9	15.7	32.3	29.0	36.6	22.1	41.1	14.5	
1200	80	37.1	37.1	41.4	30.6	46.5	23.1	35.4	35.4	39.1	29.5	43.9	22.0	33.4	33.4	36.6	28.4	41.2	20.9	
	85	39.5	39.5	41.5	36.7	46.5	29.5	37.7	37.7	39.2	34.8	44.0	28.4	35.7	35.7	36.8	34.4	41.2	27.2	
	90	41.9	41.9	42.0	42.0	46.5	35.7	40.1	40.1	40.2	40.2	44.0	34.7	38.1	38.1	38.1	38.1	41.3	33.5	
	75	37.3	33.3	42.1	25.5	47.1	17.1	35.2	31.9	39.7	24.4	44.5	16.0	32.9	29.7	37.1	23.2	41.6	14.8	
1320	80 85	38.3 40.8	38.3 40.8	42.1 42.2	32.3 37.7	47.2 47.2	24.1 31.0	36.5 38.9	36.5 38.9	39.7 39.9	31.2 37.7	44.6 44.6	23.0 29.9	34.5 36.9	34.5 36.9	37.2 37.4	30.0 36.5	41.7 41.8	21.8	
	90	40.8	40.8 43.3	42.2	43.4	47.2	37.9	30.9 41.4	30.9 41.4	39.9 41.5	41.5	44.0	29.9 36.8	39.3	39.3	39.3	39.3	41.8	28.7 35.6	
	30 75	37.9	34.4	42.7	26.5	47.7	17.4	35.8	33.8	40.2	25.4	45.0	16.3	33.4	39.5	37.6	24.2	41.0	15.1	
	80	39.4	39.4	42.7	34.0	47.8	25.0	37.5	37.5	40.2	32.8	45.1	23.9	35.4	35.4	37.7	31.6	42.2	22.7	
1440	85	42.0	42.0	42.9	41.0	47.8	32.5	40.0	40.0	40.5	39.8	45.1	31.4	37.9	37.9	38.0	38.0	42.2	30.2	
						47.8		42.6	42.6	42.7	42.7	45.2	38.7	40.4	40.4	40.4	40.4	42.3	36.3	
	90	44.0	44.6	44.7	44.7	47.0	40.0	42.0						40.4				42.0		
	90	44.6	44.6 Ambie	44.7 ent Terr	44.7		40.0	42.0					30.7	40.4		ent Tem			30.5	
		44.0		ent Terr	nperatu		40.0	42.0		ent Terr	peratu		30.7	40.4		ent Terr	peratu		50.5	
CFM	Ent DB (°		Ambie	ent Terr 1'	nperatu 15	ire (°F)			Ambie	ent Terr 12	nperatu 20	re (°F)			Ambie	ent Terr 12	iperatu 25	re (°F)		
CFM	Ent	E	Ambie Enterin	ent Terr 1' g Wet I	nperatu 15 Bulb Te	ire (°F) emp (°F	⁻)		Ambie Enterin	ent Terr 12 g Wet I	iperatu 20 Bulb Te	re (°F) emp (°F)	E	Ambie Enterin	ent Terr 12 g Wet I	iperatu 25 Bulb Te	re (°F) emp (°F)	
CFM	Ent DB (°	E	Ambie Enterin	ent Terr 1' g Wet I 6	nperatu 15 Bulb Te 57	emp (°F) 7	⁻) 3	і 6	Ambie Enterin 61	ent Terr 12 g Wet I 6	iperatu 20 Bulb Te 7	emp (°F) 7) 3	E	Ambie Enterin	ent Terr 12 g Wet I 6	iperatu 25 Bulb Te 7	re (°F) emp (°F 7) 3	
CFM	Ent DB (° F)	E 6 MBh	Ambie Enterin 1 SHC	ent Terr 1' g Wet I 6 MBh	nperatu 15 Bulb Te 57 SHC	emp (°F) emp (°F 7 MBh) 3 SHC	l 6 MBh	Ambie Enterin 31 SHC	ent Terr 12 g Wet I 6 MBh	nperatu 20 Bulb Te 7 SHC	re (°F) emp (°F 7 MBh) 3 SHC	E 6 MBh	Ambie Enterin 1 SHC	ent Terr 12 g Wet I 6 MBh	iperatu 25 Bulb Te 7 SHC	re (°F) emp (°F 7 MBh) 3 SHC	
	Ent DB (° F) 75	E 6 MBh 28.5	Ambie Enterin 1 SHC 24.4	ent Terr 1 [°] g Wet I 6 MBh 32.5	nperatu 15 Bulb Te 7 SHC 18.7	emp (°F) 7 MBh 36.7	3 SHC 12.6	6 MBh 27.2	Ambie Enterin 51 SHC 23.8	ent Terr 12 g Wet I 6 MBh 31.2	aperatu 20 Bulb Te 7 SHC 18.0	re (°F) emp (°F 7 MBh 35.2) 3 SHC 12.0	E 6 MBh 25.9	Ambie Enterin 1 SHC 23.0	ent Tem 12 g Wet I 6 MBh 29.7	peratu 25 Bulb Te 7 SHC 17.4	re (°F) emp (°F 7 MBh 33.6) 3 SHC 11.3	
CFM 960	Ent DB (° F)	E 6 MBh	Ambie Enterin 1 SHC	ent Terr 1' g Wet I 6 MBh	nperatu 15 Bulb Te 57 SHC	emp (°F) emp (°F 7 MBh) 3 SHC	l 6 MBh	Ambie Enterin 31 SHC	ent Terr 12 g Wet I 6 MBh	nperatu 20 Bulb Te 7 SHC	re (°F) emp (°F 7 MBh) 3 SHC	E 6 MBh	Ambie Enterin 1 SHC	ent Terr 12 g Wet I 6 MBh	iperatu 25 Bulb Te 7 SHC	re (°F) emp (°F 7 MBh) 3 SHC 11.3 16.4	
	Ent DB (° F) 75 80	E 6 MBh 28.5 28.9	Ambie Enterin 1 SHC 24.4 28.9	ent Terr 1 [°] g Wet I 6 MBh 32.5 32.6	nperatu 15 Bulb Te 57 SHC 18.7 23.7	emp (°F) 7 MBh 36.7 36.8	3 SHC 12.6 17.7	6 MBh 27.2 27.9	Ambie Enterin 51 23.8 27.9	ent Tem 12 g Wet I 6 MBh 31.2 31.4	Deratu 20 3ulb Te 7 5HC 18.0 23.1	re (°F) mp (°F 7 MBh 35.2 35.3) 3 SHC 12.0 17.1	E 6 MBh 25.9 26.8	Ambie Enterin 1 SHC 23.0 26.8	ent Tem 12 g Wet I 6 MBh 29.7 29.8	25 Bulb Te 7 SHC 17.4 22.4	re (°F) mp (°F 7 MBh 33.6 33.7) 3 SHC 11.3	
	Ent DB (° F) ⁷⁵ 80 85	E 6 MBh 28.5 28.9 30.9	Ambie Enterin 1 24.4 28.9 30.9	ent Tem 1 ² g Wet I 6 MBh 32.5 32.6 32.7	nperatu 15 Bulb Te 7 SHC 18.7 23.7 28.8	emp (°F) 7 MBh 36.7 36.8 36.9	3 3 12.6 17.7 22.9	6 MBh 27.2 27.9 29.9	Ambie Enterin 51 23.8 27.9 29.9	ent Tem 12 g Wet I 6 MBh 31.2 31.4 31.3	20 Bulb Te 7 SHC 18.0 23.1 28.0	re (°F) mp (°F 7 MBh 35.2 35.3 35.3) 3 SHC 12.0 17.1 22.2	B MBh 25.9 26.8 28.8	Ambie Enterin 1 23.0 26.8 28.8	ent Tem 12 g Wet I 6 MBh 29.7 29.8 29.9	peratu 25 3ulb Te 7 SHC 17.4 22.4 27.1	re (°F) mp (°F 7 MBh 33.6 33.7 33.7) 3 5HC 11.3 16.4 21.5	
960	Ent DB (° F) 75 80 85 90	E 6 MBh 28.5 28.9 30.9 33.0	Ambie Enterin 1 24.4 28.9 30.9 33.0	ent Tem 1 ¹⁷ g Wet I 6 MBh 32.5 32.6 32.7 33.1	nperatu 15 Bulb Te 7 SHC 18.7 23.7 28.8 33.1	emp (°F) 9 mp (°F 7 MBh 36.7 36.8 36.9 36.9	7) 3 SHC 12.6 17.7 22.9 27.9	6 MBh 27.2 27.9 29.9 31.9	Ambie Enterin 51 23.8 27.9 29.9 31.9	mt Tem 12 g Wet I 6 MBh 31.2 31.4 31.3 32.0	peratu 20 3ulb Te 7 <u>3HC</u> 18.0 23.1 28.0 32.0	re (°F) mp (°F 7 MBh 35.2 35.3 35.3 35.3) 3 SHC 12.0 17.1 22.2 27.3	6 MBh 25.9 26.8 28.8 30.8	Ambie Enterin 1 23.0 26.8 28.8 30.8	ent Tem 12 g Wet I 6 MBh 29.7 29.8 29.9 30.8	peratu 25 Bulb Te 7 SHC 17.4 22.4 27.1 30.8	re (°F) mp (°F 7 MBh 33.6 33.7 33.7 33.8) 3 5HC 11.3 16.4 21.5 26.6	
	Ent DB (° F) 75 80 85 90 75	6 MBh 28.5 28.9 30.9 33.0 29.2	Ambie Enterin 1 24.4 28.9 30.9 33.0 26.2	mt Tem 1 ¹ g Wet I 6 MBh 32.5 32.6 32.7 33.1 33.2	nperatu 15 Bulb Te 7 SHC 18.7 23.7 28.8 33.1 19.8	emp (°F) 7 MBh 36.7 36.8 36.9 36.9 37.5	3 3 12.6 17.7 22.9 27.9 12.9	6 MBh 27.2 27.9 29.9 31.9 27.9	Ambie Enterin 51 23.8 27.9 29.9 31.9 25.0	mt Tem 12 g Wet I 6 MBh 31.2 31.4 31.3 32.0 31.8	peratu 20 Bulb Te 7 SHC 18.0 23.1 28.0 32.0 19.1	re (°F) mp (°F 7 MBh 35.2 35.3 35.3 35.3 35.4 35.9) 3 5HC 12.0 17.1 22.2 27.3 12.3	B MBh 25.9 26.8 28.8 30.8 26.6	Ambie Enterin 1 23.0 26.8 28.8 30.8 24.8	ent Tem 12 g Wet I 6 MBh 29.7 29.8 29.9 30.8 30.3	25 Bulb Te 7 SHC 17.4 22.4 27.1 30.8 18.5	re (°F) mp (°F 7 MBh 33.6 33.7 33.7 33.8 34.2) 3 5HC 11.3 16.4 21.5 26.6 11.6	
960	Ent DB (° F) 75 80 85 90 75 80	6 MBh 28.5 28.9 30.9 33.0 29.2 30.2	Ambie Enterin 1 24.4 28.9 30.9 33.0 26.2 30.2	American	nperatu 15 Bulb Te 7 SHC 18.7 23.7 28.8 33.1 19.8 25.4	rre (°F) emp (°F MBh 36.7 36.8 36.9 36.9 37.5 37.5	3 3 12.6 17.7 22.9 27.9 12.9 18.7	6 MBh 27.2 27.9 29.9 31.9 27.9 29.1	Ambie Enterin 51 23.8 27.9 29.9 31.9 25.0 29.1	ent Tem 12 g Wet I 6 MBh 31.2 31.4 31.3 32.0 31.8 31.9	peratu 20 3ulb Te 7 SHC 18.0 23.1 28.0 32.0 19.1 24.8	rre (°F) mp (°F 7 MBh 35.2 35.3 35.3 35.3 35.4 35.9 35.9) 3 5HC 12.0 17.1 22.2 27.3 12.3 18.0	6 MBh 25.9 26.8 28.8 30.8 26.6 28.0	Ambie Enterin 1 23.0 26.8 28.8 30.8 24.8 28.0	ent Tem 12 g Wet I 6 MBh 29.7 29.8 29.9 30.8 30.3 30.3 30.4	peratu 25 3ulb Te 7 5HC 17.4 22.4 27.1 30.8 18.5 24.1	re (°F) mp (°F 7 MBh 33.6 33.7 33.7 33.7 33.8 34.2 34.3) 3 5HC 11.3 16.4 21.5 26.6 11.6 17.4	
960	Ent DB (° F) 75 80 85 90 75 80 85	B B B B B B B B B B	Ambie Enterin 1 24.4 28.9 30.9 33.0 26.2 30.2 32.3	ent Tem 1' g Wet I 32.5 32.6 32.7 33.1 33.2 33.3 33.4	peratu 15 Bulb Te 7 SHC 18.7 23.7 28.8 33.1 19.8 25.4 30.4	rre (°F) mp (°F MBh 36.7 36.8 36.9 36.9 36.9 37.5 37.5 37.5 37.6	3 3 12.6 17.7 22.9 27.9 12.9 18.7 24.4	6 MBh 27.2 27.9 29.9 31.9 27.9 29.1 31.2	Ambie Enterin 51 23.8 27.9 29.9 31.9 25.0 29.1 31.2	ent Tem 12 g Wet I 31.2 31.4 31.3 32.0 31.8 31.9 32.0	peratu 20 3ulb Te 7 5HC 18.0 23.1 28.0 32.0 19.1 24.8 30.2	rre (°F) mp (°F 7 MBh 35.2 35.3 35.3 35.3 35.4 35.9 35.9 35.9 36.0) 3 12.0 17.1 22.2 27.3 12.3 18.0 23.8	6 MBh 25.9 26.8 28.8 30.8 26.6 28.0 30.0	Ambie Enterin 1 23.0 26.8 28.8 30.8 24.8 28.0 30.0	ent Tem 12 g Wet I 6 MBh 29.7 29.8 29.9 30.8 30.3 30.4 30.6	peratu 25 3ulb Te 7 5HC 17.4 22.4 27.1 30.8 18.5 24.1 29.5	re (°F) mp (°F 7 MBh 33.6 33.7 33.7 33.7 33.8 34.2 34.3 34.3) 3 5HC 11.3 16.4 21.5 26.6 11.6 17.4 23.1	
960 1080	Ent DB (° F) 75 80 85 90 75 80 85 90	6 MBh 28.5 28.9 30.9 33.0 29.2 30.2 32.3 34.5	Ambie Enterin 1 24.4 28.9 30.9 33.0 26.2 30.2 30.2 32.3 34.5	rt Terr g Wet I g Wet I 32.5 32.6 32.7 33.1 33.2 33.3 33.4 34.6 33.8 33.9	SHC 18.7 23.7 28.8 33.1 19.8 25.4 30.4 34.6	mp (°F) 7 MBh 36.7 36.8 36.9 36.9 37.5 37.5 37.6 37.7	3 3 1 2.6 17.7 22.9 27.9 12.9 18.7 24.4 30.1	6 MBh 27.2 27.9 29.9 31.9 27.9 29.1 31.2 33.3	Ambie Enterin 31 23.8 27.9 29.9 31.9 25.0 29.1 31.2 33.3	American Stress American Stress g Wet I 6 MBh 31.2 31.4 31.3 32.0 31.8 31.9 32.0 33.4 33.4	SHC 18.0 23.1 28.0 32.0 19.1 24.8 30.2 33.4	re (°F) mp (°F 7 MBh 35.2 35.3 35.3 35.4 35.9 35.9 36.0 36.1) 3 5HC 12.0 17.1 22.2 27.3 12.3 18.0 23.8 29.4	6 MBh 25.9 26.8 28.8 30.8 26.6 28.0 30.0 32.1	Ambie Enterin 1 23.0 26.8 28.8 30.8 24.8 28.0 30.0 32.1	American Science American Science g Wet I 6 MBh 29.7 29.8 29.9 30.8 30.3 30.4 30.6 32.2 3	25 3ulb Te 7 5HC 17.4 22.4 27.1 30.8 18.5 24.1 29.5 32.2	re (°F) mp (°F 7 MBh 33.6 33.7 33.7 33.8 34.2 34.3 34.3 34.3) 3 SHC 11.3 16.4 21.5 26.6 11.6 17.4 23.1 28.8	
960	Ent DB (° F) 75 80 85 90 75 80 85 90 75 80 85 90 75	6 MBh 28.5 28.9 30.9 33.0 29.2 30.2 32.3 34.5 29.8	Ambie Enterin 1 24.4 24.4 24.9 30.9 33.0 26.2 30.2 30.2 32.3 34.5 26.9	American Stress g Wet I g Wet I 32.5 32.6 32.7 33.1 33.2 33.3 33.4 34.6 33.8	SHC 18.7 23.7 28.8 33.1 19.8 25.4 30.4 34.6 20.9	mp (°F) 7 MBh 36.7 36.8 36.9 36.9 37.5 37.5 37.6 37.7 38.0	 3 3 12.6 17.7 22.9 27.9 12.9 18.7 24.4 30.1 13.3 	6 MBh 27.2 27.9 29.9 31.9 27.9 29.1 31.2 33.3 28.5	Ambie Enterin 31 23.8 27.9 29.9 31.9 25.0 29.1 31.2 33.3 27.2	American Stress g Wet I g Wet I 6 MBh 31.2 31.4 31.3 32.0 31.8 31.9 32.0 33.4 32.4	SHC 18.0 23.1 28.0 32.0 19.1 24.8 30.2 33.4 20.2	re (°F) mp (°F 7 MBh 35.2 35.3 35.3 35.4 35.9 35.9 36.0 36.1 36.4) 3 SHC 12.0 17.1 22.2 27.3 12.3 18.0 23.8 29.4 12.6	6 MBh 25.9 26.8 28.8 30.8 26.6 28.0 30.0 32.1 27.1	Ambie Enterin 1 23.0 26.8 28.8 30.8 24.8 28.0 30.0 32.1 26.4	American Science Merican Science g Wet I 6 MBh 29.7 29.8 29.9 30.8 30.3 30.4 30.6 32.2 30.8	Peratu 25 Bulb Te 7 SHC 17.4 22.4 27.1 30.8 18.5 24.1 29.5 32.2 19.5	re (°F) mp (°F 7 MBh 33.6 33.7 33.7 33.8 34.2 34.3 34.3 34.3 34.4 34.7) 3 SHC 11.3 16.4 21.5 26.6 11.6 17.4 23.1 28.8 11.9	
960 1080	Ent DB (° F) 75 80 85 90 75 80 85 90 75 80 85 90 75 80 85 90	B 6 MBh 28.5 28.9 30.9 33.0 29.2 30.2 32.3 34.5 29.8 31.3	Ambie Enterin 1 24.4 28.9 30.9 33.0 26.2 30.2 32.3 34.5 26.9 31.3 33.6 35.8	rt Terr g Wet I g Wet I 32.5 32.6 32.7 33.1 33.2 33.3 33.4 34.6 33.8 33.9	SHC 18.7 23.7 28.8 33.1 19.8 25.4 30.4 34.6 20.9 27.1 33.0 35.9	mp (°F) mp (°F 7 MBh 36.7 36.8 36.9 36.9 37.5 37.5 37.6 37.7 38.0 38.1	BHC 12.6 17.7 22.9 27.9 12.9 18.7 24.4 30.1 13.3 19.6	6 MBh 27.2 27.9 29.9 31.9 27.9 29.1 31.2 33.3 28.5 30.2	Ambie Enterin 51 23.8 27.9 29.9 31.9 25.0 29.1 31.2 33.3 27.2 30.2	American Stress g Wet I g Wet I 6 MBh 31.2 31.4 31.3 32.0 31.8 31.9 32.0 33.4 32.4 32.4	SHC 18.0 23.1 28.0 32.0 19.1 24.8 30.2 33.4 20.2 26.4	re (°F) mp (°F 7 MBh 35.2 35.3 35.3 35.4 35.9 35.9 36.0 36.1 36.4 36.5) 3 SHC 12.0 17.1 22.2 27.3 12.3 18.0 23.8 29.4 12.6 19.0 25.3 31.5	6 MBh 25.9 26.8 28.8 30.8 26.6 28.0 30.0 32.1 27.1 29.0	Ambie Enterin 1 23.0 26.8 28.8 30.8 24.8 28.0 30.0 32.1 26.4 29.0 31.1 33.3	rt Terr g Wet I g Wet I 29.7 29.8 29.9 30.8 30.3 30.4 30.6 32.2 30.8 30.9 31.2 33.3	Peratu 25 3ulb Te 7 5HC 17.4 22.4 27.1 30.8 18.5 24.1 29.5 32.2 19.5 25.7 31.2 33.3	re (°F) mp (°F 7 MBh 33.6 33.7 33.7 33.8 34.2 34.3 34.3 34.3 34.4 34.7 34.8 34.8 34.8 34.9) 3 SHC 11.3 16.4 21.5 26.6 11.6 17.4 23.1 28.8 11.9 18.3	
960 1080	Ent DB (° F) 75 80 85 90 75 80 85 90 75 80 85 90 75 80 85 90 75	6 MBh 28.5 28.9 30.9 33.0 29.2 30.2 32.3 34.5 29.8 31.3 33.6 35.8 30.4	Ambie Enterin 1 24.4 28.9 30.9 33.0 26.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.5 26.9 31.3 33.6 35.8 29.5	Ant Term 1* g Wet I 32.5 32.6 32.7 33.1 33.2 33.3 34.6 35.9 34.3	SHC 18.7 23.7 28.8 33.1 19.8 25.4 30.4 34.6 20.9 27.1 33.0 35.9 21.9	rre (°F) mp (°F 7 MBh 36.7 36.8 36.9 36.9 37.5 37.5 37.5 37.6 37.7 38.0 38.1 38.2 38.2 38.2 38.5	3 3 12.6 17.7 22.9 27.9 12.9 18.7 24.4 30.1 13.3 19.6 26.0 32.2 13.6	6 MBh 27.2 27.9 29.9 31.9 27.9 29.1 31.2 33.3 28.5 30.2 32.4 34.6 29.0	Ambie Enterin 51 23.8 27.9 29.9 31.9 25.0 29.1 31.2 33.3 27.2 30.2 32.4 34.6 28.8	It Term g Wet I 6 MBh 31.2 31.4 31.3 32.0 31.8 31.9 32.0 33.4 32.4 32.4 32.4 32.4 32.8	SHC 18.0 23.1 28.0 32.0 19.1 24.8 30.2 33.4 20.2 26.4 32.3 34.6 21.2	re (°F) mp (°F 7 MBh 35.2 35.3 35.3 35.4 35.9 35.9 36.0 36.1 36.4 36.5 36.5 36.5 36.6 36.8) 3 SHC 12.0 17.1 22.2 27.3 12.3 18.0 23.8 29.4 12.6 19.0 25.3 31.5 12.9	6 MBh 25.9 26.8 28.8 30.8 26.6 28.0 30.0 32.1 27.1 29.0 31.1 33.3 27.7	Ambie Enterin 1 SHC 23.0 26.8 28.8 30.8 24.8 28.0 30.0 32.1 26.4 29.0 31.1 33.3 27.7	Ant Term g Wet I 6 MBh 29.7 29.8 29.9 30.8 30.4 30.6 32.2 30.8 30.9 31.2	SHC 7 SHC 17.4 22.4 27.1 30.8 18.5 24.1 29.5 32.2 19.5 25.7 31.2 33.3 20.5	re (°F) mp (°F 7 MBh 33.6 33.7 33.7 33.8 34.2 34.3 34.3 34.4 34.7 34.8 34.8 34.8 34.9 35.1) 3 SHC 11.3 16.4 21.5 26.6 11.6 17.4 23.1 28.8 11.9 18.3 24.6 30.1 12.2	
960 1080 1200	Ent DB (° F) 75 80 85 90 75 80 85 90 75 80 85 90 75 80 85 90 75 80	B B B B B B B B	Ambie Enterin 1 24.4 28.9 30.9 33.0 26.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.3 34.5 26.9 31.3 33.6 35.8 29.5 32.3	Amplify Amplify <t< td=""><td>SHC 18.7 23.7 28.8 33.1 19.8 25.4 30.4 34.6 20.9 27.1 33.0 35.9 21.9 28.7</td><td>rre (°F) mp (°F 7 MBh 36.7 36.8 36.9 36.9 37.5 37.5 37.6 37.7 38.0 38.1 38.2 38.2 38.2 38.5 38.6</td><td>3 3 12.6 17.7 22.9 27.9 12.9 18.7 24.4 30.1 13.3 19.6 26.0 32.2 13.6 20.6</td><td>6 MBh 27.2 27.9 29.9 31.9 27.9 29.1 31.2 33.3 28.5 30.2 32.4 34.6 29.0 31.1</td><td>Ambie Enterin i1 SHC 23.8 27.9 29.9 31.9 25.0 29.1 31.2 33.3 27.2 30.2 32.4 34.6 28.8 31.1</td><td>It Term g Wet I g Wet I 6 MBh 31.2 31.4 31.3 32.0 31.8 31.9 32.0 33.4 32.4 32.4 32.4 32.4 32.8 32.9</td><td>SHC 18.0 23.1 28.0 32.0 19.1 24.8 30.2 33.4 20.2 26.4 32.3 34.6 21.2 28.1</td><td>re (°F) mp (°F 7 MBh 35.2 35.3 35.3 35.4 35.9 35.9 36.0 36.1 36.4 36.5 36.5 36.5 36.6 36.8 36.9</td><td>) 3 SHC 12.0 17.1 22.2 27.3 12.3 18.0 23.8 29.4 12.6 19.0 25.3 31.5 12.9 19.9</td><td>6 MBh 25.9 26.8 28.8 30.8 26.6 28.0 30.0 32.1 27.1 29.0 31.1 33.3 27.7 29.9</td><td>Ambie Enterin 1 SHC 23.0 26.8 28.8 30.8 24.8 28.0 30.0 32.1 26.4 29.0 31.1 33.3 27.7 29.9</td><td>It Term g Wet I g Wet I 6 MBh 29.7 29.8 29.9 30.8 30.4 30.6 32.2 30.8 30.9 31.2 31.3</td><td>SHC 7 SHC 17.4 22.4 27.1 30.8 18.5 24.1 29.5 32.2 19.5 25.7 31.2 33.3 20.5 27.1</td><td>re (°F) mp (°F 7 MBh 33.6 33.7 33.7 33.8 34.2 34.3 34.2 34.3 34.3 34.4 34.7 34.8 34.8 34.9 35.1 35.1</td><td>) 3 SHC 11.3 16.4 21.5 26.6 11.6 17.4 23.1 28.8 11.9 18.3 24.6 30.1 12.2 19.2</td></t<>	SHC 18.7 23.7 28.8 33.1 19.8 25.4 30.4 34.6 20.9 27.1 33.0 35.9 21.9 28.7	rre (°F) mp (°F 7 MBh 36.7 36.8 36.9 36.9 37.5 37.5 37.6 37.7 38.0 38.1 38.2 38.2 38.2 38.5 38.6	3 3 12.6 17.7 22.9 27.9 12.9 18.7 24.4 30.1 13.3 19.6 26.0 32.2 13.6 20.6	6 MBh 27.2 27.9 29.9 31.9 27.9 29.1 31.2 33.3 28.5 30.2 32.4 34.6 29.0 31.1	Ambie Enterin i1 SHC 23.8 27.9 29.9 31.9 25.0 29.1 31.2 33.3 27.2 30.2 32.4 34.6 28.8 31.1	It Term g Wet I g Wet I 6 MBh 31.2 31.4 31.3 32.0 31.8 31.9 32.0 33.4 32.4 32.4 32.4 32.4 32.8 32.9	SHC 18.0 23.1 28.0 32.0 19.1 24.8 30.2 33.4 20.2 26.4 32.3 34.6 21.2 28.1	re (°F) mp (°F 7 MBh 35.2 35.3 35.3 35.4 35.9 35.9 36.0 36.1 36.4 36.5 36.5 36.5 36.6 36.8 36.9) 3 SHC 12.0 17.1 22.2 27.3 12.3 18.0 23.8 29.4 12.6 19.0 25.3 31.5 12.9 19.9	6 MBh 25.9 26.8 28.8 30.8 26.6 28.0 30.0 32.1 27.1 29.0 31.1 33.3 27.7 29.9	Ambie Enterin 1 SHC 23.0 26.8 28.8 30.8 24.8 28.0 30.0 32.1 26.4 29.0 31.1 33.3 27.7 29.9	It Term g Wet I g Wet I 6 MBh 29.7 29.8 29.9 30.8 30.4 30.6 32.2 30.8 30.9 31.2 31.3	SHC 7 SHC 17.4 22.4 27.1 30.8 18.5 24.1 29.5 32.2 19.5 25.7 31.2 33.3 20.5 27.1	re (°F) mp (°F 7 MBh 33.6 33.7 33.7 33.8 34.2 34.3 34.2 34.3 34.3 34.4 34.7 34.8 34.8 34.9 35.1 35.1) 3 SHC 11.3 16.4 21.5 26.6 11.6 17.4 23.1 28.8 11.9 18.3 24.6 30.1 12.2 19.2	
960 1080	Ent DB (° F) 75 80 85 90 75 80 85 90 75 80 85 90 75 80 85 90 75 80 85 90 85	B B B B B B B B	Ambie Enterin 1 SHC 24.4 28.9 30.9 33.0 26.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.3 34.5 26.9 31.3 33.6 35.8 29.5 32.3 34.6	Ant Term 1* g Wet I 6 MBh 32.5 32.6 32.7 33.1 33.2 33.3 33.4 34.6 34.3 34.4 34.7	SHC 18.7 23.7 28.8 33.1 19.8 25.4 30.4 34.6 20.9 27.1 33.0 35.9 21.9 28.7 34.7	rre (°F) mp (°F 7 MBh 36.7 36.8 36.9 36.9 37.5 37.5 37.5 37.6 37.7 38.0 38.1 38.2 38.2 38.5 38.6 38.6	3 3 12.6 17.7 22.9 27.9 12.9 18.7 24.4 30.1 13.3 19.6 26.0 32.2 13.6 20.6 27.4	6 MBh 27.2 27.9 29.9 31.9 27.9 29.1 31.2 33.3 28.5 30.2 32.4 34.6 29.0 31.1 33.4	Ambie Enterin 51 23.8 27.9 29.9 31.9 25.0 29.1 31.2 33.3 27.2 30.2 32.4 34.6 28.8 31.1 33.4	Amplify Amplify <t< td=""><td>SHC 18.0 23.1 28.0 32.0 19.1 24.8 30.2 33.4 20.2 26.4 32.3 34.6 21.2 28.1 33.4</td><td>re (°F) mp (°F 7 MBh 35.2 35.3 35.3 35.4 35.9 36.0 36.1 36.4 36.5 36.5 36.5 36.6 36.8 36.9 37.0</td><td>) 3 SHC 12.0 17.1 22.2 27.3 12.3 18.0 23.8 29.4 12.6 19.0 25.3 31.5 12.9 19.9 26.8</td><td>6 MBh 25.9 26.8 28.8 30.8 26.6 28.0 30.0 32.1 27.1 29.0 31.1 33.3 27.7 29.9 32.1</td><td>Ambie Enterin 1 SHC 23.0 26.8 28.8 30.8 24.8 28.0 30.0 32.1 26.4 29.0 31.1 33.3 27.7 29.9 32.1</td><td>Ant Term g Wet I 6 MBh 29.7 29.8 29.9 30.8 30.3 30.4 30.6 32.2 30.8 30.9 31.2 31.3 32.1</td><td>SHC 7 SHC 17.4 22.4 27.1 30.8 18.5 24.1 29.5 32.2 19.5 25.7 31.2 33.3 20.5 27.1 32.1</td><td>re (°F) mp (°F 7 MBh 33.6 33.7 33.7 33.8 34.2 34.3 34.2 34.3 34.4 34.7 34.8 34.4 34.7 34.8 34.9 35.1 35.1 35.1 35.2</td><td>) 3 SHC 11.3 16.4 21.5 26.6 11.6 17.4 23.1 28.8 11.9 18.3 24.6 30.1 12.2 19.2 26.1</td></t<>	SHC 18.0 23.1 28.0 32.0 19.1 24.8 30.2 33.4 20.2 26.4 32.3 34.6 21.2 28.1 33.4	re (°F) mp (°F 7 MBh 35.2 35.3 35.3 35.4 35.9 36.0 36.1 36.4 36.5 36.5 36.5 36.6 36.8 36.9 37.0) 3 SHC 12.0 17.1 22.2 27.3 12.3 18.0 23.8 29.4 12.6 19.0 25.3 31.5 12.9 19.9 26.8	6 MBh 25.9 26.8 28.8 30.8 26.6 28.0 30.0 32.1 27.1 29.0 31.1 33.3 27.7 29.9 32.1	Ambie Enterin 1 SHC 23.0 26.8 28.8 30.8 24.8 28.0 30.0 32.1 26.4 29.0 31.1 33.3 27.7 29.9 32.1	Ant Term g Wet I 6 MBh 29.7 29.8 29.9 30.8 30.3 30.4 30.6 32.2 30.8 30.9 31.2 31.3 32.1	SHC 7 SHC 17.4 22.4 27.1 30.8 18.5 24.1 29.5 32.2 19.5 25.7 31.2 33.3 20.5 27.1 32.1	re (°F) mp (°F 7 MBh 33.6 33.7 33.7 33.8 34.2 34.3 34.2 34.3 34.4 34.7 34.8 34.4 34.7 34.8 34.9 35.1 35.1 35.1 35.2) 3 SHC 11.3 16.4 21.5 26.6 11.6 17.4 23.1 28.8 11.9 18.3 24.6 30.1 12.2 19.2 26.1	
960 1080 1200	Ent DB (° F) 75 80 85 90 75 80 85 90 75 80 85 90 75 80 85 90 75 80 85 90	E 6 MBh 28.5 28.9 30.9 33.0 29.2 30.2 32.3 34.5 29.8 31.3 33.6 35.8 30.4 32.3 34.6 36.9	Ambie Enterin 1 SHC 24.4 28.9 30.9 33.0 26.2 30.2 30.2 32.3 34.5 26.9 31.3 33.6 35.8 29.5 32.3 34.6 36.9	Ant Term 1* g Wet I 32.5 32.6 32.7 33.1 33.2 33.3 34.6 35.9 34.1 35.9 34.3 34.4 34.7 37.0	SHC 18.7 23.7 28.8 33.1 19.8 25.4 30.4 34.6 20.9 27.1 33.0 35.9 21.9 28.7 34.7 37.0	rre (°F) mp (°F 7 MBh 36.7 36.8 36.9 36.9 37.5 37.5 37.5 37.6 37.7 38.0 38.1 38.2 38.2 38.2 38.5 38.6 38.6 38.6 38.7	3 3 12.6 17.7 22.9 27.9 18.7 24.4 30.1 13.3 19.6 26.0 32.2 13.6 20.6 27.4 33.3	6 MBh 27.2 27.9 29.9 31.9 27.9 29.1 31.2 33.3 28.5 30.2 32.4 34.6 29.0 31.1 33.4 35.6	Ambie Enterin 51 23.8 27.9 29.9 31.9 29.0 29.1 31.2 33.3 27.2 30.2 32.4 34.6 28.8 31.1 33.4 35.6	Amplify Amplify <t< td=""><td>SHC 18.0 23.1 28.0 32.1 28.0 32.0 19.1 24.8 30.2 33.4 20.2 26.4 32.3 34.6 21.2 28.1 33.4 35.7</td><td>re (°F) mp (°F 7 MBh 35.2 35.3 35.3 35.3 35.9 36.0 36.1 36.4 36.5 36.5 36.5 36.6 36.8 36.9 37.0 37.1</td><td>) 3 SHC 12.0 17.1 22.2 27.3 12.3 18.0 23.8 29.4 12.6 19.0 25.3 31.5 12.9 19.9 26.8 32.1</td><td>6 MBh 25.9 26.8 28.8 30.8 26.6 28.0 30.0 32.1 27.1 29.0 31.1 33.3 27.7 29.9 32.1 34.2</td><td>Ambie Enterin 1 SHC 23.0 26.8 28.8 30.8 24.8 28.0 30.0 32.1 26.4 29.0 31.1 33.3 27.7 29.9 32.1 34.2</td><td>Ant Term g Wet I g Wet I 6 MBh 29.7 29.8 29.9 30.8 30.3 30.4 30.6 32.2 30.8 30.9 31.2 31.3 32.1 34.3</td><td>Peratu 25 3ulb Te 7 5HC 17.4 22.4 27.1 30.8 18.5 24.1 29.5 32.2 19.5 32.2 19.5 25.7 31.2 33.3 20.5 27.1 32.1 32.1 34.3</td><td>re (°F) mp (°F 7 MBh 33.6 33.7 33.7 33.8 34.2 34.3 34.3 34.3 34.4 34.7 34.8 34.9 35.1 35.1 35.1 35.2 35.3</td><td>3 5HC 11.3 16.4 21.5 26.6 11.6 17.4 23.1 28.8 11.9 18.3 24.6 30.1 12.2 19.2 26.1 32.6</td></t<>	SHC 18.0 23.1 28.0 32.1 28.0 32.0 19.1 24.8 30.2 33.4 20.2 26.4 32.3 34.6 21.2 28.1 33.4 35.7	re (°F) mp (°F 7 MBh 35.2 35.3 35.3 35.3 35.9 36.0 36.1 36.4 36.5 36.5 36.5 36.6 36.8 36.9 37.0 37.1) 3 SHC 12.0 17.1 22.2 27.3 12.3 18.0 23.8 29.4 12.6 19.0 25.3 31.5 12.9 19.9 26.8 32.1	6 MBh 25.9 26.8 28.8 30.8 26.6 28.0 30.0 32.1 27.1 29.0 31.1 33.3 27.7 29.9 32.1 34.2	Ambie Enterin 1 SHC 23.0 26.8 28.8 30.8 24.8 28.0 30.0 32.1 26.4 29.0 31.1 33.3 27.7 29.9 32.1 34.2	Ant Term g Wet I g Wet I 6 MBh 29.7 29.8 29.9 30.8 30.3 30.4 30.6 32.2 30.8 30.9 31.2 31.3 32.1 34.3	Peratu 25 3ulb Te 7 5HC 17.4 22.4 27.1 30.8 18.5 24.1 29.5 32.2 19.5 32.2 19.5 25.7 31.2 33.3 20.5 27.1 32.1 32.1 34.3	re (°F) mp (°F 7 MBh 33.6 33.7 33.7 33.8 34.2 34.3 34.3 34.3 34.4 34.7 34.8 34.9 35.1 35.1 35.1 35.2 35.3	3 5HC 11.3 16.4 21.5 26.6 11.6 17.4 23.1 28.8 11.9 18.3 24.6 30.1 12.2 19.2 26.1 32.6	
960 1080 1200	Ent DB (° F) 75 80 85 90 75 80 85 90 75 80 85 90 75 80 85 90 75 80 85 90 75	E 6 MBh 28.5 28.9 30.9 33.0 29.2 30.2 32.3 34.5 29.8 31.3 33.6 35.8 30.4 32.3 34.6 36.9 30.9	Ambie Enterin 1 24.4 28.9 30.9 33.0 26.2 30.2 32.3 34.5 26.9 31.3 33.6 35.8 29.5 32.3 34.6 36.9 30.9 30.9	Ant Term 1* g Wet I 32.5 32.6 32.7 33.1 33.2 33.3 33.4 34.6 33.9 34.1 35.9 34.3 34.4 34.7 37.0 34.7	SHC 18.7 23.7 28.8 33.1 19.8 25.4 30.4 34.6 20.9 27.1 33.0 35.9 21.9 28.7 34.7 37.0 22.9	rre (°F) mp (°F 7 MBh 36.7 36.8 36.9 36.9 37.5 37.5 37.5 37.6 37.7 38.0 38.1 38.2 38.2 38.5 38.6 38.6 38.6 38.7 38.9	3 3 12.6 17.7 22.9 27.9 18.7 24.4 30.1 13.3 19.6 26.0 32.2 13.6 20.6 27.4 33.3 13.8	6 MBh 27.2 27.9 29.9 31.9 27.9 29.1 31.2 33.3 28.5 30.2 32.4 34.6 29.0 31.1 33.4 35.6 29.6	Ambie Enterin 51 23.8 27.9 29.9 31.9 25.0 29.1 31.2 33.3 27.2 30.2 32.4 34.6 28.8 31.1 33.4 35.6 29.6	Amplify Amplify <t< td=""><td>SHC 18.0 23.1 28.0 32.1 28.0 32.0 19.1 24.8 30.2 33.4 20.2 26.4 32.3 34.6 21.2 28.1 33.4 35.7 22.2</td><td>re (°F) mp (°F 7 MBh 35.2 35.3 35.3 35.4 35.9 35.9 36.0 36.1 36.4 36.5 36.5 36.5 36.6 36.8 36.9 37.0 37.1 37.2</td><td>) 3 SHC 12.0 17.1 22.2 27.3 12.3 18.0 23.8 29.4 12.6 19.0 25.3 31.5 12.9 19.9 26.8 32.1 13.2</td><td>6 MBh 25.9 26.8 28.8 30.8 26.6 28.0 30.0 32.1 27.1 29.0 31.1 33.3 27.7 29.9 32.1 34.2 28.4</td><td>Ambie Enterin 1 SHC 23.0 26.8 28.8 30.8 24.8 28.0 30.0 32.1 26.4 29.0 31.1 33.3 27.7 29.9 32.1 34.2 28.4</td><td>Ant Term 12 g Wet I 6 MBh 29.7 29.8 29.9 30.8 30.3 30.4 30.6 32.2 30.8 30.9 31.2 31.3 32.1 34.3 31.6</td><td>SHC 7 SHC 17.4 22.4 27.1 30.8 18.5 24.1 29.5 32.2 19.5 25.7 31.2 33.3 20.5 27.1 32.1 34.3 21.5</td><td>re (°F) mp (°F 7 MBh 33.6 33.7 33.7 33.8 34.2 34.3 34.3 34.3 34.4 34.3 34.4 34.7 34.8 34.8 34.9 35.1 35.1 35.1 35.2 35.3 35.4</td><td>3 5HC 11.3 16.4 21.5 26.6 11.6 17.4 23.1 28.8 11.9 18.3 24.6 30.1 12.2 19.2 26.1 32.6 12.5</td></t<>	SHC 18.0 23.1 28.0 32.1 28.0 32.0 19.1 24.8 30.2 33.4 20.2 26.4 32.3 34.6 21.2 28.1 33.4 35.7 22.2	re (°F) mp (°F 7 MBh 35.2 35.3 35.3 35.4 35.9 35.9 36.0 36.1 36.4 36.5 36.5 36.5 36.6 36.8 36.9 37.0 37.1 37.2) 3 SHC 12.0 17.1 22.2 27.3 12.3 18.0 23.8 29.4 12.6 19.0 25.3 31.5 12.9 19.9 26.8 32.1 13.2	6 MBh 25.9 26.8 28.8 30.8 26.6 28.0 30.0 32.1 27.1 29.0 31.1 33.3 27.7 29.9 32.1 34.2 28.4	Ambie Enterin 1 SHC 23.0 26.8 28.8 30.8 24.8 28.0 30.0 32.1 26.4 29.0 31.1 33.3 27.7 29.9 32.1 34.2 28.4	Ant Term 12 g Wet I 6 MBh 29.7 29.8 29.9 30.8 30.3 30.4 30.6 32.2 30.8 30.9 31.2 31.3 32.1 34.3 31.6	SHC 7 SHC 17.4 22.4 27.1 30.8 18.5 24.1 29.5 32.2 19.5 25.7 31.2 33.3 20.5 27.1 32.1 34.3 21.5	re (°F) mp (°F 7 MBh 33.6 33.7 33.7 33.8 34.2 34.3 34.3 34.3 34.4 34.3 34.4 34.7 34.8 34.8 34.9 35.1 35.1 35.1 35.2 35.3 35.4	3 5HC 11.3 16.4 21.5 26.6 11.6 17.4 23.1 28.8 11.9 18.3 24.6 30.1 12.2 19.2 26.1 32.6 12.5	
960 1080 1200	Ent DB (° F) 75 80 85 90 75 80 85 90 75 80 85 90 75 80 85 90 75 80 85 90 75 80 85 90 75 80 85 90	E 6 MBh 28.5 28.9 30.9 33.0 29.2 30.2 32.3 34.5 29.8 31.3 33.6 35.8 30.4 32.3 34.6 36.9 30.9 33.2	Ambie I SHC 24.4 28.9 30.9 33.0 26.2 30.2 32.3 34.5 26.9 31.3 33.6 35.8 29.5 32.3 34.6 36.9 30.9 30.9 30.2 30.2 32.3 34.5 26.9 31.3 34.5 26.9 31.3 35.8 29.5 32.3 34.6 36.9 30.	Ant Term 1* g Wet I 32.5 32.6 32.7 33.1 33.2 33.3 33.4 34.6 34.3 34.4 34.7 37.0 34.7 34.8	SHC 18.7 23.7 28.8 33.1 19.8 25.4 30.4 34.6 20.9 27.1 33.0 35.9 21.9 28.7 34.7 37.0 22.9 30.0	rre (°F) mp (°F 7 MBh 36.7 36.8 36.9 36.9 37.5 37.5 37.5 37.6 37.7 38.0 38.1 38.2 38.2 38.5 38.6 38.6 38.6 38.7 38.9 39.0	3 SHC 12.6 17.7 22.9 27.9 18.7 24.4 30.1 13.3 19.6 26.0 32.2 13.6 20.6 27.4 33.3 13.8 21.4	6 MBh 27.2 27.9 29.9 31.9 27.9 29.1 31.2 33.3 28.5 30.2 32.4 34.6 29.0 31.1 33.4 35.6 29.6 31.9	Ambie Enterin 51 23.8 27.9 29.9 31.9 25.0 29.1 31.2 33.3 27.2 30.2 32.4 34.6 28.8 31.1 33.4 35.6 29.6 31.9	Amplify Amplify <t< td=""><td>Peratu 20 Bulb Te 7 SHC 18.0 23.1 28.0 32.0 19.1 24.8 30.2 33.4 20.2 26.4 32.3 34.6 21.2 28.1 33.4 35.7 22.2 28.9</td><td>re (°F) mp (°F 7 MBh 35.2 35.3 35.3 35.4 35.9 35.9 36.0 36.1 36.4 36.5 36.5 36.5 36.6 36.8 36.9 37.0 37.1 37.2 37.3</td><td>) 3 SHC 12.0 17.1 22.2 27.3 12.3 18.0 23.8 29.4 12.6 19.0 25.3 31.5 12.9 19.9 26.8 32.1 13.2 20.8</td><td>E 6 MBh 25.9 26.8 30.8 26.6 28.0 30.0 32.1 27.1 29.0 31.1 33.3 27.7 29.9 32.1 34.2 28.4 30.6</td><td>Ambie I SHC 23.0 26.8 28.8 30.8 24.8 28.0 30.0 32.1 26.4 29.0 31.1 33.3 27.7 29.9 32.1 34.2 28.4 30.6</td><td>It Term g Wet I g Wet I 6 MBh 29.7 29.8 29.9 30.8 30.3 30.4 30.6 32.2 30.8 30.9 31.2 31.3 32.1 34.3 31.6 31.7</td><td>SHC 7 SHC 17.4 22.4 27.1 30.8 18.5 24.1 29.5 32.2 19.5 25.7 31.2 33.3 20.5 27.1 32.1 34.3 21.5 27.7</td><td>re (°F) mp (°F 7 MBh 33.6 33.7 33.7 33.8 34.2 34.3 34.2 34.3 34.3 34.4 34.3 34.4 34.7 34.8 34.4 34.7 35.1 35.1 35.1 35.2 35.3 35.4 35.5</td><td>) 3 SHC 11.3 16.4 21.5 26.6 11.6 17.4 23.1 28.8 11.9 18.3 24.6 30.1 12.2 19.2 26.1 32.6 12.5 20.1</td></t<>	Peratu 20 Bulb Te 7 SHC 18.0 23.1 28.0 32.0 19.1 24.8 30.2 33.4 20.2 26.4 32.3 34.6 21.2 28.1 33.4 35.7 22.2 28.9	re (°F) mp (°F 7 MBh 35.2 35.3 35.3 35.4 35.9 35.9 36.0 36.1 36.4 36.5 36.5 36.5 36.6 36.8 36.9 37.0 37.1 37.2 37.3) 3 SHC 12.0 17.1 22.2 27.3 12.3 18.0 23.8 29.4 12.6 19.0 25.3 31.5 12.9 19.9 26.8 32.1 13.2 20.8	E 6 MBh 25.9 26.8 30.8 26.6 28.0 30.0 32.1 27.1 29.0 31.1 33.3 27.7 29.9 32.1 34.2 28.4 30.6	Ambie I SHC 23.0 26.8 28.8 30.8 24.8 28.0 30.0 32.1 26.4 29.0 31.1 33.3 27.7 29.9 32.1 34.2 28.4 30.6	It Term g Wet I g Wet I 6 MBh 29.7 29.8 29.9 30.8 30.3 30.4 30.6 32.2 30.8 30.9 31.2 31.3 32.1 34.3 31.6 31.7	SHC 7 SHC 17.4 22.4 27.1 30.8 18.5 24.1 29.5 32.2 19.5 25.7 31.2 33.3 20.5 27.1 32.1 34.3 21.5 27.7	re (°F) mp (°F 7 MBh 33.6 33.7 33.7 33.8 34.2 34.3 34.2 34.3 34.3 34.4 34.3 34.4 34.7 34.8 34.4 34.7 35.1 35.1 35.1 35.2 35.3 35.4 35.5) 3 SHC 11.3 16.4 21.5 26.6 11.6 17.4 23.1 28.8 11.9 18.3 24.6 30.1 12.2 19.2 26.1 32.6 12.5 20.1	
960 1080 1200 1320	Ent DB (° F) 75 80 85 90 75 80 85 90 75 80 85 90 75 80 85 90 75 80 85 90 75	E 6 MBh 28.5 28.9 30.9 33.0 29.2 30.2 32.3 34.5 29.8 31.3 33.6 35.8 30.4 32.3 34.6 36.9 30.9	Ambie Enterin 1 24.4 28.9 30.9 33.0 26.2 30.2 32.3 34.5 26.9 31.3 33.6 35.8 29.5 32.3 34.6 36.9 30.9 30.9	Ant Term 1* g Wet I 32.5 32.6 32.7 33.1 33.2 33.3 33.4 34.6 33.9 34.1 35.9 34.3 34.4 34.7 37.0 34.7	SHC 18.7 23.7 28.8 33.1 19.8 25.4 30.4 34.6 20.9 27.1 33.0 35.9 21.9 28.7 34.7 37.0 22.9	rre (°F) mp (°F 7 MBh 36.7 36.8 36.9 36.9 37.5 37.5 37.5 37.6 37.7 38.0 38.1 38.2 38.2 38.5 38.6 38.6 38.6 38.7 38.9	3 3 12.6 17.7 22.9 27.9 18.7 24.4 30.1 13.3 19.6 26.0 32.2 13.6 20.6 27.4 33.3 13.8	6 MBh 27.2 27.9 29.9 31.9 27.9 29.1 31.2 33.3 28.5 30.2 32.4 34.6 29.0 31.1 33.4 35.6 29.6	Ambie Enterin 51 23.8 27.9 29.9 31.9 25.0 29.1 31.2 33.3 27.2 30.2 32.4 34.6 28.8 31.1 33.4 35.6 29.6	Amplify Amplify <t< td=""><td>SHC 18.0 23.1 28.0 32.1 28.0 32.0 19.1 24.8 30.2 33.4 20.2 26.4 32.3 34.6 21.2 28.1 33.4 35.7 22.2</td><td>re (°F) mp (°F 7 MBh 35.2 35.3 35.3 35.4 35.9 35.9 36.0 36.1 36.4 36.5 36.5 36.5 36.6 36.8 36.9 37.0 37.1 37.2</td><td>) 3 SHC 12.0 17.1 22.2 27.3 12.3 18.0 23.8 29.4 12.6 19.0 25.3 31.5 12.9 19.9 26.8 32.1 13.2</td><td>6 MBh 25.9 26.8 28.8 30.8 26.6 28.0 30.0 32.1 27.1 29.0 31.1 33.3 27.7 29.9 32.1 34.2 28.4</td><td>Ambie Enterin 1 SHC 23.0 26.8 28.8 30.8 24.8 28.0 30.0 32.1 26.4 29.0 31.1 33.3 27.7 29.9 32.1 34.2 28.4</td><td>Ant Term 12 g Wet I 6 MBh 29.7 29.8 29.9 30.8 30.4 30.6 32.2 30.8 30.9 31.2 31.3 32.1 34.3 31.6</td><td>SHC 7 SHC 17.4 22.4 27.1 30.8 18.5 24.1 29.5 32.2 19.5 25.7 31.2 33.3 20.5 27.1 32.1 34.3 21.5</td><td>re (°F) mp (°F 7 MBh 33.6 33.7 33.7 33.8 34.2 34.3 34.3 34.3 34.4 34.3 34.4 34.7 34.8 34.8 34.9 35.1 35.1 35.1 35.2 35.3 35.4</td><td>3 5HC 11.3 16.4 21.5 26.6 11.6 17.4 23.1 28.8 11.9 18.3 24.6 30.1 12.2 19.2 26.1 32.6 12.5</td></t<>	SHC 18.0 23.1 28.0 32.1 28.0 32.0 19.1 24.8 30.2 33.4 20.2 26.4 32.3 34.6 21.2 28.1 33.4 35.7 22.2	re (°F) mp (°F 7 MBh 35.2 35.3 35.3 35.4 35.9 35.9 36.0 36.1 36.4 36.5 36.5 36.5 36.6 36.8 36.9 37.0 37.1 37.2) 3 SHC 12.0 17.1 22.2 27.3 12.3 18.0 23.8 29.4 12.6 19.0 25.3 31.5 12.9 19.9 26.8 32.1 13.2	6 MBh 25.9 26.8 28.8 30.8 26.6 28.0 30.0 32.1 27.1 29.0 31.1 33.3 27.7 29.9 32.1 34.2 28.4	Ambie Enterin 1 SHC 23.0 26.8 28.8 30.8 24.8 28.0 30.0 32.1 26.4 29.0 31.1 33.3 27.7 29.9 32.1 34.2 28.4	Ant Term 12 g Wet I 6 MBh 29.7 29.8 29.9 30.8 30.4 30.6 32.2 30.8 30.9 31.2 31.3 32.1 34.3 31.6	SHC 7 SHC 17.4 22.4 27.1 30.8 18.5 24.1 29.5 32.2 19.5 25.7 31.2 33.3 20.5 27.1 32.1 34.3 21.5	re (°F) mp (°F 7 MBh 33.6 33.7 33.7 33.8 34.2 34.3 34.3 34.3 34.4 34.3 34.4 34.7 34.8 34.8 34.9 35.1 35.1 35.1 35.2 35.3 35.4	3 5HC 11.3 16.4 21.5 26.6 11.6 17.4 23.1 28.8 11.9 18.3 24.6 30.1 12.2 19.2 26.1 32.6 12.5	

Notes:

1. All capacities shown are gross and have not considered indoor fan heat. To obtain NET cooling capacity subtract indoor fan heat. For indoor fan heat formula, refer to appropriate airflow table notes.

2. MBh = Total gross capacity.

3. SHC = Sensible heat capacity.

			Ambie	ent Tem	nperatu	ıre (°F)			Ambie	ent Tem	peratu	re (°F)			Ambie	ent Terr	iperatu	re (°F)				
	Ent			8	5					9	5					1()5					
CFM	Ent DB (° F)								Enterin	a Wet E	Sulb Te	mp (°F	Entering Wet Bulb Temp (°F)									
•••••			61	-	7		, 3		51	6		7		6		-	7		, '3			
		MBh	SHC	MBh	SHC	, MBh	SHC	MBh	SHC	MBh	SHC	, MBh	SHC	MBh	SHC	MBh	SHC	, MBh	SHC			
	75	47.5	38.0	53.3	30.0	59.2	21.4	45.1	36.8	50.6	28.8	56.1	20.1	42.4	35.4	47.5	27.4	52.5	18.7			
	75 80	47.5	43.8	53.3 53.3	36.8	59.2 59.3		45.1	42.0	50.6	20.0 35.6	56.1	20.1	42.4 42.7	41.8	47.5	27.4 34.2	52.5 52.6				
1280	85	49.2	43.8 49.2	53.3 53.3	30.8 43.5	59.3 59.3	28.4 35.3	45.5	42.0	50.6	42.2	56.1	34.0	44.9	41.0 44.9	47.5	34.2 40.8	52.0 52.6	25.7 32.5			
	90	49.2 52.0	49.2 52.0	53.5 53.5	43.5 49.2	59.3 59.3	42.0	47.2	49.9	50.0 50.9	42.2 46.9	56.2	40.8	44.9 47.5	44.9 47.5	47.0	40.8 47.1	52.0 52.6	39.3			
	90 75	48.6	40.4	54.5	49.2 31.5	60.4	21.8	49.9	39.1	50.9	30.2	57.1	20.7	47.5	37.7	47.9	28.8	53.3	19.2			
	80	49.0	47.6	54.5 54.5	39.1	60.4	21.0	46.5	46.2	51.6	37.8	57.1	28.3	44.0	44.0	48.4	36.3	53.4	26.9			
1440	85	49.0 51.3	51.3	54.5 54.5	46.5	60.4	37.3	49.1	49.1	51.0	45.2	57.1	36.0	46.7	46.7	48.5	43.2	53.4 53.4	34.5			
	90	54.2	54.2	54.9	40.5 53.5	60.4	44.9	51.9	51.9	52.1	43.2 52.1	57.1	43.6	49.3	49.3	49.3	49.3	53.4	42.0			
	75	49.6	42.8	55.4	32.9	61.3	22.4	46.9	41.4	52.1	31.5	57.8	21.0	44.0	39.3	49.1	30.1	53.9	19.5			
	80	50.2	4 2.0	55.5	41.2	61.3	30.9	47.9	47.9	52.5	39.9	57.9	29.5	45.4	45.4	49.1	38.3	54.0	28.0			
1600	85	53.1	53.1	55.6	49.2	61.3	39.3	50.8	50.8	52.6	47.0	57.9	37.9	48.1	48.1	49.3	44.6	54.0	36.4			
	90	56.1	56.1	56.2	49.2 56.2	61.4	47.6	53.6	53.6	52.0 53.7	53.7	57.9	46.2	50.8	40.1 50.8	49.3 50.8	50.8	54.1	44.7			
	90 75	50.1	44.9	56.2	34.2	62.0	22.8	47.7	42.8	53.1	32.9	58.4	21.4	44.7	40.6	49.6	31.4	54.4	19.8			
	80	51.6	51.6	56.2	43.3	62.0	32.0	49.2	49.2	53.1	32.9 41.9	58.5	30.6	46.6	46.6	49.7	40.4	54.5	29.1			
1760	85	54.7	54.7	56.4	43.3 50.6	62.1	41.2	49.2 52.2	49.2 52.2	53.4	48.4	58.5	39.8	49.4	40.0 49.4	50.0	48.8	54.5	38.2			
	90	57.7	57.7	57.8	50.0 57.8	62.1	50.3	55.1	55.1	55.2	40.4 55.2	58.6	48.9	49.4 52.1	49.4 52.1	50.0 52.1	40.0 52.1	54.6	47.2			
	90 75	51.1	45.9	56.9	35.5	62.7	23.1	48.3	43.9	53.7	34.1	59.0	21.7	45.2	43.8	52.1	32.1	54.8	20.1			
1920	80	52.9	43.9 52.9	56.9	45.3	62.7	33.1	40.3 50.4	43.9 50.4	53.7	43.9	59.0	31.7	47.6	47.6	50.1	42.3	54.9	30.2			
	85	56.1	56.1	57.2	- 5.5	62.7	43.1	53.4	53.4	54.0	- 5.5	59.1	41.6	50.4	50.4	50.2	7 2.0	54.9	40.0			
	90	59.1	59.1	59.2	59.2	62.8	52.9	56.4	56.4	56.4	56.4	59.1 59.1	51.3	53.1	53.1	53.2	53.2	55.0	48.6			
	30	55.1		ent Tem			52.5	50.4					51.5	55.1					+0.0			
	_		Amor		-	10(1)		Ambient Temperature (°F)							Ambient Temperature (°F)							
	Ent	115							120							125						
	-		-		-		·\		-		-		、 、				-		•			
CFM	DB (°		Enterin	g Wet E	Bulb Te				Enterin	g Wet E	Sulb Te					g Wet I	Bulb Te					
CFM	-	6	61	g Wet E 6	Bulb Te	7	3	6	61	g Wet B 6	Bulb Te 7	7	3	6	1	g Wet I 6	Bulb Te 7	7	'3			
CFM	DB (°			g Wet E	Bulb Te 7 SHC		3 SHC			g Wet F 6 MBh	Bulb Te 7 SHC				1 SHC	g Wet I 6 MBh	Bulb Te 7 SHC					
CFM	DB (° F) 75	6 MBh 39.4	51 SHC 33.9	g Wet E 6 MBh 44.1	Bulb Te 7 SHC 25.9	7 MBh 48.5	3 SHC 17.3	6 MBh 37.8	51 SHC 33.1	g Wet 6 6 MBh 42.2	3ulb Te 7 SHC 25.1	7 MBh 46.3	3 SHC 16.5	6 MBh 36.0	1 SHC 32.3	g Wet I 6 MBh 40.2	Bulb Te 7 SHC 24.2	7 MBh 43.9	3 SHC 15.6			
	DB (° F) 75 80	6 MBh 39.4 39.9	51 SHC 33.9 39.9	g Wet B 6 MBh 44.1 44.1	Bulb Te 7 SHC 25.9 32.6	7 MBh 48.5 48.5	3 SHC 17.3 24.1	6 MBh 37.8 38.5	51 SHC 33.1 38.5	g Wet B 6 MBh 42.2 42.2	3ulb Te 7 SHC 25.1 31.8	7 MBh 46.3 46.3	3 SHC 16.5 23.3	6 MBh 36.0 37.0	1 SHC 32.3 37.0	g Wet I 6 MBh 40.2 40.2	Bulb Te 7 SHC 24.2 30.9	7 MBh 43.9 44.0	3 SHC 15.6 22.4			
CFM 1280	DB (° F) 75	6 MBh 39.4 39.9 42.3	51 SHC 33.9	g Wet E 6 MBh 44.1	Bulb Te 7 SHC 25.9	7 MBh 48.5	3 SHC 17.3	6 MBh 37.8	51 SHC 33.1	g Wet B 6 MBh 42.2 42.2 42.3	SHC 25.1 31.8 37.9	7 MBh 46.3	3 SHC 16.5 23.3 30.2	6 MBh 36.0	1 SHC 32.3	g Wet I 6 MBh 40.2	Bulb Te 7 SHC 24.2	7 MBh 43.9	3 SHC 15.6			
	DB (° F) 75 80	6 MBh 39.4 39.9	51 SHC 33.9 39.9	g Wet E 6 MBh 44.1 44.1	Bulb Te 7 SHC 25.9 32.6	7 MBh 48.5 48.5	3 SHC 17.3 24.1	6 MBh 37.8 38.5	51 SHC 33.1 38.5	g Wet B 6 MBh 42.2 42.2	3ulb Te 7 SHC 25.1 31.8	7 MBh 46.3 46.3	3 SHC 16.5 23.3	6 MBh 36.0 37.0	1 SHC 32.3 37.0	g Wet I 6 MBh 40.2 40.2	SHC 24.2 30.9 36.9 41.5	7 MBh 43.9 44.0	3 SHC 15.6 22.4			
	DB (° F) 75 80 85	6 MBh 39.4 39.9 42.3	51 SHC 33.9 39.9 42.3	g Wet E 6 MBh 44.1 44.1 44.2	SHC 25.9 32.6 39.3	7 MBh 48.5 48.5 48.6	3 SHC 17.3 24.1 31.0 37.7 17.6	6 MBh 37.8 38.5 40.9	51 SHC 33.1 38.5 40.9	g Wet B 6 MBh 42.2 42.2 42.3	SHC 25.1 31.8 37.9	7 MBh 46.3 46.3 46.4	3 SHC 16.5 23.3 30.2	6 MBh 36.0 37.0 39.3	SHC 32.3 37.0 39.3 41.4 33.3	g Wet I 6 MBh 40.2 40.2 40.3	SHC 24.2 30.9 36.9 41.5 25.5	7 MBh 43.9 44.0 44.0	3 SHC 15.6 22.4 29.2			
1280	DB (° F) 75 80 85 90	6 MBh 39.4 39.9 42.3 44.7	51 SHC 33.9 39.9 42.3 44.7 35.9 41.3	g Wet 6 MBh 44.1 44.2 44.7	SHC 25.9 32.6 39.3 44.7	7 MBh 48.5 48.5 48.6 48.6 49.1 49.1	3 SHC 17.3 24.1 31.0 37.7 17.6 25.3	6 MBh 37.8 38.5 40.9 43.1 38.5 39.9	51 SHC 33.1 38.5 40.9 43.1 34.7 39.9	g Wet F 6 MBh 42.2 42.2 42.3 43.2	SHC 25.1 31.8 37.9 43.2	7 MBh 46.3 46.3 46.4 46.4 46.8 46.8	3 SHC 16.5 23.3 30.2 36.8	6 MBh 36.0 37.0 39.3 41.4	1 32.3 37.0 39.3 41.4 33.3 38.3	g Wet I 6 MBh 40.2 40.2 40.3 41.5	SHC 24.2 30.9 36.9 41.5 25.5 33.0	7 MBh 43.9 44.0 44.0 44.1	'3 SHC 15.6 22.4 29.2 36.0			
	DB (° F) 75 80 85 90 75	6 MBh 39.4 39.9 42.3 44.7 40.2	SHC 33.9 39.9 42.3 44.7 35.9	g Wet F 6 MBh 44.1 44.2 44.7 44.8	SHC 25.9 32.6 39.3 44.7 27.2	7 MBh 48.5 48.5 48.6 48.6 49.1	3 SHC 17.3 24.1 31.0 37.7 17.6	6 MBh 37.8 38.5 40.9 43.1 38.5	SHC 33.1 38.5 40.9 43.1 34.7	g Wet F 6 MBh 42.2 42.2 42.3 43.2 42.8	Sulb Te 7 SHC 25.1 31.8 37.9 43.2 26.4	7 MBh 46.3 46.3 46.4 46.4 46.4	3 SHC 16.5 23.3 30.2 36.8 16.7	6 MBh 36.0 37.0 39.3 41.4 36.7	SHC 32.3 37.0 39.3 41.4 33.3	g Wet I 6 MBh 40.2 40.2 40.3 41.5 40.7	SHC 24.2 30.9 36.9 41.5 25.5	7 MBh 43.9 44.0 44.0 44.1 44.3	3 SHC 15.6 22.4 29.2 36.0 15.8			
1280	DB (° F) 75 80 85 90 75 80	6 MBh 39.4 39.9 42.3 44.7 40.2 41.3	51 SHC 33.9 39.9 42.3 44.7 35.9 41.3	g Wet F 6 MBh 44.1 44.2 44.7 44.8 44.8	Bulb Te 7 SHC 25.9 32.6 39.3 44.7 27.2 34.7	7 MBh 48.5 48.5 48.6 48.6 49.1 49.1	3 SHC 17.3 24.1 31.0 37.7 17.6 25.3	6 MBh 37.8 38.5 40.9 43.1 38.5 39.9	51 SHC 33.1 38.5 40.9 43.1 34.7 39.9	g Wet F 6 MBh 42.2 42.2 42.3 43.2 42.8 42.8	SHC 25.1 31.8 37.9 43.2 26.4 33.8	7 MBh 46.3 46.3 46.4 46.4 46.8 46.8	3 SHC 16.5 23.3 30.2 36.8 16.7 24.4	6 MBh 36.0 37.0 39.3 41.4 36.7 38.3	1 32.3 37.0 39.3 41.4 33.3 38.3	g Wet I 6 MBh 40.2 40.2 40.3 41.5 40.7 40.8	SHC 24.2 30.9 36.9 41.5 25.5 33.0	7 MBh 43.9 44.0 44.0 44.1 44.3 44.4	3 3 3 5 1 5 6 2 2 4 2 9 2 3 6 0 1 5 8 2 3 6 0 1 5 6 2 2 4 2 9 2 3 6 6 1 5 6 6 1 5 6 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 1 5 6 1 1 5 1 1 5 1 1 1 5 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1			
1280	DB (° F) 75 80 85 90 75 80 85 90 75	6 MBh 39.4 39.9 42.3 44.7 40.2 41.3 43.8	SHC 33.9 39.9 42.3 44.7 35.9 41.3 43.8 46.2 37.1	g Wet F 6 MBh 44.1 44.2 44.7 44.8 44.8 44.8 45.0	SHC 25.9 32.6 39.3 44.7 27.2 34.7 40.6 46.3 28.5	7 MBh 48.5 48.6 48.6 48.6 49.1 49.1 49.1 49.2	3 SHC 17.3 24.1 31.0 37.7 17.6 25.3 32.9	6 MBh 37.8 38.5 40.9 43.1 38.5 39.9 42.2	SHC 33.1 38.5 40.9 43.1 34.7 39.9 42.2	g Wet F 6 MBh 42.2 42.2 42.3 43.2 42.8 42.8 42.8 43.0	SHC 25.1 31.8 37.9 43.2 26.4 33.8 41.0	7 MBh 46.3 46.3 46.4 46.4 46.8 46.8 46.9 46.9 47.1	3 SHC 16.5 23.3 30.2 36.8 16.7 24.4 32.0	6 MBh 36.0 37.0 39.3 41.4 36.7 38.3 40.5	SHC 32.3 37.0 39.3 41.4 33.3 38.3 40.5 42.6 36.3	g Wet I 6 MBh 40.2 40.2 40.3 41.5 40.7 40.8 41.0 42.7 41.1	SHC 24.2 30.9 36.9 41.5 25.5 33.0 40.0 42.7 26.7	7 MBh 43.9 44.0 44.0 44.1 44.3 44.4 44.4	3 3 5HC 15.6 22.4 29.2 36.0 15.8 23.5 31.1			
1280 1440	DB (° F) 75 80 85 90 75 80 85 90 75 80 85 90	6 MBh 39.4 39.9 42.3 44.7 40.2 41.3 43.8 46.2 40.8 42.5	SHC 33.9 39.9 42.3 44.7 35.9 41.3 43.8 46.2 37.1 42.5	g Wet F 6 MBh 44.1 44.2 44.7 44.8 44.8 45.0 46.3 45.3 45.4	SHC 25.9 32.6 39.3 44.7 27.2 34.7 40.6 46.3 28.5 36.7	7 MBh 48.5 48.6 48.6 49.1 49.1 49.2 49.2 49.2 49.5 49.6	3 SHC 17.3 24.1 31.0 37.7 17.6 25.3 32.9 40.4 17.9 26.4	6 MBh 37.8 38.5 40.9 43.1 38.5 39.9 42.2 44.5 39.0 41.0	SHC 33.1 38.5 40.9 43.1 34.7 39.9 42.2 44.5 37.2 41.0	g Wet F 6 MBh 42.2 42.3 43.2 42.8 43.0 44.6 43.3 43.3	SHC 25.1 31.8 37.9 43.2 26.4 33.8 41.0 44.6 27.6 35.9	7 MBh 46.3 46.3 46.4 46.4 46.4 46.8 46.8 46.9 46.9 47.1 47.2	3 SHC 16.5 23.3 30.2 36.8 16.7 24.4 32.0 39.5 17.0 25.5	6 MBh 36.0 37.0 39.3 41.4 36.7 38.3 40.5 42.6 37.2 39.3	SHC 32.3 37.0 39.3 41.4 33.3 38.3 40.5 42.6 36.3 39.3	g Wet I 6 MBh 40.2 40.2 40.3 41.5 40.7 40.8 41.0 42.7 41.1 41.2	SHC 24.2 30.9 36.9 41.5 25.5 33.0 40.0 42.7 26.7 35.0	7 MBh 43.9 44.0 44.1 44.3 44.4 44.4 44.5 44.7 44.8	3 SHC 15.6 22.4 29.2 36.0 15.8 23.5 31.1 38.6 16.1 24.6			
1280	DB (° F) 75 80 85 90 75 80 85 90 75	6 MBh 39.4 39.9 42.3 44.7 40.2 41.3 43.8 46.2 40.8	SHC 33.9 39.9 42.3 44.7 35.9 41.3 43.8 46.2 37.1	g Wet F 6 MBh 44.1 44.2 44.7 44.8 44.8 45.0 46.3 45.3	SHC 25.9 32.6 39.3 44.7 27.2 34.7 40.6 46.3 28.5	7 MBh 48.5 48.6 48.6 48.6 49.1 49.1 49.2 49.2 49.5	3 SHC 17.3 24.1 31.0 37.7 17.6 25.3 32.9 40.4 17.9	6 MBh 37.8 38.5 40.9 43.1 38.5 39.9 42.2 44.5 39.0	SHC 33.1 38.5 40.9 43.1 34.7 39.9 42.2 44.5 37.2	g Wet F 6 MBh 42.2 42.2 42.3 43.2 42.8 43.0 44.6 43.3	SHC 25.1 31.8 37.9 43.2 26.4 33.8 41.0 44.6 27.6	7 MBh 46.3 46.3 46.4 46.4 46.8 46.8 46.9 46.9 47.1	3 SHC 16.5 23.3 30.2 36.8 16.7 24.4 32.0 39.5 17.0	6 MBh 36.0 37.0 39.3 41.4 36.7 38.3 40.5 42.6 37.2	SHC 32.3 37.0 39.3 41.4 33.3 38.3 40.5 42.6 36.3	g Wet I 6 MBh 40.2 40.2 40.3 41.5 40.7 40.8 41.0 42.7 41.1	SHC 24.2 30.9 36.9 41.5 25.5 33.0 40.0 42.7 26.7	7 MBh 43.9 44.0 44.0 44.1 44.3 44.4 44.4 44.5 44.7	3 SHC 15.6 22.4 29.2 36.0 15.8 23.5 31.1 38.6 16.1			
1280	DB (° F) 75 80 85 90 75 80 85 90 75 80 85 90	6 MBh 39.4 39.9 42.3 44.7 40.2 41.3 43.8 46.2 40.8 42.5 45.1 47.5	SHC 33.9 39.9 42.3 44.7 35.9 41.3 43.8 46.2 37.1 42.5 45.1 47.5	g Wet I 6 MBh 44.1 44.2 44.7 44.8 44.8 45.0 46.3 45.3 45.4 45.6 47.5	SHC 25.9 32.6 39.3 44.7 27.2 34.7 40.6 46.3 28.5 36.7 44.5 47.5	7 MBh 48.5 48.6 48.6 49.1 49.2 49.2 49.5 49.7	3 SHC 17.3 24.1 31.0 37.7 17.6 25.3 32.9 40.4 17.9 26.4 34.7 43.0	6 MBh 37.8 38.5 40.9 43.1 38.5 39.9 42.2 44.5 39.0 41.0 43.4 45.6	SHC 33.1 38.5 40.9 43.1 34.7 39.9 42.2 44.5 37.2 41.0 43.4 45.6	g Wet I 6 MBh 42.2 42.3 43.2 42.8 42.8 42.8 43.0 44.6 43.3 43.3 43.6 45.7	SHC 25.1 31.8 37.9 43.2 26.4 33.8 41.0 44.6 27.6 35.9 43.5 45.7	7 MBh 46.3 46.3 46.4 46.4 46.8 46.9 46.9 47.1 47.3	3 SHC 16.5 23.3 30.2 36.8 16.7 24.4 32.0 39.5 17.0 25.5 33.8 41.4	6 MBh 36.0 37.0 39.3 41.4 36.7 38.3 40.5 42.6 37.2 39.3 41.5 43.6	SHC 32.3 37.0 39.3 41.4 33.3 38.3 40.5 42.6 36.3 39.3 41.5 43.6	g Wet I 6 MBh 40.2 40.2 40.3 41.5 40.7 40.8 41.0 42.7 41.1 41.2	SHC 24.2 30.9 36.9 41.5 25.5 33.0 40.0 42.7 26.7 35.0 41.6 43.7	7 MBh 43.9 44.0 44.1 44.3 44.4 44.5 44.7 44.8 44.9	3 SHC 15.6 22.4 29.2 36.0 15.8 23.5 31.1 38.6 16.1 24.6			
1280	DB (° F) 75 80 85 90 75 80 85 90 75 80 85 90 75 80 85 90 75	6 MBh 39.4 39.9 42.3 44.7 40.2 41.3 43.8 46.2 40.8 42.5 45.1 47.5 41.3	SHC 33.9 39.9 42.3 44.7 35.9 41.3 43.8 46.2 37.1 42.5 45.1 47.5 40.1	g Wet I 6 MBh 44.1 44.2 44.7 44.8 44.8 45.0 46.3 45.3 45.4 45.6 47.5 45.8	SHC 25.9 32.6 39.3 44.7 27.2 34.7 40.6 46.3 28.5 36.7 44.5 47.5 29.7	7 MBh 48.5 48.6 48.6 49.1 49.2 49.2 49.5 49.6 49.7 49.9	3 3 17.3 24.1 31.0 37.7 17.6 25.3 32.9 40.4 17.9 26.4 34.7 43.0 18.2	6 MBh 37.8 38.5 40.9 43.1 38.5 39.9 42.2 44.5 39.0 41.0 43.4 45.6 39.6	SHC 33.1 38.5 40.9 43.1 34.7 39.9 42.2 44.5 37.2 41.0 43.4 45.6 39.2	g Wet I 6 MBh 42.2 42.2 42.3 43.2 42.8 42.8 43.0 44.6 43.3 43.3 43.6 45.7 43.6	SHC 25.1 31.8 37.9 43.2 26.4 33.8 41.0 44.6 27.6 35.9 43.5 45.7 28.8	7 MBh 46.3 46.3 46.4 46.4 46.8 46.9 46.9 46.9 47.1 47.3 47.3	3 3 16.5 23.3 30.2 36.8 16.7 24.4 32.0 39.5 17.0 25.5 33.8 41.4 17.3	6 MBh 36.0 37.0 39.3 41.4 36.7 38.3 40.5 42.6 37.2 39.3 41.5 43.6 37.7	SHC 32.3 37.0 39.3 41.4 33.3 38.3 40.5 42.6 36.3 39.3 41.5 43.6 37.7	g Wet I 6 MBh 40.2 40.2 40.3 41.5 40.7 40.8 41.0 42.7 41.1 41.2 41.6 43.7 41.4	SHC 24.2 30.9 36.9 41.5 25.5 33.0 40.0 42.7 26.7 35.0 41.6 43.7 27.9	7 MBh 43.9 44.0 44.1 44.3 44.4 44.5 44.7 44.8 44.9 45.0	3 3 3 3 3 4 5 5 5 5 5 5 1 5 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1			
1280 1440 1600	DB (° F) 75 80 85 90 75 80 85 90 75 80 85 90	6 MBh 39.4 39.9 42.3 44.7 40.2 41.3 43.8 46.2 40.8 42.5 45.1 47.5	SHC 33.9 39.9 42.3 44.7 35.9 41.3 43.8 46.2 37.1 42.5 45.1 47.5	g Wet I 6 MBh 44.1 44.2 44.7 44.8 44.8 45.0 46.3 45.3 45.4 45.6 47.5	SHC 25.9 32.6 39.3 44.7 27.2 34.7 40.6 46.3 28.5 36.7 44.5 47.5	7 MBh 48.5 48.6 48.6 49.1 49.2 49.2 49.5 49.6 49.7 49.9 50.0	3 SHC 17.3 24.1 31.0 37.7 17.6 25.3 32.9 40.4 17.9 26.4 34.7 43.0	6 MBh 37.8 38.5 40.9 43.1 38.5 39.9 42.2 44.5 39.0 41.0 43.4 45.6	SHC 33.1 38.5 40.9 43.1 34.7 39.9 42.2 44.5 37.2 41.0 43.4 45.6	g Wet I 6 MBh 42.2 42.3 43.2 42.8 42.8 42.8 43.0 44.6 43.3 43.3 43.6 45.7	SHC 25.1 31.8 37.9 43.2 26.4 33.8 41.0 44.6 27.6 35.9 43.5 45.7	7 MBh 46.3 46.4 46.4 46.8 46.9 46.9 46.9 47.1 47.2 47.3 47.5	3 SHC 16.5 23.3 30.2 36.8 16.7 24.4 32.0 39.5 17.0 25.5 33.8 41.4	6 MBh 36.0 37.0 39.3 41.4 36.7 38.3 40.5 42.6 37.2 39.3 41.5 43.6	SHC 32.3 37.0 39.3 41.4 33.3 38.3 40.5 42.6 36.3 39.3 41.5 43.6	g Wet I 6 MBh 40.2 40.2 40.3 41.5 40.7 40.8 41.0 42.7 41.1 41.2 41.6 43.7	SHC 24.2 30.9 36.9 41.5 25.5 33.0 40.0 42.7 26.7 35.0 41.6 43.7	7 MBh 43.9 44.0 44.1 44.3 44.4 44.5 44.4 44.5 44.7 44.8 44.9 45.0 45.1	3 SHC 15.6 22.4 29.2 36.0 15.8 23.5 31.1 38.6 16.1 24.6 32.9 40.1			
1280	DB (° F) 75 80 85 90 75 80 85 90 75 80 85 90 75 80 85 90 75	6 MBh 39.4 39.9 42.3 44.7 40.2 41.3 43.8 46.2 40.8 42.5 45.1 47.5 41.3	SHC 33.9 39.9 42.3 44.7 35.9 41.3 43.8 46.2 37.1 42.5 45.1 47.5 40.1	g Wet I 6 MBh 44.1 44.2 44.7 44.8 44.8 45.0 46.3 45.3 45.4 45.6 47.5 45.8	SHC 25.9 32.6 39.3 44.7 27.2 34.7 40.6 46.3 28.5 36.7 44.5 47.5 29.7	7 MBh 48.5 48.6 48.6 49.1 49.2 49.2 49.5 49.6 49.7 49.9	3 3 17.3 24.1 31.0 37.7 17.6 25.3 32.9 40.4 17.9 26.4 34.7 43.0 18.2	6 MBh 37.8 38.5 40.9 43.1 38.5 39.9 42.2 44.5 39.0 41.0 43.4 45.6 39.6	SHC 33.1 38.5 40.9 43.1 34.7 39.9 42.2 44.5 37.2 41.0 43.4 45.6 39.2	g Wet I 6 MBh 42.2 42.2 42.3 43.2 42.8 42.8 43.0 44.6 43.3 43.3 43.6 45.7 43.6	SHC 25.1 31.8 37.9 43.2 26.4 33.8 41.0 44.6 27.6 35.9 43.5 45.7 28.8	7 MBh 46.3 46.3 46.4 46.4 46.8 46.9 46.9 46.9 47.1 47.3 47.3	3 3 16.5 23.3 30.2 36.8 16.7 24.4 32.0 39.5 17.0 25.5 33.8 41.4 17.3	6 MBh 36.0 37.0 39.3 41.4 36.7 38.3 40.5 42.6 37.2 39.3 41.5 43.6 37.7	SHC 32.3 37.0 39.3 41.4 33.3 38.3 40.5 42.6 36.3 39.3 41.5 43.6 37.7	g Wet I 6 MBh 40.2 40.2 40.3 41.5 40.7 40.8 41.0 42.7 41.1 41.2 41.6 43.7 41.4	SHC 24.2 30.9 36.9 41.5 25.5 33.0 40.0 42.7 26.7 35.0 41.6 43.7 27.9	7 MBh 43.9 44.0 44.1 44.3 44.4 44.5 44.7 44.8 44.9 45.0	3 3 3 3 3 4 5 5 5 5 5 5 1 5 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1			
1280 1440 1600	DB (° F) 75 80 85 90 75 80 85 90 75 80 85 90 75 80 85 90 75 80 85 90	6 MBh 39.4 39.9 42.3 44.7 40.2 41.3 43.8 46.2 40.8 42.5 45.1 47.5 41.3 43.6	SHC 33.9 39.9 42.3 44.7 35.9 41.3 43.8 46.2 37.1 42.5 45.1 47.5 40.1 43.6	g Wet I 6 MBh 44.1 44.2 44.7 44.8 44.8 45.0 46.3 45.3 45.4 45.6 47.5 45.8 45.8	SHC 25.9 32.6 39.3 44.7 27.2 34.7 40.6 46.3 28.5 36.7 44.5 47.5 29.7 38.7	7 MBh 48.5 48.6 48.6 49.1 49.2 49.2 49.5 49.6 49.7 49.9 50.0	3 3 17.3 24.1 31.0 37.7 17.6 25.3 32.9 40.4 17.9 26.4 34.7 43.0 18.2 27.4	6 MBh 37.8 38.5 40.9 43.1 38.5 39.9 42.2 44.5 39.0 41.0 43.4 45.6 39.6 41.9	SHC 33.1 38.5 40.9 43.1 34.7 39.9 42.2 44.5 37.2 41.0 43.4 45.6 39.2 41.9	g Wet I 6 MBh 42.2 42.3 43.2 42.8 42.8 42.8 43.0 44.6 43.3 43.3 43.6 45.7 43.6 43.7	SHC 25.1 31.8 37.9 43.2 26.4 33.8 41.0 44.6 27.6 35.9 43.5 45.7 28.8 37.8	7 MBh 46.3 46.4 46.4 46.8 46.9 46.9 46.9 47.1 47.2 47.3 47.5	3 3 16.5 23.3 30.2 36.8 16.7 24.4 32.0 39.5 17.0 25.5 33.8 41.4 17.3 26.5	6 MBh 36.0 37.0 39.3 41.4 36.7 38.3 40.5 42.6 37.2 39.3 41.5 43.6 37.7 40.1	SHC 32.3 37.0 39.3 41.4 33.3 40.5 42.6 36.3 39.3 41.5 43.6 37.7 40.1	g Wet I 6 MBh 40.2 40.2 40.3 41.5 40.7 40.8 41.0 42.7 41.1 41.2 41.6 43.7 41.4 41.5	SHC 24.2 30.9 36.9 41.5 25.5 33.0 40.0 42.7 26.7 35.0 41.6 43.7 27.9 36.3	7 MBh 43.9 44.0 44.1 44.3 44.4 44.5 44.4 44.5 44.7 44.8 44.9 45.0 45.1	3 3 3 3 3 5 3 1 1 5 3 1 5 3 1 1 5 3 1 1 5 3 1 1 5 3 1 1 5 3 1 5 1 5 6 1 5 1 5 6 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 1 5 1 1 5 1 1 5 1 1 1 5 1 1 1 5 1 1 1 1 1 1 1 1 1 1			
1280 1440 1600	DB (° F) 75 80 85 90 75 80 85 90 75 80 85 90 75 80 85 90 75 80 85 90	6 MBh 39.4 39.9 42.3 44.7 40.2 41.3 43.8 46.2 40.8 42.5 45.1 47.5 41.3 43.6 46.1	SHC 33.9 39.9 42.3 44.7 35.9 41.3 43.8 46.2 37.1 42.5 45.1 47.5 40.1 43.6 46.1	g Wet I 6 MBh 44.1 44.2 44.7 44.8 44.8 45.0 46.3 45.3 45.4 45.6 47.5 45.8 45.8 45.8 46.2	SHC 25.9 32.6 39.3 44.7 27.2 34.7 40.6 46.3 28.5 36.7 44.5 47.5 29.7 38.7 46.2	7 MBh 48.5 48.6 48.6 49.1 49.2 49.2 49.5 49.6 49.7 49.9 50.0 50.0	3 3 17.3 24.1 31.0 37.7 17.6 25.3 32.9 40.4 17.9 26.4 34.7 43.0 18.2 27.4 36.5	6 MBh 37.8 38.5 40.9 43.1 38.5 39.9 42.2 44.5 39.0 41.0 43.4 45.6 39.6 41.9 44.3	SHC 33.1 38.5 40.9 43.1 34.7 39.9 42.2 44.5 37.2 41.0 43.4 45.6 39.2 41.9 44.3	g Wet I 6 MBh 42.2 42.2 42.3 43.2 42.8 42.8 43.0 44.6 43.3 43.6 45.7 43.6 45.7 43.6 43.7 44.4	SHC 25.1 31.8 37.9 43.2 26.4 33.8 41.0 44.6 27.6 35.9 43.5 45.7 28.8 37.8 44.4	7 MBh 46.3 46.4 46.4 46.8 46.9 46.9 46.9 47.1 47.2 47.3 47.5 47.6	3 3 16.5 23.3 30.2 36.8 16.7 24.4 32.0 39.5 17.0 25.5 33.8 41.4 17.3 26.5 35.6	6 MBh 36.0 37.0 39.3 41.4 36.7 38.3 40.5 42.6 37.2 39.3 41.5 43.6 37.7 40.1 42.4	SHC 32.3 37.0 39.3 41.4 33.3 38.3 40.5 42.6 36.3 39.3 41.5 43.6 37.7 40.1 42.4	g Wet I 6 MBh 40.2 40.2 40.3 41.5 40.7 40.8 41.0 42.7 41.1 41.2 41.6 43.7 41.4 41.5 42.4	SHC 24.2 30.9 36.9 41.5 25.5 33.0 40.0 42.7 26.7 35.0 41.6 43.7 27.9 36.3 42.4	7 MBh 43.9 44.0 44.1 44.3 44.4 44.5 44.4 44.5 44.7 44.8 44.9 45.0 45.1 45.2	3 3 3 3 4 5 5 5 5 5 5 5 1 5 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 1 5 1 1 5 1 1 5 1 1 1 5 1 1 1 1 1 1 1 1 1 1			
1280 1440 1600 1760	DB (° F) 75 80 85 90 75 80 85 90 75 80 85 90 75 80 85 90 75 80 85 90	6 MBh 39.4 39.9 42.3 44.7 40.2 41.3 43.8 46.2 40.8 42.5 45.1 47.5 41.3 43.6 46.1 48.5	SHC 33.9 39.9 42.3 44.7 35.9 41.3 43.8 46.2 37.1 42.5 45.1 47.5 40.1 43.6 46.1 48.5	g Wet I 6 MBh 44.1 44.1 44.2 44.7 44.8 44.8 45.0 46.3 45.3 45.3 45.4 45.6 47.5 45.8 45.8 45.8 46.2 48.6	SHC 25.9 32.6 39.3 44.7 27.2 34.7 40.6 46.3 28.5 36.7 44.5 47.5 29.7 38.7 46.2 48.6	7 MBh 48.5 48.6 48.6 49.1 49.2 49.2 49.5 49.6 49.7 49.9 50.0 50.1	3 3 17.3 24.1 31.0 37.7 17.6 25.3 32.9 40.4 17.9 26.4 34.7 43.0 18.2 27.4 36.5 44.5	6 MBh 37.8 38.5 40.9 43.1 38.5 39.9 42.2 44.5 39.0 41.0 43.4 45.6 39.6 41.9 44.3 46.5	SHC 33.1 38.5 40.9 43.1 34.7 39.9 42.2 44.5 37.2 41.0 43.4 45.6 39.2 41.9 44.3 46.5	g Wet I 6 MBh 42.2 42.3 43.2 42.8 42.8 42.8 43.0 44.6 43.3 43.3 43.6 45.7 43.6 45.7 43.6 43.7 44.4 46.6	SHC 25.1 31.8 37.9 43.2 26.4 33.8 41.0 44.6 27.6 35.9 43.5 45.7 28.8 37.8 44.4 46.6	7 MBh 46.3 46.4 46.4 46.8 46.9 46.9 46.9 47.1 47.2 47.3 47.5 47.6 47.7	SHC 16.5 23.3 30.2 36.8 16.7 24.4 32.0 39.5 17.0 25.5 33.8 41.4 17.3 26.5 35.6 44.2	6 MBh 36.0 37.0 39.3 41.4 36.7 38.3 40.5 42.6 37.2 39.3 41.5 43.6 37.7 40.1 42.4 44.4	SHC 32.3 37.0 39.3 41.4 33.3 40.5 42.6 36.3 39.3 41.5 43.6 37.7 40.1 42.4	g Wet I 6 MBh 40.2 40.2 40.3 41.5 40.7 40.8 41.0 42.7 41.1 41.2 41.6 43.7 41.4 41.5 42.4 44.4	SHC 24.2 30.9 36.9 41.5 25.5 33.0 40.0 42.7 26.7 35.0 41.6 43.7 27.9 36.3 42.4 44.4	7 MBh 43.9 44.0 44.1 44.3 44.4 44.5 44.4 44.5 44.7 44.8 44.9 45.0 45.1 45.2 45.3	3 3 3 3 4 5 5 5 5 5 5 5 1 5 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 1 5 1 1 5 1 1 5 1 1 1 1 1 1 1 1 1 1			
1280 1440 1600	DB (° F) 75 80 85 90 75 80 85 90 75 80 85 90 75 80 85 90 75 80 85 90 75	6 MBh 39.4 39.9 42.3 44.7 40.2 41.3 43.8 46.2 40.8 42.5 45.1 47.5 41.3 43.6 46.1 48.5 41.8	SHC 33.9 39.9 42.3 44.7 35.9 41.3 43.8 46.2 37.1 42.5 45.1 47.5 40.1 43.6 46.1 48.5 41.8	g Wet I 6 MBh 44.1 44.2 44.7 44.8 44.8 45.0 46.3 45.3 45.4 45.6 47.5 45.8 45.8 45.8 45.8 46.2 48.6 46.1	SHC 25.9 32.6 39.3 44.7 27.2 34.7 40.6 46.3 28.5 36.7 44.5 47.5 29.7 38.7 46.2 48.6 30.9	7 MBh 48.5 48.6 49.1 49.2 49.2 49.5 49.6 49.7 49.9 50.0 50.1 50.2	3 3 3 1 7.3 24.1 31.0 37.7 1 7.6 25.3 32.9 40.4 1 7.9 26.4 34.7 43.0 1 8.2 27.4 36.5 44.5 1 8.4	6 MBh 37.8 38.5 40.9 43.1 38.5 39.9 42.2 44.5 39.0 41.0 43.4 45.6 39.6 41.9 44.3 46.5 40.1	SHC 33.1 38.5 40.9 43.1 34.7 39.9 42.2 44.5 37.2 41.0 43.4 45.6 39.2 41.9 44.3 46.5 40.1	g Wet I 6 MBh 42.2 42.3 43.2 42.8 42.8 43.0 44.6 43.3 43.6 45.7 43.6 45.7 43.6 45.7 43.6 43.7 44.4 46.6 43.9	SHC 25.1 31.8 37.9 43.2 26.4 33.8 41.0 44.6 27.6 35.9 43.5 45.7 28.8 37.8 44.4 46.6 30.0	7 MBh 46.3 46.4 46.4 46.8 46.9 46.9 46.9 47.1 47.2 47.3 47.5 47.6 47.7 47.7	SHC 16.5 23.3 30.2 36.8 16.7 24.4 32.0 39.5 17.0 25.5 33.8 41.4 17.3 26.5 35.6 44.2 17.6	6 MBh 36.0 37.0 39.3 41.4 36.7 38.3 40.5 42.6 37.2 39.3 41.5 43.6 37.7 40.1 42.4 44.4 38.3	SHC 32.3 37.0 39.3 41.4 33.3 38.3 40.5 42.6 36.3 39.3 41.5 43.6 37.7 40.1 42.4 38.3	g Wet I 6 MBh 40.2 40.2 40.3 41.5 40.7 40.8 41.0 42.7 41.1 41.2 41.6 43.7 41.4 41.5 42.4 44.4 41.6	SHC 24.2 30.9 36.9 41.5 25.5 33.0 40.0 42.7 26.7 35.0 41.6 43.7 27.9 36.3 42.4 29.0	7 MBh 43.9 44.0 44.1 44.3 44.1 44.5 44.4 44.5 44.7 44.8 44.9 45.0 45.3 45.3	3 3 3 3 4 5 5 5 5 5 5 5 5 5 5			

Table 4. Gross cooling capacities 4 tons - E/GDK048A3,4,W

1. All capacities shown are gross and have not considered indoor fan heat. To obtain NET cooling capacity subtract indoor fan heat. For indoor fan heat formula, refer to appropriate airflow table notes.

MBh = Total gross capacity.
 SHC = Sensible heat capacity.

Table 5.	Gross cooling capacities 5 tons - E/GDK060A3,4,W
----------	--

			Ambie	ent Tem	peratu	re (°F)			Ambie	ent Tem	peratu	re (°F)			Ambie	ent Terr	peratu	re (°F)	
	Ent			8	5					9	5					1()5		
CFM	DB (°	I	Enterin	g Wet B	Sulb Te	emp (°F)	I	Enterin	g Wet E	Sulb Te	mp (°F)	E	Enterin	g Wet I	Sulb Te	mp (°F	;)
	F)	6	51	6	7	7	3	6	1	6	7	7	3	6	1	6	7	7	'3
		MBh	SHC																
	75	55.9	45.1	62.9	35.6	69.9	25.0	52.9	43.5	59.6	34.0	66.2	23.7	49.6	41.8	55.9	32.3	62.1	22.0
	80	56.0	52.7	62.9	43.9	70.0	33.7	53.0	51.0	59.6	42.1	66.2	32.1	49.8	49.1	55.9	40.4	62.1	30.4
1600	85	57.5	57.5	62.8	51.9	70.0	42.0	55.1	55.1	59.6	50.3	66.3	40.5	52.4	52.4	55.9	48.5	62.2	38.7
	90	60.8	60.8	62.9	59.3	69.9	50.1	58.3	58.3	59.7	57.5	66.3	48.5	55.5	55.5	56.1	55.7	62.2	46.8
	75	57.3	48.0	64.4	37.4	71.3	25.8	54.1	46.4	60.9	35.8	67.4	24.2	50.7	44.6	57.0	34.0	63.2	22.5
	80	57.4	56.1	64.3	46.4	71.3	35.2	54.3	54.3	60.9	44.7	67.5	33.6	51.2	51.2	57.0	42.9	63.2	31.8
1800	85	59.9	59.9	64.2	55.5	71.3	44.5	57.3	57.3	60.8	53.1	67.5	42.9	54.4	54.4	57.1	50.0	63.2	40.9
	90	63.4	63.4	64.3	63.3	71.3	53.5	60.7	60.7	61.0	61.0	67.5	51.8	57.6	57.6	57.7	57.7	63.2	50.1
	75	58.4	50.8	65.5	39.1	72.4	26.4	55.1	48.5	61.9	37.4	68.4	24.7	51.6	45.6	57.9	35.6	64.0	23.0
	80	58.6	58.6	65.5	48.9	72.5	36.7	55.7	55.7	61.9	47.3	68.5	35.0	52.8	52.8	57.9	45.4	64.1	33.3
2000	85	62.0	62.0	65.4	57.0	72.4	46.9	59.2	59.2	61.9	56.5	68.5	45.0	56.2	56.2	58.0	54.5	64.1	43.1
	90	65.5	65.5	65.6	65.6	72.4	56.7	62.7	62.7	62.7	62.7	68.5	55.1	59.5	59.5	59.5	59.5	64.1	53.3
	75	59.3	52.1	66.4	40.7	73.4	26.8	56.0	51.1	62.7	39.0	69.3	25.2	52.4	49.1	58.6	36.9	64.7	23.4
0000	80	60.1	60.1	66.4	51.4	73.4	38.1	57.3	57.3	62.7	49.7	69.3	36.4	54.2	54.2	58.7	47.8	64.7	34.6
2200	85	63.7	63.7	66.4	61.2	73.3	48.9	60.9	60.9	62.7	59.4	69.3	47.2	57.7	57.7	58.7	57.4	64.8	45.3
	90	67.4	67.4	67.4	67.4	73.3	59.9	64.4	64.4	64.4	64.4	69.2	57.9	61.0	61.0	61.1	61.1	64.8	53.9
	75	60.1	55.2	67.2	42.3	74.1	27.3	56.7	53.3	63.4	40.2	69.9	25.6	53.0	51.3	59.2	38.3	65.3	23.8
0400	80	61.5	61.5	67.2	53.8	74.1	39.4	58.6	58.6	63.4	52.0	69.9	37.8	55.5	55.5	59.3	50.1	65.3	36.0
2400	85	65.3	65.3	67.0	64.1	74.1	51.0	62.3	62.3	63.3	62.2	70.0	49.3	59.0	59.0	59.2	59.2	65.4	47.5
	90	69.0	69.0	69.0	69.0	74.0	61.4	65.9	65.9	65.9	65.9	69.9	60.3	62.3	62.3	62.4	62.4	65.4	58.3
			Ambie	ent Tem	nperatu	ire (°F)			Ambie	ent Tem	peratu	re (°F)			Ambie	ent Terr	peratu	re (°F)	
	Ent			11	15					12	20					12	25		
CFM	DB (°	I	Enterin	g Wet B	Bulb Te	emp (°F)	I	Enterin	g Wet E	Sulb Te	mp (°F)	E	Enterin	g Wet I	Sulb Te	emp (°F	⁻)
	F)	6	51	6	7	7	3	6	1	6	7	7	3	6	1	6	7	7	'3
		MBh	SHC																
	75	46.0	39.9	51.9	30.4	57.5	20.1	44.1	38.8	49.7	29.4	55.1	19.1	42.1	37.2	47.4	28.4	52.5	18.1
1600	80	46.3	46.3	51.9	38.5	57.6	28.5	44.7	44.7	49.7	37.5	55.1	27.5	43.0	43.0	47.5	36.4	52.5	26.5
1000	85	49.3	49.3	51.9	45.6	57.6	36.9	47.7	47.7	49.8	43.9	55.2	35.9	45.9	45.9	47.6	44.1	52.6	34.6
	90	52.3	52.3	52.4	52.4	57.7	44.9	50.6	50.6	50.6	50.6	55.2	43.9	48.7	48.7	48.7	48.7	52.7	42.9
	75	47.0	41.5	52.8	32.1	58.4	20.6	45.0	39.9	50.6	31.1	55.9	19.6	42.9	40.1	48.2	30.1	53.2	18.6
1800	80	48.1	48.1	52.9	41.0	58.5	30.0	46.4	46.4	50.6	40.0	55.9	29.0	44.6	44.6	48.3	39.0	53.3	28.0
1000	85	51.2	51.2	53.0	49.4	58.5	39.0	49.4	49.4	50.7	48.3	56.0	37.9	47.5	47.5	48.3	47.2	53.4	36.9
	90	54.2	54.2	54.3	54.3	58.6	48.2	52.4	52.4	52.4	52.4	56.1	47.2	50.4	50.4	50.4	50.4	53.4	45.1
	75	47.8	44.7	53.6	33.7	59.2	21.1	45.7	43.6	51.2	32.4	56.6	20.1	43.6	42.4	48.8	31.3	53.8	19.0
2000	80	49.6	49.6	53.6	43.5	59.2	31.4	47.8	47.8	51.3	42.5	56.6	30.4	45.9	45.9	48.9	41.4	53.9	29.3
2000	85	52.7	52.7	53.7	52.4	59.3	41.2	50.9	50.9	51.4	51.3	56.7	40.2	48.9	48.9	49.0	49.0	54.0	39.1
	90	55.9	55.9	55.9	55.9	59.3	50.0	53.9	53.9	53.9	53.9	56.8	49.6	51.8	51.8	51.8	51.8	54.0	48.4
	75	48.4	46.9	54.2	34.9	59.8	21.5	46.3	45.8	51.8	33.8	57.1	20.5	44.1	44.1	49.4	32.7	54.3	19.5
2200	80	50.8	50.8	54.3	45.9	59.8	32.7	49.0	49.0	51.9	44.1	57.1	31.7	47.0	47.0	49.5	42.1	54.3	30.7
00	85	54.1	54.1	54.3	54.3	59.9	43.4	52.1	52.1	52.2	52.2	57.2	42.3	50.1	50.1	50.1	50.1	54.5	41.2
	90	57.2	57.2	57.3	57.3	59.9	53.5	55.2	55.2	55.2	55.2	57.2	52.3	52.9	52.9	53.0	53.0	54.4	51.1
	75	48.9	48.9	54.8	36.3	60.3	21.9	46.8	46.8	52.4	35.2	57.6	20.9	44.8	44.8	49.8	34.1	54.7	19.9
													~~ .	40.0		40.0			04.0
2400	80	51.9	51.9	54.8	46.5	60.2	34.0	50.0	50.0	52.5	46.4	57.5	32.4	48.0	48.0	49.9	45.2	54.7	31.3
2400		51.9 55.2 58.4	51.9 55.2 58.4	54.8 55.3 58.4	46.5 55.3 58.4	60.2 60.4 60.3	34.0 45.5 56.1	50.0 53.2 56.2	50.0 53.2 56.2	52.5 53.2 56.3	46.4 53.2 56.3	57.5 57.7 57.5	32.4 44.4 55.0	48.0 51.0 53.9	48.0 51.0 53.9	49.9 51.1 54.0	45.2 51.1 54.0	54.7 54.9 54.7	31.3 43.3 53.8

Notes:

1. All capacities shown are gross and have not considered indoor fan heat. To obtain NET cooling capacity subtract indoor fan heat. For indoor fan heat formula, An expansion of the structure shows and have refer to appropriate airflow table notes.
 MBh = Total gross capacity.
 SHC = Sensible heat capacity.

Evaporator Fan Performance

	Table 6.	Belt drive evaporator fan perform	ance - 3 tons cooling onl	v units - EDK036A3, 4,	W - downflow airflow
--	----------	-----------------------------------	---------------------------	------------------------	----------------------

	0.1	10	0.2	20	0.	30	0.	40	0.	50	0.	60	0.1	70	0.	80	0.9	90	1.	00
cfm	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
								1-h	ip stan	dard n	notor a	nd pul	ley							
960	—	—	—	—	587	0.17	645	0.21	698	0.25	747	0.30	792	0.34	835	0.38	875	0.43	913	0.48
1080	_	_	—	—	612	0.21	669	0.25	720	0.30	768	0.34	813	0.39	855	0.44	895	0.49	933	0.54
1200	_	_	—	—	639	0.25	693	0.30	743	0.34	790	0.39	834	0.45	876	0.50	915	0.55	953	0.6
1320	_	_	608	0.25	666	0.30	719	0.35	768	0.40	813	0.45	857	0.51	898	0.56	937	0.62	974	0.68
1440	581	0.24	642	0.30	697	0.35	748	0.41	795	0.46	840	0.52	882	0.58	922	0.64	960	0.70	997	0.76

	-vallar.		ernal G		ressui	e (inci	165 01	valei	Gauge)
	1.1	10	1.:	20	1.:	30	1.4	40	1.	50
cfm	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
			2-h	p over	sized r	notor a	and pu	lley		
960	950	0.53	984	0.58	1018	0.63	1050	0.68	1081	0.73
1080	969	0.59	1004	0.64	1038	0.70	1070	0.75	1101	0.81
1200	989	0.66	1024	0.72	1057	0.77	1089	0.83	1121	0.89
1320	1010	0.74	1044	0.80	1077	0.86	1109	0.92	1140	0.98
1440	1032	0.82	1066	0.89	1099	0.95	1131	1.02	1162	1.08

Notes:

1. For Standard Evaporator Fan Speed (rpm), refer table Standard motor and drive/fan.

2. For Oversized Evaporator Fan Speed (rpm), refer table Oversized motor and drive/fan speed.

 1-hp fan motor heat (MBh) = 2.8328 x Fan bhp. + 0.4714, 2-hp fan motor heat (MBh) = 2.7146 x Fan bhp. + 0.816.

4. Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data.

5. Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table 7. Belt drive evaporator fan performance - 3 tons cooling only units - EDK036A3, 4, W - horizontal airflow

	0.	10	0.2	20	0.	30	0.	40	0.	50	0.	60	0.	70	0.	80	0.	90	1.	00
cfm	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
								1-h	ip stan	dard n	notor a	nd pul	ley							
960	_	_	—	_	596	0.18	653	0.22	706	0.26	754	0.3	799	0.35	841	0.39	881	0.44	919	0.49
1080	—	_	—	—	623	0.21	678	0.26	729	0.3	776	0.35	821	0.4	862	0.45	902	0.50	940	0.55
1200	—	_	591	0.21	650	0.26	703	0.31	753	0.35	799	0.4	843	0.46	884	0.51	923	0.56	961	0.62
1320	—	_	622	0.26	678	0.31	730	0.36	778	0.41	824	0.47	866	0.52	907	0.58	945	0.63	982	0.69
1440	599	0.26	659	0.31	712	0.37	762	0.42	809	0.48	852	0.54	894	0.60	934	0.66	971	0.72	1008	0.78

	Availab	ole Ext	ernal S	static F	ressu	re (Incl	hes of	Water	Gauge)
-	1.1	10	1.:	20	1.	30	1.	40	1.	50
cfm	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
			2-h	p over	sized r	notor a	and pu	lley		
960	955	0.53	989	0.58	1023	0.64	1055	0.69	1086	0.74
1080	976	0.60	1010	0.65	1043	0.71	1076	0.76	1107	0.82
1200	996	0.67	1031	0.73	1064	0.79	1096	0.84	1127	0.90
1320	1018	0.75	1052	0.81	1085	0.87	1116	0.93	1147	1.00
1440	1042	0.84	1076	0.91	1109	0.97	1140	1.04	1171	1.10

Notes:

1. For Standard Evaporator Fan Speed (rpm), refer table Standard motor and drive/fan.

2. For Oversized Evaporator Fan Speed (rpm), refer table Oversized motor and drive/fan speed.

 1-hp fan motor heat (MBh) = 2.8328 x Fan bhp.+ 0.4714, 2-hp fan motor heat (MBh) = 2.7146 x Fan bhp. + 0.816.

4. Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data.

5. Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table 8. Belt drive evaporator fan performance - 3 tons with medium gas heat - GDK036A3, 4, W*M - downflow airflow

	0.	10	0.2	20	0.	30	0.4	40	0.	50	0.	60	0.	70	0.	80	0.	90	1.0	00
cfm	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
								1-h	ip stan	dard n	notor a	nd pul	ley							
960	_	_	_	_	607	0.18	663	0.22	714	0.27	762	0.31	806	0.35	848	0.4	887	0.45	925	0.49
1080	_	_	_	_	636	0.23	690	0.27	740	0.31	787	0.36	831	0.41	872	0.46	911	0.51	948	0.56
1200	_	_	610	0.23	667	0.27	719	0.32	768	0.37	813	0.42	856	0.47	896	0.52	935	0.58	972	0.63
1320	584	0.23	644	0.28	699	0.33	749	0.38	796	0.43	840	0.49	882	0.54	922	0.60	960	0.66	996	0.71
1440	626	0.28	682	0.34	734	0.39	783	0.45	828	0.51	871	0.56	911	0.62	950	0.68	987	0.75	1023	0.81

	Availab	ole Ext	ernal S	itatic P	ressu	e (Incl	hes of	Water	Gauge)
	1.1	10	1.:	20	1.	30	1.	40	1.	50
cfm	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
			2-h	p over	sized r	notor a	and pu	lley		
960	961	0.54	995	0.59	1028	0.64	1060	0.70	1091	0.75
1080	984	0.61	1018	0.67	1051	0.72	1083	0.78	1114	0.83
1200	1007	0.69	1041	0.75	1074	0.80	1105	0.86	1136	0.92
1320	1031	0.77	1065	0.83	1097	0.89	1128	0.96	1159	1.02
1440	1057	0.87	1090	0.93	1122	1.00	1153	1.06	1184	1.13

Notes:

1. For Standard Evaporator Fan Speed (rpm), refer table Standard motor and drive/fan.

2. For Oversized Evaporator Fan Speed (rpm), refer table Oversized motor and drive/fan speed.

 1-hp fan motor heat (MBh) = 2.8328 x Fan bhp.+ 0.4714, 2-hp fan motor heat (MBh) = 2.7146 x Fan bhp. + 0.816.

 Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data.

5. Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table 9. Belt drive evaporator fan performance - 3 tons with medium gas heat - GDK036A3, 4, W*M - horizontal airflow

						Availab								0	,					
	0.	10	0.:	20	0.	30	0.4	40	0.	50	0.	60	0.	70	0.	80	0.	90	1.	00
cfm	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
								1-h	ip stan	dard n	notor a	nd pul	ley							
960	_	_	—	_	621	0.19	676	0.23	726	0.28	773	0.32	816	0.36	858	0.41	897	0.46	934	0.51
1080	—	_	594	0.19	652	0.24	705	0.28	754	0.33	800	0.37	843	0.42	883	0.47	922	0.52	959	0.57
1200	—	_	630	0.24	685	0.29	736	0.34	783	0.39	828	0.44	870	0.49	910	0.54	948	0.60	984	0.65
1320	609	0.25	667	0.30	720	0.35	768	0.40	814	0.45	857	0.51	898	0.56	937	0.62	975	0.68	1010	0.74
1440	655	0.31	709	0.37	759	0.42	806	0.48	850	0.54	892	0.59	931	0.65	969	0.71	1006	0.78	1040	0.84

	Availab	le Ext	ernal S	static F	ressu	re (Incl	hes of	Water	Gauge)
	1.1	10	1.	20	1.:	30	1.	40	1.	50
cfm	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
			2-h	p over	sized r	notor	and pu	lley		
960	969	0.55	1003	0.61	1036	0.66	1068	0.71	1098	0.76
1080	994	0.63	1028	0.68	1060	0.74	1092	0.79	1122	0.85
1200	1019	0.71	1052	0.76	1085	0.82	1116	0.88	1146	0.94
1320	1045	0.80	1078	0.86	1110	0.92	1141	0.98	1171	1.05
1440	1074	0.90	1107	0.97	1138	1.03	1169	1.10	1199	1.17

Notes:

1. For Standard Evaporator Fan Speed (rpm), refer table Standard motor and drive/fan.

2. For Oversized Evaporator Fan Speed (rpm), refer table Oversized motor and drive/fan speed.

 1-hp fan motor heat (MBh) = 2.8328 x Fan bhp.+ 0.4714, 2-hp fan motor heat (MBh) = 2.7146 x Fan bhp. + 0.816.

4. Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data.

5. Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table 10. Belt drive evaporator fan performance - 3 tons with low gas heat - GDK036A3, 4, W*L - downflow airflow

	0.	10	0.	20	0.	30	0.	40	0.	50	0.	60	0.	70	0.	80	0.	90	1.	00
cfm	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
								1-h	p stan	dard n	notor a	nd pul	ley							
960	_	_	_	_	605	0.18	661	0.22	713	0.27	760	0.31	805	0.35	847	0.40	886	0.44	924	0.49
1080	_	_	_	_	634	0.22	689	0.27	739	0.31	785	0.36	829	0.41	870	0.46	910	0.51	947	0.5
1200	_	_	607	0.22	664	0.27	717	0.32	765	0.37	811	0.42	854	0.47	894	0.52	933	0.58	970	0.63
1320	581	0.22	641	0.27	696	0.32	747	0.38	794	0.43	838	0.48	880	0.54	920	0.60	958	0.65	994	0.7
1440	622	0.28	679	0.33	731	0.39	780	0.45	825	0.50	868	0.56	909	0.62	948	0.68	985	0.74	1021	0.80

	Availat	ole Ext	ernal S	static P	ressu	e (Incl	hes of	Water	Gauge)
	1.1	10	1.:	20	1.:	30	1.	40	1.	50
cfm	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
			2-h	p over	sized r	notor a	and pu	lley		
960	960	0.54	994	0.59	1027	0.64	1059	0.69	1090	0.75
1080	983	0.61	1017	0.66	1050	0.72	1082	0.77	1113	0.83
1200	1005	0.69	1040	0.74	1072	0.80	1104	0.86	1135	0.92
1320	1029	0.77	1063	0.83	1095	0.89	1127	0.95	1157	1.02
1440	1055	0.87	1088	0.93	1120	0.99	1152	1.06	1182	1.13

Notes:

1. For Standard Evaporator Fan Speed (rpm), refer table Standard motor and drive/fan.

2. For Oversized Evaporator Fan Speed (rpm), refer table Oversized motor and drive/fan speed.

 1-hp fan motor heat (MBh) = 2.8328 x Fan bhp.+ 0.4714, 2-hp fan motor heat (MBh) = 2.7146 x Fan bhp. + 0.816.

4. Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data.

5. Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table 11. Belt drive evaporator fan performance - 3 tons with low gas heat - GDK036A3, 4, W*L - horizontal airflow

	•	40	•	20	•	20	•	40	•	F0	^	~^	0	70	0	00	•	20	4	~~
	0.	10	0.:	20	υ.	30	0.4	40	υ.	50	υ.	60	υ.	70	0.	80	0.9	90	1.	00
cfm	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
								1-h	ıp stan	dard n	notor a	nd pul	ley							
960	—	_	_	—	618	0.19	673	0.23	724	0.27	771	0.32	814	0.36	856	0.41	895	0.45	932	0.50
1080	—	_	591	0.19	649	0.24	702	0.28	751	0.33	797	0.37	840	0.42	881	0.47	920	0.52	957	0.57
1200	—	_	626	0.24	681	0.29	733	0.33	780	0.38	825	0.43	867	0.49	907	0.54	945	0.59	981	0.65
1320	604	0.24	662	0.29	715	0.34	764	0.40	810	0.45	854	0.50	895	0.56	934	0.62	971	0.67	1007	0.73
1440	649	0.30	704	0.36	754	0.42	801	0.47	845	0.53	887	0.59	927	0.65	965	0.71	1002	0.77	1037	0.83

	Availab	le Ext	ernal S	static F	ressu	re (Incl	hes of	Water	Gauge)
	1.	10	1.:	20	1.	30	1.	40	1.	50
cfm	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
		976 0.56		p over	sized r	notor a	and pu	lley		
960	976	0.56	1010	0.61	1042	0.67	1074	0.72	1104	0.77
1080	1001	0.64	1035	0.69	1067	0.75	1099	0.80	1129	0.86
1200	1027	0.72	1060	0.78	1093	0.84	1124	0.90	1154	0.96
1320	1054	0.81	1086	0.87	1118	0.94	1149	1.00	1179	1.06
1440	1081	0.92	1113	0.98	1144	1.05	1175	1.11	1204	1.18

Notes:

1. For Standard Evaporator Fan Speed (rpm), refer table Standard motor and drive/fan.

2. For Oversized Evaporator Fan Speed (rpm), refer table Oversized motor and drive/fan speed.

 1-hp fan motor heat (MBh) = 2.8328 x Fan bhp.+ 0.4714, 2-hp fan motor heat (MBh) = 2.7146 x Fan bhp. + 0.816.

4. Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data.

5. Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table 12. Belt drive evaporator fan performance - 4 tons cooling only units - EDK048A3, 4, W - downflow airflow

	0.	10	0.2	20	0.	30	0.	40	0.	50	0.	60	0.	70	0.8	80	0.9	90	1.	00
cfm	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
								1-h	ip stan	dard n	notor a	nd pul	lley							
1280	_	_	—	_	674	0.27	726	0.31	774	0.36	819	0.40	861	0.45	902	0.50	940	0.55	977	0.60
1440	—	_	662	0.29	715	0.33	765	0.38	811	0.44	854	0.49	895	0.54	935	0.59	972	0.65	1008	0.70
1600	653	0.31	708	0.36	758	0.42	805	0.47	849	0.53	891	0.58	931	0.64	969	0.70	1005	0.76	1041	0.82
1760	695	0.38	747	0.44	795	0.49	840	0.55	882	0.61	923	0.68	962	0.74	999	0.80	1034	0.86	1069	0.93
1920	752	0.49	801	0.55	846	0.62	889	0.69	929	0.75	968	0.82	1005	0.89	1041	0.95	1076	1.02	1109	1.09

	Availat	ole Ext	ernal S	static P	ressu	e (Incl	hes of	Water	Gauge)
	1.1	10	1.	20	1.	30	1.	40	1.	50
cfm	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
			2-h	p over	sized r	notor a	and pu	lley		
1280	1012	0.65	1046	0.71	1078	0.76	1110	0.81	1141	0.87
1440	1042	0.76	1076	0.82	1108	0.87	1139	0.93	1170	0.99
1600	1074	0.88	1107	0.94	1139	1.00	1169	1.06	1199	1.13
1760	1102	0.99	1134	1.05	1165	1.12	1195	1.19	1225	1.25
1920	1141	1.16	1172	1.23	1202	1.30	1232	1.37	1261	1.44

Notes:

1. For Standard Evaporator Fan Speed (rpm), refer table Standard motor and drive/fan.

2. For Oversized Evaporator Fan Speed (rpm), refer table Oversized motor and drive/fan speed.

 1-hp fan motor heat (MBh) = 2.8328 x Fan bhp.+ 0.4714, 2-hp fan motor heat (MBh) = 2.7146 x Fan bhp. + 0.816.

4. Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data.

5. Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table 13. Belt drive evaporator fan performance - 4 tons cooling only units - EDK048A3, 4, W - horizontal airflow

						Availat	le Ext	ernal S	Static F	ressu	re (Inc	hes of	Water	Gauge	e)					
	0.	10	0.	20	0.	30	0.	40	0.	50	0.	60	0.	70	0.	80	0.9	90	1.	00
cfm	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
								1-h	ip stan	dard n	notor a	ind pu	lley							
1280	_	—	632	0.23	687	0.28	738	0.32	785	0.37	830	0.42	872	0.46	911	0.51	949	0.56	986	0.61
1440	623	0.25	679	0.30	731	0.35	779	0.40	824	0.45	867	0.50	908	0.56	946	0.61	983	0.66	1019	0.72
1600	675	0.33	728	0.38	777	0.44	822	0.49	866	0.55	907	0.61	946	0.66	983	0.72	1019	0.78	1054	0.84
1760	718	0.40	768	0.46	815	0.52	859	0.58	900	0.64	940	0.70	978	0.76	1014	0.82	1050	0.89	1084	0.95
1920	781	0.53	828	0.59	871	0.66	913	0.72	952	0.79	990	0.86	1027	0.93	1062	0.99	1095	1.06	1128	1.13

	Availab	le Ext	ernal S	static F	ressu	e (Incl	nes of	Water	Gauge)
	1.	10	1.:	20	1.	30	1.	40	1.	50
cfm	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
		1021 0.67		p over	sized r	notor a	and pu	lley		
1280	1021	0.67	1054	0.72	1087	0.77	1118	0.83	1148	0.88
1440	1053	0.78	1086	0.83	1118	0.89	1149	0.95	1179	1.01
1600	1087	0.90	1120	0.96	1151	1.03	1182	1.09	1211	1.15
1760	1116	1.02	1148	1.08	1179	1.15	1209	1.21	1238	1.28
1920	1160	1.20	1191	1.27	1221	1.34	1250	1.42	1279	1.49

Notes:

1. For Standard Evaporator Fan Speed (rpm), refer table Standard motor and drive/fan.

2. For Oversized Evaporator Fan Speed (rpm), refer table Oversized motor and drive/fan speed.

 1-hp fan motor heat (MBh) = 2.8328 x Fan bhp.+ 0.4714, 2-hp fan motor heat (MBh) = 2.7146 x Fan bhp. + 0.816.

 Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data.

5. Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

 Table 14.
 Belt drive evaporator fan performance - 4 tons with medium gas heat - GDK048A3, 4, W*M - downflow airflow

	0.	10	0.	20	0.	30	0.	40	0.	50	0.	60	0.	70	0.	B0	0.9	90	1.	00
cfm	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
								1-h	ip stan	dard n	notor a	nd pul	lley							
1280	_	_	627	0.23	683	0.27	734	0.32	781	0.36	826	0.41	868	0.46	908	0.51	946	0.56	983	0.61
1440	_	_	674	0.30	726	0.34	774	0.40	820	0.45	863	0.50	904	0.55	942	0.60	980	0.66	1015	0.71
1600	667	0.32	721	0.38	770	0.43	816	0.49	860	0.54	901	0.60	941	0.66	978	0.71	1015	0.77	1049	0.83
1760	709	0.39	760	0.45	807	0.51	852	0.57	894	0.63	934	0.69	972	0.75	1009	0.81	1044	0.88	1078	0.94
1920	771	0.51	818	0.58	862	0.64	904	0.71	944	0.78	982	0.84	1019	0.91	1054	0.98	1088	1.05	1121	1.12

	1.1	10	1.:	20	1.:	30	1.	40	1.	50
cfm	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
			2-h	p over	sized r	notor a	and pu	lley		
1280	1018	0.66	1051	0.71	1084	0.77	1115	0.82	1146	0.88
1440	1050	0.77	1083	0.83	1115	0.89	1146	0.94	1176	1.00
1600	1083	0.89	1116	0.95	1147	1.02	1178	1.08	1207	1.14
1760	1111	1.00	1143	1.07	1174	1.14	1204	1.20	1233	1.27
1920	1153	1.19	1184	1.26	1214	1.33	1244	1.40	1272	1.47

Notes:

1. For Standard Evaporator Fan Speed (rpm), refer table Standard motor and drive/fan.

2. For Oversized Evaporator Fan Speed (rpm), refer table Oversized motor and drive/fan speed.

 1-hp fan motor heat (MBh) = 2.8328 x Fan bhp.+ 0.4714, 2-hp fan motor heat (MBh) = 2.7146 x Fan bhp. + 0.816.

 Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data.

5. Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table 15. Belt drive evaporator fan performance - 4 tons with medium gas heat - GDK048A3, 4, W*M - horizontal airflow

0.10						cinar e		ressu	re (inci	ies of	Water	Gauge)					
0.10	0.	20	0.	30	0.	40	0.	50	0.	60	0.7	70	0.8	B O	0.9	90	1.	00
om bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
						1-h	ip stan	dard n	notor a	nd pul	ley							
	654	0.25	707	0.29	756	0.34	802	0.39	846	0.43	887	0.48	926	0.53	963	0.58	999	0.63
50 0.27	704	0.32	754	0.37	801	0.42	845	0.48	887	0.53	926	0.58	964	0.64	1001	0.69	1036	0.75
07 0.36	757	0.41	804	0.47	848	0.53	890	0.58	930	0.64	968	0.70	1005	0.76	1040	0.82	1074	0.88
53 0.44	801	0.50	845	0.56	888	0.62	928	0.68	966	0.74	1003	0.80	1039	0.87	1073	0.93	1106	1.00
21 0.58	865	0.65	907	0.71	947	0.78	985	0.85	1021	0.92	1057	0.98	1091	1.05	1124	1.12	1155	1.19
ailable Ex	ternal S	Static P	ressu	re (Incl	nes of	Water	Gauge)										
1.10	1.	20	1.	30	1.	40	1.	50										
om bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp										
21 ail	0.58 able Ex 1.10	0.58 865 able External S 1.10 1. n bhp rpm	0.58 865 0.65 able External Static F 1.10 1.20 n bhp rpm bhp	0.58 865 0.65 907 able External Static Pressur 1.10 1.20 1. n bhp rpm bhp rpm	0.58 865 0.65 907 0.71 able External Static Pressure (Incl 1.10 1.20 1.30 n bhp rpm bhp rpm bhp	0.58 865 0.65 907 0.71 947 able External Static Pressure (Inches of 1.10 1.20 1.30 1. n bhp rpm bhp rpm	0.58 865 0.65 907 0.71 947 0.78 able External Static Pressure (Inches of Water 1.10 1.20 1.30 1.40	0.58 865 0.65 907 0.71 947 0.78 985 able External Static Pressure (Inches of Water Gauge 1.10 1.20 1.30 1.40 1. n bhp rpm bhp rpm bhp rpm	0.58 865 0.65 907 0.71 947 0.78 985 0.85 able External Static Pressure (Inches of Water Gauge) 1.10 1.20 1.30 1.40 1.50 n bhp rpm bhp rpm bhp rpm bhp	0.58 865 0.65 907 0.71 947 0.78 985 0.85 1021 able External Static Pressure (Inches of Water Gauge) 1.10 1.20 1.30 1.40 1.50 n bhp rpm bhp rpm bhp rpm bhp rpm bhp	0.58 865 0.65 907 0.71 947 0.78 985 0.85 1021 0.92 able External Static Pressure (Inches of Water Gauge) 1.10 1.20 1.30 1.40 1.50 n bhp rpm bhp rpm bhp rpm bhp	0.58 865 0.65 907 0.71 947 0.78 985 0.85 1021 0.92 1057 able External Static Pressure (Inches of Water Gauge) 1.10 1.20 1.30 1.40 1.50	0.58 865 0.65 907 0.71 947 0.78 985 0.85 1021 0.92 1057 0.98 able External Static Pressure (Inches of Water Gauge) 1.30 1.40 1.50 1	0.58 865 0.65 907 0.71 947 0.78 985 0.85 1021 0.92 1057 0.98 1091 able External Static Pressure (Inches of Water Gauge) 1.10 1.20 1.30 1.40 1.50	0.58 865 0.65 907 0.71 947 0.78 985 0.85 1021 0.92 1057 0.98 1091 1.05 able External Static Pressure (Inches of Water Gauge) 1.10 1.20 1.30 1.40 1.50 h bhp rpm bhp rpm bhp rpm bhp	0.58 865 0.65 907 0.71 947 0.78 985 0.85 1021 0.92 1057 0.98 1091 1.05 1124 able External Static Pressure (Inches of Water Gauge) 1.10 1.20 1.30 1.40 1.50 n bhp rpm bhp rpm bhp rpm bhp	0.58 865 0.65 907 0.71 947 0.78 985 0.85 1021 0.92 1057 0.98 1091 1.05 1124 1.12 able External Static Pressure (Inches of Water Gauge) 1.10 1.20 1.30 1.40 1.50	0.58 865 0.65 907 0.71 947 0.78 985 0.85 1021 0.92 1057 0.98 1091 1.05 1124 1.12 1155 able External Static Pressure (Inches of Water Gauge) 1.10 1.20 1.30 1.40 1.50

•										
			2-h	p over	sized r	notor	and pu	lley		
1280	1033	0.69	1067	0.74	1099	0.79	1130	0.85	1160	0.90
1440	1069	0.80	1102	0.86	1133	0.92	1164	0.98	1193	1.04
1600	1107	0.94	1139	1.00	1169	1.06	1199	1.13	1228	1.19
1760	1138	1.06	1170	1.13	1200	1.19	1229	1.26	1258	1.33
1920	1186	1.26	1217	1.33	1246	1.40	1275	1.48	1302	1.55

Notes:

1. For Standard Evaporator Fan Speed (rpm), refer table Standard motor and drive/fan.

2. For Oversized Evaporator Fan Speed (rpm), refer table Oversized motor and drive/fan speed.

 1-hp fan motor heat (MBh) = 2.8328 x Fan bhp.+ 0.4714, 2-hp fan motor heat (MBh) = 2.7146 x Fan bhp. + 0.816.

4. Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data.

5. Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table 16. Belt drive evaporator fan performance - 4 tons with low gas heat - GDK048A3, 4, W*L - downflow airflow

	0.	10	0.	20	0.	30	0.	40	0.	50	0.	60	0.	70	0.8	B0	0.9	90	1.	00
cfm	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
								1-h	ip stan	dard n	notor a	nd pul	lley							
1280	_	_	624	0.23	680	0.27	731	0.32	779	0.36	824	0.41	866	0.46	906	0.51	944	0.56	981	0.61
1440	_	_	670	0.29	723	0.34	771	0.39	817	0.44	860	0.49	901	0.55	940	0.60	977	0.66	1013	0.71
1600	663	0.32	717	0.37	767	0.43	813	0.48	857	0.54	898	0.59	938	0.65	976	0.71	1012	0.77	1047	0.83
1760	705	0.39	756	0.45	803	0.50	848	0.56	890	0.62	930	0.68	968	0.75	1005	0.81	1041	0.87	1075	0.93
1920	765	0.51	813	0.57	857	0.64	899	0.70	939	0.77	978	0.84	1015	0.90	1050	0.97	1084	1.04	1117	1.11

	Availat	ole Ext	ernal S	static P	ressu	re (Inc	hes of	Water	Gauge)
	1.1	10	1.:	20	1.:	30	1.	40	1.	50
cfm	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
		1016 0.66		p over	sized r	notor	and pu	lley		
1280	1016	0.66	1050	0.71	1082	0.77	1114	0.82	1144	0.88
1440	1048	0.77	1081	0.82	1113	0.88	1144	0.94	1174	1.00
1600	1081	0.89	1113	0.95	1145	1.01	1175	1.08	1205	1.14
1760	1108	1.00	1140	1.06	1171	1.13	1201	1.20	1231	1.26
1920	1149	1.18	1181	1.25	1211	1.32	1240	1.39	1269	1.46

Notes:

1. For Standard Evaporator Fan Speed (rpm), refer table Standard motor and drive/fan.

2. For Oversized Evaporator Fan Speed (rpm), refer table Oversized motor and drive/fan speed.

 1-hp fan motor heat (MBh) = 2.8328 x Fan bhp.+ 0.4714, 2-hp fan motor heat (MBh) = 2.7146 x Fan bhp. + 0.816.

4. Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data.

5. Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table 17. Belt drive evaporator fan performance - 4 tons with low gas heat - GDK048A3, 4, W*L - horizontal airflow

	0.	10	0.2	20	0.	30	0.4	40	0.	50	0.	60	0.	70	0.8	B O	0.9	90	1.	00
cfm	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
								1-h	ip stan	dard n	notor a	nd pul	lley							
1280	_	—	649	0.25	703	0.29	752	0.34	799	0.38	842	0.43	884	0.48	923	0.53	960	0.58	996	0.63
1440	644	0.27	699	0.32	749	0.37	796	0.42	841	0.47	883	0.52	922	0.58	960	0.63	997	0.69	1032	0.74
1600	700	0.35	751	0.41	798	0.46	843	0.52	885	0.58	925	0.63	963	0.69	1000	0.75	1036	0.81	1070	0.87
1760	745	0.43	794	0.49	839	0.55	881	0.61	922	0.67	961	0.73	998	0.80	1034	0.86	1068	0.92	1101	0.99
1920	813	0.57	857	0.64	899	0.70	940	0.77	978	0.84	1015	0.90	1050	0.97	1084	1.04	1117	1.11	1150	1.18

	Availab	ole Ext	ernal S	static F	ressu	e (Incl	hes of	Water	Gauge)
	1.1	10	1.	20	1.:	30	1.	40	1.	50
cfm	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
			2-h	p over	sized r	notor a	and pu	lley		
1280	1031	0.68	1064	0.74	1096	0.79	1127	0.84	1157	0.90
1440	1066	0.80	1098	0.86	1130	0.91	1161	0.97	1190	1.03
1600	1103	0.93	1134	0.99	1165	1.05	1196	1.12	1225	1.18
1760	1134	1.05	1165	1.12	1195	1.18	1225	1.25	1254	1.32
1920	1181	1.25	1211	1.32	1240	1.39	1269	1.46	1297	1.54

Notes:

2. For Oversized Evaporator Fan Speed (rpm), refer table Oversized motor and drive/fan speed.

 1-hp fan motor heat (MBh) = 2.8328 x Fan bhp.+ 0.4714, 2-hp fan motor heat (MBh) = 2.7146 x Fan bhp. + 0.816.

4. Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data.

5. Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

^{1.} For Standard Evaporator Fan Speed (rpm), refer table Standard motor and drive/fan.

Table 18. Belt drive evaporator fan performance - 5 tons cooling only units - EDK060A3, 4, W - downflow airflow

	0.	10	0.2	20	0.	30	0.4	40	0.	50	0.	60	0.1	70	0.	80	0.9	90	1.	00
cfm	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
								1-h	np stan	dard n	notor a	nd pul	ley							
1600	_	_	712	0.37	762	0.42	808	0.48	852	0.53	894	0.59	933	0.64	971	0.70	1007	0.76	1042	0.82
1800	722	0.42	772	0.48	818	0.54	862	0.61	904	0.67	943	0.73	981	0.79	1017	0.86	1052	0.92	1086	0.99
2000	787	0.56	833	0.62	876	0.69	918	0.76	957	0.83	995	0.90	1031	0.97	1066	1.04	1099	1.11	1132	1.18
2200	852	0.72	895	0.79	935	0.87	974	0.94	1012	1.02	1048	1.09	1082	1.17	1116	1.25	1148	1.32	1180	1.40
2400	917	0.91	957	0.99	995	1.07	1032	1.15	1068	1.23	1102	1.32	1135	1.40	1167	1.48	1198	1.57	1229	1.65

	Availab	ole Ext	ernal S	static P	ressu	re (Incl	hes of	Water	Gauge)
	1.1	10	1.	20	1.	30	1.	40	1.	50
cfm	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
	1-hp s	tanda	rd mot	or and	2-h	n over	sized r	notor :	and nu	llev
		pu	lley		2-11	p over	312601		ina pu	ney
1600	1076	0.88	1109	0.94	1140	1.00	1171	1.07	1201	1.13
1800	1119	1.05	1150	1.12	1181	1.19	1211	1.26	1240	1.32
2000	1164	1.25	1194	1.32	1224	1.40	1254	1.47	1282	1.55
2200	1210	1.48	1240	1.56	1269	1.64	1297	1.72	1325	1.80
2400	1258	1 73	1287	1 82	1315	1 90	1343	1 99	1370	2.08

2400 Notes:

1. For Standard Evaporator Fan Speed (rpm), refer table Standard motor and drive/fan.

2. For Oversized Evaporator Fan Speed (rpm), refer table Oversized motor and drive/fan speed.

 1-hp fan motor heat (MBh) = 2.8328 x Fan bhp. + 0.4714, 2-hp fan motor heat (MBh) = 2.7146 x Fan bhp. + 0.816.

4. Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data.

5. Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table 19. Belt drive evaporator fan performance - 5 tons cooling only units - EDK060A3, 4, W - horizontal airflow

					-	Availar	DIE EXT	ernal S	static P	ressu	re (inci	ies of	Water	Gauge)					
	0.	10	0.2	20	0.3	30	0.4	40	0.	50	0.0	60	0.	70	0.	80	0.9	90	1.	00
cfm	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
								1-h	ıp stan	dard n	notor a	nd pul	lley							
1600		_	726	0.38	775	0.44	821	0.49	864	0.55	905	0.60	944	0.66	981	0.72	1017	0.78	1052	0.84
1800	739	0.44	788	0.50	833	0.56	876	0.63	917	0.69	956	0.75	993	0.81	1029	0.88	1064	0.94	1097	1.01
2000	806	0.59	851	0.65	894	0.72	934	0.79	973	0.86	1010	0.93	1046	1.00	1080	1.07	1113	1.14	1145	1.21
2200	874	0.76	916	0.83	956	0.91	994	0.98	1031	1.06	1066	1.13	1100	1.21	1133	1.29	1165	1.36	1196	1.44
2400	943	0.96	982	1.04	1019	1.12	1055	1.21	1090	1.29	1123	1.37	1156	1.45	1187	1.54	1218	1.62	1248	1.70

	Availab	ole Ext	ernal S	static P	ressui	re (Inc	hes of	Water	Gauge)
	1.1	10	1.	20	1.	30	1.	40	1.	50
cfm	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
	1-hp s	tandai	rd mot	or and	2-h	n over	sized r	notor	and nu	llev
		pul	lley		Z -11	p 0101	512001		ina pu	ncy
1600	1085	0.90	1117	0.96	1149	1.02	1179	1.08	1209	1.15
1800	1129	1.08	1161	1.14	1191	1.21	1221	1.28	1250	1.35
2000	1177	1.28	1207	1.35	1237	1.43	1265	1.50	1294	1.58
2200	1226	1.52	1255	1.60	1284	1.68	1312	1.76	1339	1.84
2400	1277	1 79	1305	1 87	1333	1 96	1360	2 04	1387	2 13

2400 Notes:

1. For Standard Evaporator Fan Speed (rpm), refer table Standard motor and drive/fan.

2. For Oversized Evaporator Fan Speed (rpm), refer table Oversized motor and drive/fan speed.

 1-hp fan motor heat (MBh) = 2.8328 x Fan bhp. + 0.4714, 2-hp fan motor heat (MBh) = 2.7146 x Fan bhp. + 0.816.

4. Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data.

5. Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table 20. Belt drive evaporator fan performance - 5 tons with medium gas heat - GDK060A3, 4, W*M - downflow airflow

	0.	10	0.2	20	0.	30	0.4	40	0.	50	0.0	60	0.1	70	0.8	B O	0.9	90	1.0	00
cfm	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
								1-h	ip stan	dard n	notor a	nd pul	ley							
1600	_	_	742	0.40	789	0.45	834	0.51	877	0.56	917	0.62	956	0.68	992	0.74	1028	0.80	1062	0.86
1800	760	0.47	807	0.53	851	0.59	893	0.65	933	0.71	972	0.78	1008	0.84	1044	0.91	1078	0.97	1111	1.04
2000	830	0.62	873	0.69	915	0.76	954	0.82	992	0.89	1028	0.96	1063	1.03	1097	1.10	1130	1.17	1161	1.25
2200	900	0.80	940	0.88	979	0.95	1016	1.03	1052	1.10	1086	1.18	1120	1.26	1152	1.33	1183	1.41	1214	1.49
2400	970	1.02	1008	1.10	1044	1.18	1079	1.26	1113	1.34	1146	1.43	1178	1.51	1209	1.59	1239	1.68	1268	1.76

Available External Static Pressure (Inches of Water Gauge)	
--	--

-	1.1	10	1.:	20	1.	30	1.	40	1.	50
cfm	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
	1- stan moto pul	r and		2-h	p over	sized r	notor a	and pu	lley	
1600	1095	0.92	1127	0.98	1158	1.04	1188	1.10	1218	1.17
1800	1143	1.10	1174	1.17	1204	1.24	1233	1.31	1262	1.38
2000	1192	1.32	1222	1.39	1251	1.47	1280	1.54	1308	1.62
2200	1244	1.57	1273	1.65	1301	1.73	1328	1.81	1355	1.89
2400	1297	1.85	1325	1.93	1352	2.02	1379	2.10	1405	2.19

Notes:

1. For Standard Evaporator Fan Speed (rpm), refer table Standard motor and drive/fan.

2. For Oversized Evaporator Fan Speed (rpm), refer table Oversized motor and drive/fan speed.

 1-hp fan motor heat (MBh) = 2.8328 x Fan bhp. + 0.4714, 2-hp fan motor heat (MBh) = 2.7146 x Fan bhp. + 0.816.

 Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data.

5. Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table 21. Belt drive evaporator fan performance - 5 tons with medium gas heat - GDK060A3, 4, W*M - horizontal airflow

	0.	10	0.2	20	0.3	30	0.4	40	0.	50	0.0	60	0.7	70	0.8	B0	0.9	90	1.0	00
cfm	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
								1-h	np stan	dard n	notor a	nd pul	ley							
1600	705	0.36	755	0.41	802	0.47	846	0.52	888	0.58	928	0.64	966	0.69	1002	0.75	1037	0.81	1071	0.87
1800	776	0.49	822	0.55	865	0.61	907	0.67	946	0.74	984	0.80	1020	0.86	1055	0.93	1089	0.99	1121	1.06
2000	848	0.65	891	0.72	931	0.78	970	0.85	1007	0.92	1043	0.99	1077	1.06	1111	1.13	1143	1.20	1174	1.28
2200	921	0.84	961	0.92	999	0.99	1035	1.07	1070	1.14	1104	1.22	1137	1.30	1169	1.37	1199	1.45	1229	1.53
2400	995	1.07	1032	1.15	1067	1.23	1101	1.32	1134	1.40	1167	1.48	1198	1.56	1228	1.65	1258	1.73	1287	1.82

	1.1	10	1.:	20	1.:	30	1.	40	1.	50
cfm	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
			2-h	p over	sized r	notor a	and pu	lley		
1600	1104	0.93	1136	1.00	1167	1.06	1197	1.12	1226	1.19
1800	1153	1.13	1184	1.19	1214	1.26	1243	1.33	1271	1.40
2000	1205	1.35	1234	1.42	1263	1.50	1292	1.57	_	—
2200	1259	1.61	1287	1.69	—	—	—	—	—	—
2400	_	_	_	_	_	_	_	_	_	_

Notes:

1. For Standard Evaporator Fan Speed (rpm), refer table Standard motor and drive/fan.

2. For Oversized Evaporator Fan Speed (rpm), refer table Oversized motor and drive/fan speed.

 1-hp fan motor heat (MBh) = 2.8328 x Fan bhp.+ 0.4714, 2-hp fan motor heat (MBh) = 2.7146 x Fan bhp. + 0.816.

4. Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data.

5. Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table 22. Belt drive evaporator fan performance - 5 tons with low gas heat - GDK060A3, 4, W*L - downflow airflow

	0.	10	0.2	20	0.	30	0.4	40	0.	50	0.	60	0.	70	0.8	B0	0.9	90	1.	00
cfm	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
								1-h	ip stan	dard n	notor a	nd pul	lley							
1600	_	_	721	0.38	770	0.43	816	0.49	860	0.54	901	0.60	940	0.65	978	0.71	1014	0.77	1048	0.83
1800	734	0.44	783	0.50	828	0.56	872	0.62	913	0.68	952	0.74	989	0.81	1025	0.87	1060	0.94	1094	1.00
2000	800	0.58	845	0.64	888	0.71	929	0.78	968	0.85	1005	0.92	1041	0.99	1075	1.06	1109	1.13	1141	1.20
2200	867	0.74	909	0.82	949	0.89	987	0.97	1024	1.04	1060	1.12	1094	1.20	1127	1.27	1159	1.35	1190	1.43
2400	933	0.94	973	1.02	1010	1.10	1047	1.19	1082	1.27	1116	1.35	1148	1.43	1180	1.52	1211	1.60	1241	1.68

	Availat	ole Ext	ernal S	static P	ressu	re (Incl	hes of	Water	Gauge)
	1.1	10	1.:	20	1.	30	1.4	40	1.	50
cfm	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
	1-hp s	tandai	rd mote	or and	2-h	n over	sized r	notor :	and nu	llev
		pul	lley		A -11	p 0101	512001		ina pu	licy
1600	1082	0.89	1114	0.95	1146	1.02	1176	1.08	1206	1.14
1800	1126	1.07	1158	1.14	1188	1.20	1218	1.27	1247	1.34
2000	1172	1.27	1203	1.35	1233	1.42	1262	1.49	1290	1.57
2200	1220	1.50	1250	1.58	1279	1.66	1307	1.74	1334	1.82
2400	1270	1.77	1299	1.85	1326	1.94	1354	2.02	1380	2.11

Notes:

1. For Standard Evaporator Fan Speed (rpm), refer table Standard motor and drive/fan.

2. For Oversized Evaporator Fan Speed (rpm), refer table Oversized motor and drive/fan speed.

 1-hp fan motor heat (MBh) = 2.8328 x Fan bhp. + 0.4714, 2-hp fan motor heat (MBh) = 2.7146 x Fan bhp. + 0.816.

4. Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data.

5. Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

 Available External Static Pressure is the static pressure difference between the return duct and the supply duct plus the static pressure drop caused by accessories and options.

Table 23. Belt drive evaporator fan performance - 5 tons with low gas heat - GDK060A3, 4, W*L - horizontal airflow

	0.	10	0.2	20	0.	30	0.4	40	0.	50	0.	60	0.1	70	0.	80	0.9	90	1.	00
cfm	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
								1-h	np stan	dard n	notor a	nd pul	ley							
1600	706	0.36	749	0.41	796	0.46	841	0.52	883	0.57	923	0.63	961	0.69	998	0.75	1033	0.80	1067	0.86
1800	768	0.48	815	0.54	859	0.60	900	0.66	940	0.73	978	0.79	1014	0.85	1049	0.92	1083	0.98	1116	1.05
2000	839	0.63	882	0.70	923	0.77	962	0.84	1000	0.91	1036	0.98	1071	1.05	1104	1.12	1137	1.19	1168	1.26
2200	911	0.82	951	0.90	990	0.97	1026	1.05	1062	1.12	1096	1.20	1129	1.28	1161	1.35	1192	1.43	1222	1.51
2400	984	1.05	1021	1.13	1057	1.21	1091	1.29	1125	1.37	1157	1.46	1189	1.54	1219	1.62	1249	1.71	1278	1.79

	Availar	DIE EXT	ernal S	static F	ressu	re (inc	nes or	water	Gauge)
	1.	10	1.20		1.30		1.40		1.50	
cfm	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
	1-	hp								

	stan moto pul	dard r and		2-h	p over:	sized r	notor a	and pu	lley	
1600	1100	0.93	1132	0.99	1163	1.05	1193	1.11	1222	1.18
1800	1148	1.11	1179	1.18	1209	1.25	1238	1.32	1266	1.39
2000	1199	1.33	1229	1.41	1258	1.48	1286	1.56	—	—
2200	1252	1.59	1280	1.67	1309	1.75	—	—	—	—
2400	1307	1.88	_	_	_	_	_	_	_	_

Notes:

1. For Standard Evaporator Fan Speed (rpm), refer table Standard motor and drive/fan.

- For Oversized Evaporator Fan Speed (rpm), refer table Oversized motor and drive/fan speed.
- 1-hp fan motor heat (MBh) = 2.8328 x Fan bhp. + 0.4714, 2-hp fan motor heat (MBh) = 2.7146 x Fan bhp. + 0.816.
- 4. Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data.
- 5. Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.
- Available External Static Pressure is the static pressure difference between the return duct and the supply duct plus the static pressure drop caused by accessories and options.

Table 24. Standard motor and drive/fan speed (rpm)

Tons	Unit Model Number	Fan Sheave	6 Turns Open	5 Turns Open	4 Turns Open	3 Turns Open	2 Turns Open	1 Turn Open	Closed
3	E/GDK036A3,4,W	AK59X3/4"	580	639	702	766	830	891	952
4	E/GDK048A3,4,W	AK56X3/4"	619	684	748	820	888	948	1003
5	E/GDK060A3,4,W	AK49X3/4"	699	775	854	927	991	1058	1115

Note: Factory set at 3 turns open.

Table 25. Oversized motor and drive/fan speed (rpm)

Tons	Unit Model Number	Fan Sheave	6 Turns Open	5 Turns Open	4 Turns Open	3 Turns Open	2 Turns Open	1 Turn Open	Closed
3	E/GDK036A3,4,W	AK56X3/4"	N/A	888	954	1018	1084	1147	1211
4	E/GDK048A3,4,W	AK51X3/4"	N/A	963	1033	1097	1156	1233	1295
5	E/GDK060A3,4,W	AK51X3/4"	N/A	963	1033	1097	1156	1233	1295
	1								

Note: Factory set at 3 turns open.

	Unit Model		Standard	2-in.	Economizer with OA/RA Dampers				Low Leak Economizer				Electric Heater Accessory (kW) ^(d)	
Tons	Number	cfm	Filters ^(a)	MERV 13 Filters ^(b)	100% OA	100% RA	100% OA	100% RA	100% OA	100% RA	100% OA	100% RA	5-15	20-25
					Dow		Horiz			nflow	-	ontal	0.10	
		960	0.01	0.08	0.04	0.01	0.04	0.01	0.07	0.07	0.03	0.08	0.01	0.01
3	E/GDK036A*	1200	0.02	0.10	0.06	0.01	0.06	0.01	0.10	0.10	0.04	0.11	0.02	0.02
		1440	0.03	0.12	0.08	0.02	0.08	0.01	0.14	0.15	0.05	0.15	0.02	0.03
		1280	0.03	0.11	0.09	0.02	0.09	0.01	0.11	0.12	0.04	0.12	0.02	0.03
4	E/GDK048A*	1600	0.04	0.14	0.13	0.04	0.13	0.02	0.17	0.18	0.06	0.15	0.04	0.05
		1920	0.06	0.16	0.17	0.06	0.17	0.02	0.24	0.26	0.09	0.11	0.05	0.08
		1600	0.04	0.14	0.13	0.04	0.13	0.02	0.17	0.18	0.06	0.19	0.04	0.05
5	E/GDK060A*	2000	0.06	0.17	0.18	0.07	0.18	0.02	0.25	0.27	0.09	0.29	0.06	0.08
		2400	0.08	0.20	0.25	0.11	0.25	0.03	0.36	0.38	0.13	0.40	0.08	0.12

Table 26. Static pressure drop through accessories (inches water column) – 3 to 5 tons

(a) Tested with 2-in. standard filters.

(b) Tested with 2-in. MERV 13 filters 3 to 5 tons.

(c) OA = Outside Air and RA = Return Air.

^(d) Nominal kW ratings at 240, 480 volts.

Table 27. Gas fired heating capacities

Tons	Unit Model Number	Heating Input (MBh)	Heating Output (MBh) ^(a)	Air Temp Rise (°F)
2	GDK036A(3,4,W)E(L or X)	72	58	30 - 60
5	GDK036A(3,4,W)E(M or Y)	100 / 80	80 / 64	50 - 80
4	GDK048A(3,4,W)E(L or X)	72	58	25 - 60
4	GDK048A(3,4,W)E(M or Y)	115 / 92	92 / 74	50 - 80
5	GDK060A(3,4,W)E(L or X)	72	58	20 - 60
5	GDK060A(3,4,W)E(M or Y)	115 / 92	92 / 74	35 - 65

^(a) For two stage heaters (input or output), second stage is total heating capacity. Second stage / first stage.

Table 28.	Auxiliary	electric	heat	capacity
-----------	-----------	----------	------	----------

		Tot	al ^(a)		Sta	ige1	Sta	ge 2
Tons	Unit Model Number	kW Input ^(b)	MBh Output	No. of Stages	kW Input	MBh Output	kW Input	MBh Output
		4.7	16.05	1	4.7	16.05	_	_
2		7.5	25.61	1	7.5	25.61	_	_
3	EDK036A*	10.0	34.14	1	10.0	34.14	_	_
		14.4	49.16	1	14.4	49.16	_	_
		4.7	16.05	1	4.7	16.05	_	_
		7.5	25.61	1	7.5	25.61	_	_
4	EDK048A*	10.0	34.14	1	10.0	34.14	_	_
		14.4	49.16	1	14.4	49.16	_	_
		20.0	68.28	2	10.0	34.14	10.0	34.14
		4.7	16.05	1	4.7	16.05	_	_
		7.5	25.61	1	7.5	25.61	_	_
-		10.0	34.14	1	10.0	34.14	_	_
5	EDK060A*	14.4	49.16	1	14.4	49.16	_	_
		20.0	68.28	2	10.0	34.14	10.0	34.14
		25.0	85.35	2	12.5	42.68	12.5	42.68

(a) Heaters are rated at 240V, 480V and 600V. For other than rated voltage, CAP = (voltage/rated voltage) x rated cap.

(b) For all input/output categories, does not include fan power or heat.

Nominal Voltage	Distribution Voltage	Capacity Multiplier
	187	0.61
	208	0.75
240	230	0.92
	240	1.00
	253	1.11
	440	0.84
480	460	0.92
480	480	1.00
	506	1.11
	540	0.81
600	575	0.92
	600	1.00

Table 29. Electric heater voltage correction factors (applicable to auxiliary heat capacity)

Table 30. Air temperature rise across electric heaters (°F)

kW	Stages	3 Tons 940 CFM EDK036A*	4 Tons 1280 CFM EDK048A*	5 Tons 1640 CFM EDK060A*
4.7	1	12.38	9.29	7.43
7.5	1	19.76	14.82	11.85
10.0	1	26.34	19.76	15.81
14.4	1	37.93	28.45	22.76
20.0	2	-	39.51	31.61
25.0	2	-	—	39.51

Notes:

For minimum design airflow, see airflow performance table for each unit.
 To calculate temp rise at different airflow, use the following formula: Temp. rise across Electric Heater = kW x 3414/1.08 x cfm.

Controls

Economizer Controls

The standard equipment offering is a fixed dry bulb changeover control. In addition, there are two optional controls, Reference Enthalpy Control and Comparative Enthalpy Control.

Reference Enthalpy Control

Replaces the dry bulb control with a wet bulb changeover controller which has a fully adjustable setpoint. Enthalpy control offers a higher level of comfort control, along with energy savings potential, than the standard dry bulb control. This is due to the additional wet bulb sensing capability.

Comparative Enthalpy Control

Comparative Enthalpy replaces the standard dry bulb control with two sensors that compare total heat content of the indoor air and outdoor air to determine the most efficient air source. This control option offers the highest level of comfort control, plus energy efficiency, available.

Remote Potentiometer

Minimum position setting of economizer can be remotely adjusted with this accessory.

Thermostats

Туре	Stages	Display Type	Features
Non-Programmable	3H/2C	Backlit Display and Keys	Auto-changeover, Filter Reminder, Keypad Lock, Outdoor Temperature Sensor included
Programmable	3H/2C	Interactive Touchscreen	Large display, Real time clock

Electrical Data

Table 31. Unit wiring with cooling (no electric heat) or gas heat

			Standard Ind	oor Fan Motor	Oversized Ind	loor Fan Motor
Tons	Unit Model Number	Unit Operating Voltage Range	Minimum Circuit Ampacity ^(a)	Maximum Fuse Size or Maximum Circuit Breaker	Minimum Circuit Ampacity	Maximum Fuse Size or Maximum Circuit Breaker
	E/GDK036A3	208-230	23	30	24	35
3	E/GDK036A4	460	11	15	12	15
	E/GDK036AW	575	9	15	9	15
	E/GDK048A3	208-230	23	35	25	35
4	E/GDK048A4	460	11	15	12	15
	E/GDK048AW	575	10	15	11	15
	E/GDK060A3	208-230	28	40	29	40
5	E/GDK060A4	460	13	15	13	20
	E/GDK060AW	575	11	15	12	15

(a) For Standard and Oversized Indoor Fan Motor, values do not include power exhaust accessory.

Table 32.	Unit wiring with electric heat (single point connection)
-----------	--

						Standa	ard Indoor Motor	Overs	sized Indoor Motor
Tons	Unit Model Number	Heater Model Number	Heater kW Rating ^(a)	Heater Amps	Control Stages	МСА	Max Fuse Size or Max Circuit Breaker	МСА	Max Fuse Size or Max Circuit Breaker (b)
				208/230 Volt	s Three Pha	ise			
		BAYHTFA305A	3.5/4.7	9.8/11.3	1	23/23	30/30	24/24	30/35
3	EDK036A3	BAYHTFA307A	5.6/7.5	15.6/18.0	1	26/29	30/30	28/31	35/35
5	LDR030A3	BAYHTFA310A	7.5/10.0	20.8/24.1	1	33/37	35/40	34/38	35/40
		BAYHTFA315A	10.8/14.4	30.0/34.6	1	44/50	45/50	46/52	50/60
		BAYHTFA305A	3.5/4.7	9.8/11.3	1	23/23	35/35	25/25	35/35
		BAYHTFA307A	5.6/7.5	15.6/18.0	1	26/29	35/35	28/32	35/35
4	EDK048A3	BAYHTFA310A	7.5/10.0	20.8/24.1	1	33/37	35/40	34/38	35/40
		BAYHTFA315A	10.8/14.4	30.0/34.6	1	44/50	45/50	46/52	50/60
		BAYHTFA320A	15.0/20.0	41.7/48.1	2	59/67	60/70	60/69	60/80
		BAYHTFA305A	3.5/4.7	9.7/11.3	1	28/28	40/40	29/29	40/40
		BAYHTFA307A	5.6/7.5	15.6/18.0	1	28/29	40/40	29/31	40/40
-	EDK060A3	BAYHTFA310A	7.5/10.0	20.8/24.1	1	33/37	40/40	34/38	40/40
5		BAYHTFA315A	10.8/14.4	30.0/34.6	1	44/50	45/50	46/52	50/60
		BAYHTFA320A	15.0/20.0	41.7/48.1	2	59/67	60/70	60/69	60/70
		BAYHTFA325A	18.8/25.0	52.1/60.1	2	72/82	80/90	74/84	80/90
				460 Volts	Three Phase				
		BAYHTFA405A	4.7	5.7	1	11	15	12	15
	55//0004/	BAYHTFA407A	7.5	9.0	1	15	15	16	20
3	EDK036A4	BAYHTFA410A	10.0	12.0	1	19	20	19	20
		BAYHTFA415A	14.4	17.3	1	25	25	26	30
		BAYHTFA405A	4.7	5.7	1	11	15	12	15
		BAYHTFA407A	7.5	9.0	1	15	15	17	20
4	EDK048A4	BAYHTFA410A	10.0	12.0	1	19	20	19	20
		BAYHTFA415A	14.4	17.3	1	25	25	26	30
		BAYHTFA420A	20.0	24.1	2	34	35	34	35
		BAYHTFA405A	4.7	5.7	1	13	15	13	20
		BAYHTFA407A	7.5	9.0	1	15	15	16	20
-		BAYHTFA410A	10.0	12.0	1	19	20	19	20
5	EDK060A4	BAYHTFA415A	14.4	17.3	1	25	25	26	30
		BAYHTFA420A	20.0	24.1	2	34	35	34	35
		BAYHTFA425A	25.0	30.1	2	42	45	42	45
				575 Volts	Three Phase				•

						Stand	ard Indoor Motor	Overs	Oversized Indoor Motor		
Tons	Unit Model Number	Heater Model Number	Heater kW Rating ^(a)	Heater Amps	Control Stages	МСА	Max Fuse Size or Max Circuit Breaker	МСА	Max Fuse Size or Max Circuit Breaker (b)		
				208/230 Volt	s Three Pha	se					
3		BAYHTFAW10A	10.0	9.6	1	15	20	16	20		
3	3 EDK036AW	BAYHTFAW15A	14.4	13.9	1	20	20	21	25		
		BAYHTFAW10A	10.0	9.6	1	15	20	16	20		
4	EDK048AW	BAYHTFAW15A	14.4	13.9	1	20	20	21	25		
		BAYHTFAW20A	20.0	19.2	2	27	30	28	30		
		BAYHTFAW10A	10.0	9.6	1	15	20	16	20		
-	5 EDK060AW	BAYHTFAW15A	14.4	13.9	1	20	20	21	25		
5		BAYHTFAW20A	20.0	19.2	2	27	30	28	30		
		BAYHTFAW25A	25.0	24.1	2	33	35	34	35		

Table 32. Unit wiring with electric heat (single point connection) (continued)

(a) Heater kW ratings are at 208/240V for 208/230V units, 480V for 460V units, 600V for 575V units.

(b) Values do not include power exhaust accessory.

Table 33. Electrical characteristics – compressor motor and condenser motor

				Compr	essor Mo	tors			Condenser Fan Motors					
Tons	Unit Model No.	Volts	No.	Phase	Нр	RPM	Amps ^(a)		No.	Phase	Нр	Am	Amps ^(a)	
		Volto		1 11400			RLA	LRA		1 11400		FLA	LRA	
	E/GDK036A3	208-230	1	3	4.10	3500	12.2	97.5	1	3	0.33	1.40	4.6	
3	E/GDK036A4	460	1	3	4.10	3500	5.8	44.3	1	3	0.33	0.70	2.3	
	E/GDK036AW	575	1	3	4.20	3500	4.5	27.1	1	3	0.33	0.55	1.8	
	E/GDK048A3	208-230	1	3	5.39	3500	12.08	120.4	1	3	0.33	1.40	4.6	
4	E/GDK048A4	460	1	3	5.44	3500	6.03	49.4	1	3	0.33	0.70	2.3	
	E/GDK048AW	575	1	3	5.9	3500	5.8	41	1	3	0.33	0.55	1.8	
	E/GDK060A3	208-230	1	3	6.45	3500	16.0	156.4	1	3	0.33	1.40	4.6	
5	E/GDK060A4	460	1	3	6.50	3500	7.1	69	1	3	0.33	0.70	2.3	
	E/GDK060AW	575	1	3	6.55	3500	6.4	47.8	1	3	0.33	0.55	1.8	

(a) For Compressor Motors and Condenser Fan Motors: Amp draw for each motor; multiply value by number of motors to determine total amps.

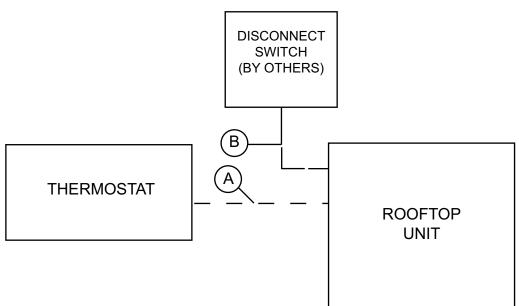
Table 34. Electrical characteristics – evaporator fan motor

	Unit Model Number		Standa	rd Evapo	rator Fan	Motor		Oversized Evaporator Fan Motor					
Tons		Na			Нр	An	nps	Na	Valta	Dhaaa	Ц'n	An	nps
	Humber	No.	Volts	Phase	пр	FLA	LRA	No.	Volts	Phase	Нр	FLA	LRA
	E/GDK036A3	1	208–230	3	1	5.0	32.2	1	208–230	3	2	6.12	48
3	E/GDK036A4	1	460	3	1	2.5	17.5	1	460	3	2	3.09	24
	E/GDK036AW	1	575	3	1	1.7	13.2	1	575	3	2	2.5	18.2
	E/GDK048A3	1	208–230	3	1	5.0	32.2	1	208–230	3	2	6.12	48
4	E/GDK048A4	1	460	3	1	2.5	17.5	1	460	3	2	3.09	24
	E/GDK048AW	1	575	3	1	1.7	13.2	1	575	3	2	2.5	18.2
	E/GDK060A3	1	208–230	3	1	5.0	32.2	1	208–230	3	2	6.12	48
5	E/GDK060A4	1	460	3	1	2.5	17.5	1	460	3	2	3.09	24
	E/GDK060AW	1	575	3	1	1.7	13.2	1	575	3	2	2.5	18.2

Table 35. Electrical characteristics – combustion blower motor (gas heat units)

Unit Model Number	Heat	Heating	Hp	RPM	Volts	Phase	Amps		
Unit Model Number	neat	Stages	Πp		VOILS	FlidSe	FLA	LRA	
GDK036-060A	Low	1	1/35	3290	208–230	1	0.21	0.35	
GDR030-000A	Med	2	1/45	3400	208-230	1	0.15	0.35	

Table 36. Electrical characteristics – power exhaust


Tons	Volts	Bhasa	Нр	RPM	Amps		
TONS	VOILS	Phase	ΠÞ		FLA	LRA	
	208–230	1	0.33	1075	2.2	3.9	
3 to 5	460	1	0.33	1075	1.1	2.0	
	575	1	0.33	1075	1	1.8	

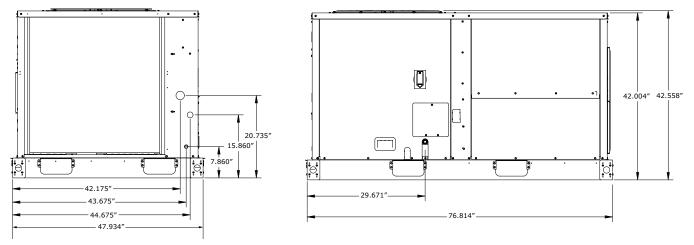
Jobsite Connections

Table 37. Typical number of wires

	Thermostats								
А	N/A								
В	3 Power Wires + 1 Ground Wire (three phase)								

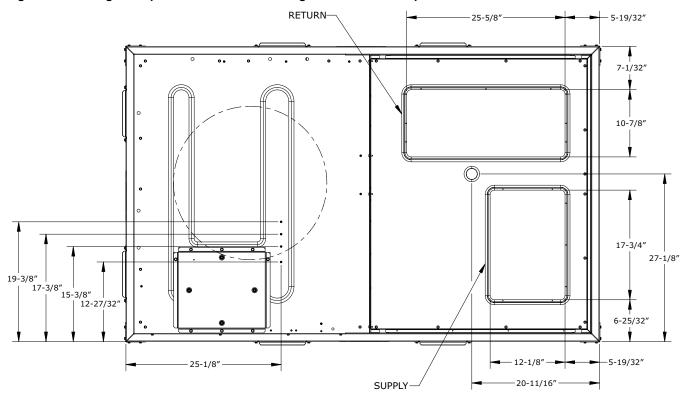
Notes:

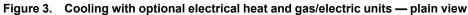
- For specific wiring information, see the installation instructions.
- All wiring except power wire is low voltage.
- All customer supplied wiring to be copper and must conform to applicable electrical codes and local electric codes. Wiring shown dotted is to be furnished and installed by the customer.

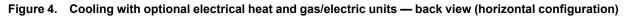


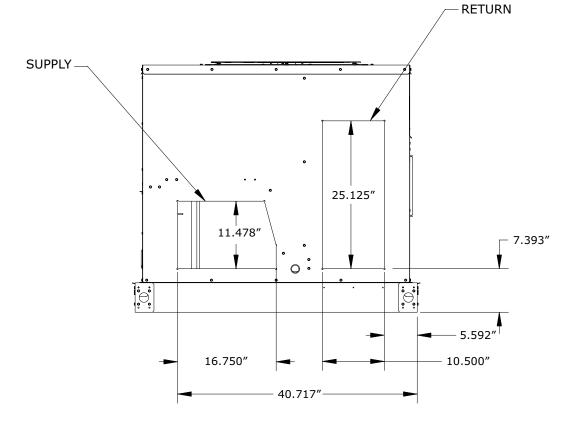
Dimensional Data

. D 0 DISCONNECT SWITCH ACCESS GAS CONNECTION (GDK UNITS ONLY) CONDENSATE DRAIN CONNECTION


Figure 1. Cooling with optional electrical heat and gas/electric units - overview


Figure 2. Cooling with gas heat — front and side views (gas/electric)




NOTES: 1. THROUGH THE BASE GAS AND ELECTRICAL IS NOT STANDARD ON ALL UNITS. 2. VERIFY WEIGHT, CONNECTION, AND ALL DIMENSIONS WITH INSTALLER DOCUMENTS BEFORE INSTALLATION.

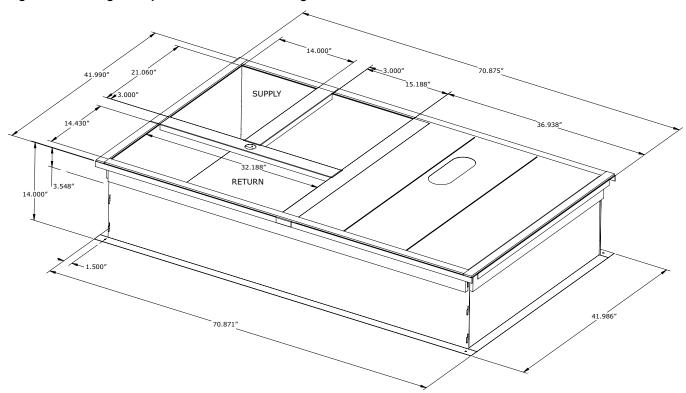
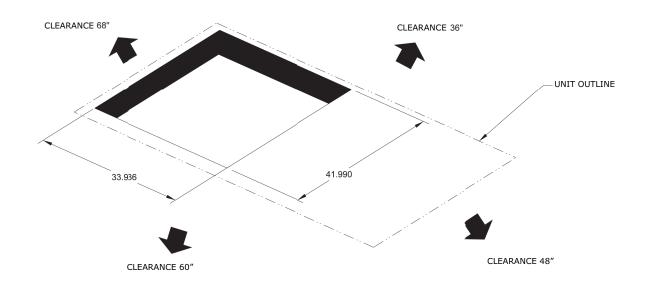
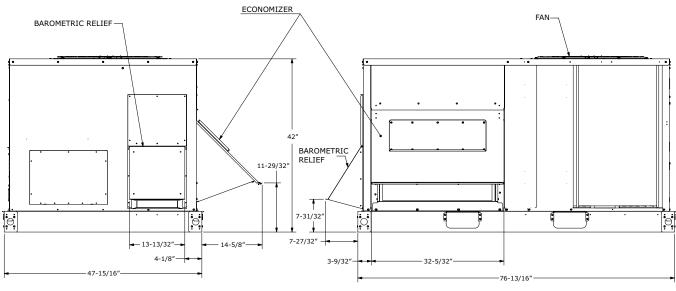




Figure 6. Cooling with optional electrical heat and gas/electric units - downflow unit clearance

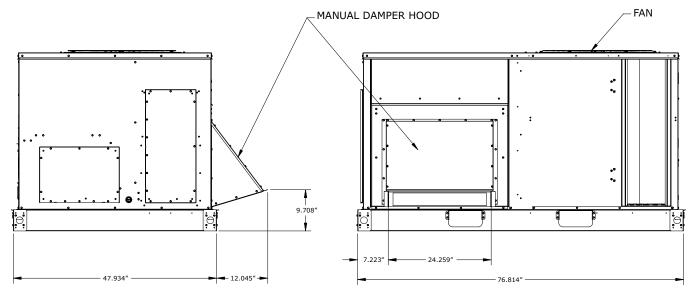


Figure 7. Cooling with optional electrical heat and gas/electric units - barometric relief and economizer

RIGHT VIEW OF UNIT

BACK VIEW OF UNIT

Figure 8. Cooling with optional electrical heat and gas/electric units - manual damper

RIGHT VIEW OF UNIT

BACK VIEW OF UNIT

NOTE: VERIFY WEIGHT, CONNECTION, AND ALL DIMENSIONS WITH INSTALLER DOCUMENTS BEFORE INSTALLATION.

Weights

Table 38. Maximum unit and corner weights (Ib) and center of gravity dimensions (in.) cooling with optional electric heat (gas/electric) units only

Tons	ns Unit Model No. Weights (lb) ^(a) , ^(b)				Corner V	Center of Gravity (in.)			
10115	Unit woder No.	Shipping	Net	Α	В	B C D		Length	Width
3	GDK036*	574	524	95	111	172	146	42	29
4	GDK048*	616	566	110	119	175	162	40	29
5	GDK060*	636	586	120	125	174	168	39	28

(a) Weights are approximate.

(b) Weights do not include additional factory or field installed options/accessories.

(c) Corner weights are given for information only.

Table 39. Maximum unit and corner weights (lb) and center of gravity dimensions (in.) cooling with optional electric heat (electric/electric) units only

Tons	Unit Model No.	Weights (Ib) ^(a) , ^(b)		Corner Weights ^(c)				Center of Gravity (in.)	
		Shipping	Net	Α	В	С	D	Length	Width
3	EDK036*	523	473	87	98	153	135	41	29
4	EDK048*	566	516	103	107	155	150	39	28
5	EDK060*	586	536	112	112	156	156	38	28

^(a) Weights are approximate.

(b) Weights do not include additional factory or field installed options/accessories.

(c) Corner weights are given for information only.

Note: To calculate additional weight for accessories, see Accessory net weights table.

Table 40. Accessory net weight (lb)

Accessories ^(a) , ^(b) , ^(c)	E/GDK036-060				
Standard Economizer	26				
Low Leak Economizer	68				
Manual Outside Air Damper	16				
Motorized outside Air Damper ^(d)	20				
Power Exhaust ^(d)	40				
Barometric relief ^(d)	7				
Roof Curb ^(d)	61				
Oversized Motor	5				
Hail Guard	12				
Through-the-Base Electrical	8				
Disconnect	5				
Electric Heaters	15				


^(a) Net weight should be added to unit weight when ordering factoryinstalled accessories.

(b) Weights for factory installed options and field installed accessories not listed are < 5 lb.

 $^{(c)}$ $\;$ To estimate shipping weight add 5 lb. to net weight.

(d) Downflow only.

Mechanical Specifications

General

- Packaged rooftop units cooling, heating capacities, and efficiencies are AHRI Certified within scope of AHRI Standard 210–240 (I-P) and ANSIZ21.47 and 10 CFR Part 431 pertaining to Commercial Warm Air Furnaces
- Packaged rooftop units are dedicated downflow or horizontal airflow
- Operating range between 125°F and 45°F in cooling standard from the factory
- Factory assembled, internally wired, fully charged with R-454B, and 100 percent run tested to check cooling operation, fan and blower rotation, and control sequence before leaving the factory
- Colored and numbered wring internal to the unit for simplified identification
- Units listed in accordance UL 60335-2-40/ CSA C22.2 No. 60335-2-40.

Standard Features

Casing

- Zinc coated, heavy gauge, galvanized steel
- · Weather-resistant baked enamel finish on phosphatized exterior surfaces
- Meets ASTM B117, 672 hour salt spray test
- Removable single side maintenance access panels
- Lifting handles in maintenance access panels (can be removed and reinstalled by removing no more than four fasteners while providing a water and air tight seal)
- Exposed vertical panels and top covers in the indoor air section is insulated with a 1/2-inch, 1-pound density foil-faced, fire-resistant, permanent, odorless, glass fiber material
- Base of unit is insulated with 1/2-inch, 1-pound density, foil-faced, glass fiber material
- Base pan does not have penetrations within the perimeter of the curb other than the raised 1 1/8inch high downflow supply/return openings to provide an added water integrity precaution, if the condensate drain backs up
- Downflow units base pan does not have penetrations within the perimeter of the curb other than the raised 1 1/8-inch high supply/return openings to provide an added water integrity precaution, if the condensate drain backs up
- · Base of unit has provisions for forklift and crane lifting

Compressors

- · All units have direct-drive, hermetic, scroll type compressors with centrifugal type oil pumps
- Suction gas-cooled motor with voltage utilization range of plus or minus 10 percent of unit nameplate voltage
- Internal overloads standard with scroll compressors
- · All models have phase monitors, low pressure controls, and high pressure controls as standard

Controls

- Units factory-wired with necessary controls and contactor pressure lugs or terminal block for power wiring
- External location available for mounting a fused disconnect device

Discharge Line Thermostat

- A bi-metal element discharge line thermostat is installed as a standard option on the discharge line
 of each system
- Provides extra protection to the compressors against high discharge temperatures in case of loss of charge, extremely high ambient and other conditions which could drive the discharge temperature higher
- Wired in series with high pressure control

- When discharge temperature rises above the protection limit, the bi-metal disc in the thermostat switches to the off position, opening the 24 Vac circuit
- When temperature on the discharge line cools down, the bi-metal disc closes the contactor circuit, providing power to the compressor

Evaporator and Condenser Coils

- · Microchannel coils burst tested by manufacturer
- Microchannel condenser coils standard on all units
- Coils leak tested to confirm the pressure integrity
- · Evaporator coil and condenser coil leak tested to 225 psig and pressure tested to 450 psig
- Sloped condensate drain pans are standard

Fan Failure Switch

For cooling and electric heat unit, fan failure switch is standard. In electric heating mode, heaters will not be energized until differential pressure switch proves airflow.

Filters

Two-inch standard filters are factory supplied on all units.

Gas Heat Section

- Progressive tubular heat exchanger, stainless steel burners and corrosion resistant steel
- Induced draft combustion blower is used to pull the combustion products through the firing tubes
- Heater uses a direct spark ignition (DSI) system
- On initial call for heat, the combustion blower purges the heat exchanger for 20 seconds before ignition
- After three unsuccessful ignition attempts, entire heating system is locked out until manually reset at the thermostat/zone sensor
- Units are suitable for use with natural gas or propane (field-installed kit)
- For installation in SCAQMD only: This furnace does not meet the 14 ng/J NOx emission limit requirement of SCAQMD Rule 1111, and thus is subject to a mitigation fee of up to \$450

Indoor Fan

- · Belt driven, FC centrifugal fans with adjustable motor sheaves
- Motors thermally protected
- Oversized motors available for high static application
- Indoor fan motors meet the U.S. Energy Policy Act of 1992 (EPACT)

Outdoor Fans

- Outdoor fan is direct-drive, statically and dynamically balanced, draw-through in the vertical discharge position
- · Fan motor(s) are permanently lubricated and have built-in thermal overload protection

Phase Monitor

- 3-phase line monitor module
- · Protects against phase loss, phase imbalance and phase reversal indication
- Intended to protect compressors from reverse rotation
- Operating input voltage range of 180 to 600 Vac
- LED indicators for ON and FAULT
- No field adjustments
- · Module will automatically reset from a fault condition

Refrigerant Circuits

- Each refrigerant circuit has a fixed orifice, service pressure ports, and refrigerant line filter driers factory installed as standard
- An area is provided for replacement suction line driers

Refrigerant Pressure Control

All units include high and low pressure cutouts as standard.

Unit Top

The top cover is double hemmed and gasket sealed to prevent water leakage.

Factory Installed Options

Complete Coat[™] Microchannel Condenser Coil

- Cathodic epoxy type electro-disposition coating formulated for high edge build to a number of different types of heat exchangers
- Coating provides excellent resistance and durability to corrosive effects of alkalies, acids, alcohols, petroleum, seawater, salt air and corrosive environments
- Option is available on the microchannel type condenser coil

Stainless Steel Heat Exchanger

- · Gas heat exchanger has tubular heat exchanger design
- Constructed from a minimum 304 grade stainless steel tubes and 439 stainless steel burners
- Has a 10-year warranty as standard (Gas/Electric only)

Factory or Field Installed Options

Barometric Relief

- · Designed to be used on downflow low leak economizer units
- Field installed only: Designed to be used on downflow and horizontal configuration both for standard and low leak economizer units
- · Barometric relief is an unpowered means of relieving excess building pressure

Condensate Overflow Switch

This option shuts the unit down in the event that a clogged condensate drain line prevents proper condensate removal from the unit.

Economizer (Standard) – Downflow

- Assembly includes fully modulating 0–100% motor and dampers, barometric relief, minimum
 position setting, preset linkage, wiring harness with plug, fixed dry bulb and spring return actuator
- Barometric relief damper provides a pressure-operated damper that is gravity closing and prohibits entrance of outside air during the equipment **off** cycle

Electric Heaters

- · Electric heat modules are available for installation within the basic unit
- Elements are constructed of heavy-duty nickel chromium elements internally delta connected for 240 volt, wye connected for 480 volt
- · Each heater package has automatically reset high limit control operating as line break limits
- Power assemblies provides single-point connection
- · Electric heat modules is UL listed or CSA certified

 If ordering the Through-the-Base Electrical option with an Electric Heater, the heater must be factory installed

High Efficiency Filters

Two-inch MERV 13 media filters available on all models.

Low Leak Economizer with Fault Detection and Diagnostics - Downflow

- Option of outside and return air dampers that do not exceed 3 cfm/ft² at 1.0 in. w.g. and supply 100 percent of the design supply air quantity as outside air
- Controller has the capability to provide the value of each sensor used in controlling the economizer operation
- System status is also indicted for the following conditions:
 - Free cooling available
 - Economizer enabled
 - Compressor enabled
 - Heating enabled
 - Mixed air low limit cycle active
- Fault Detection and Diagnostic system detects the following faults:
 - Air temperature sensor failure/fault
 - Not economizing when conditions indicate system should be economizing
 - Economizing when conditions indicate system should not be economizing
 - Dampers not modulating
 - Excessive amounts of outside air being introduced though the economizer
- Fault Detection and Diagnostic system is certified by the California Energy Commission as meeting requirements of California Title 24 120.2(i)1 through 120.2(i)8 in accordance with Section 100(h)

Manual Outside Air Damper

The rain hood and screen provides up to 50 percent outside air.

Motorized Outside Air Damper

- Manually set outdoor air dampers provides up to 50 percent outside air
- Outdoor air dampers opens to set position when indoor fan starts
- Damper closes to the full closed position when indoor fan shuts down

Oversized Motors

Oversized motors are available for high static applications.

Reference or Comparative Enthalpy

- Used to measure and communicate outdoor humidity
- Unit receives and uses this information to provide improved comfort cooling while using the economizer
- Comparative enthalpy measures and communicates humidity for both outdoor and return air conditions, and return air temperature unit receives and uses this information to maximize use of economizer cooling, and to provide maximum occupant comfort control
- Reference or comparative enthalpy option is available when a factory or field installed downflow economizer is ordered
- · Option is available on all models

Through-the-Base Electrical with Disconnect Switch

- Three-pole, molded case, disconnect switch with provisions for through-the-base electrical connections are available
- Installed in the unit in a water tight enclosure with access through a swinging door
- Factory wiring is provided from the switch to the unit high voltage terminal block
- Switch is UL/CSA agency recognized

Note: The disconnect switch will be sized per NEC and UL guidelines but will not be used in place of unit overcurrent protection.

Through-the-Base Gas Piping

- · Unit includes a standard through-the-base gas provision
- · Option has all necessary piping including black steel, manual gas shut-off valve, elbows, and union
- Manual shutoff valve includes a 1/8-inch NPT pressure tap
- · Assembly requires minor field labor to install (gas/electric only)

Through-the-Base Utilities Access

- Electrical service entrance is provided allowing electrical access for both control and main power connections inside the curb and through-the-base of the unit
- Option allows field installation of liquid-tight conduit and an external field installed disconnect switch

Field Installed Options

Barometric Relief

- · Designed to be used on downflow low leak economizer units
- Field installed only: Designed to be used on downflow and horizontal configuration both for standard and low leak economizer units
- · Barometric relief is an unpowered means of relieving excess building pressure

Crankcase Heaters

Band heaters provide improved compressor reliability by warming the oil to prevent migration during offcycles or low ambient conditions.

Demand Control Ventilation with CO₂ Sensor

- CO₂ sensor has the ability to monitor the concentration (parts per million, ppm) of CO₂ (Carbon Dioxide) in the air
- As the CO₂ concentration changes, the outside air damper modulates to meet the current ventilation needs of the zone

Economizer – Horizontal

The horizontal economizer contains the same features as the downflow economizer with the exception of barometric relief.

Hail Guards

Tool-less, hail protection quality coil guards are available for condenser coil protection.

Low Ambient Kit

- Low ambient kit is required when unit operating under below 45°F
- · Allows system to operate in cooling below 45 degrees
- Maintains head pressure by cycling the outdoor fan motor, allowing safe system operation without indoor coil icing

Low Leak Economizer with Fault Detection and Diagnostics - Horizontal

- Option of outside and return air dampers that do not exceed 3 cfm/ft² at 1.0 in. w.g. and supply 100 percent of the design supply air quantity as outside air
- Controller has the capability to provide the value of each sensor used in controlling the economizer operation
- System status is also indicted for the following conditions:
 - Free cooling available
 - Economizer enabled
 - Compressor enabled
 - Heating enabled
 - Mixed air low limit cycle active
 - Fault Detection and Diagnostic system detects the following faults:
 - Air temperature sensor failure/fault
 - Not economizing when conditions indicate system should be economizing
 - Economizing when conditions indicate system should not be economizing
 - Dampers not modulating
 - Excessive amounts of outside air being introduced though the economizer
- Fault Detection and Diagnostic system is certified by the California Energy Commission as meeting requirements of California Title 24 120.2(i)1 through 120.2(i)8 in accordance with Section 100(h)

Powered Exhaust

The powered exhaust provides exhaust of return air, when using an economizer, to maintain better building pressurization.

Remote Potentiometer

The minimum position setting of the economizer is adjusted with this accessory.

Roof Curb – Downflow

- Roof curb is designed to mate with the downflow unit and provide support and a water tight installation when installed properly
- Design allows field-fabricated rectangular supply/return ductwork to be connected directly to the curb
- · Curb shipped knocked down for field assembly and includes wood nailer strips

The AHRI Certified mark indicates Trane U.S. Inc. participation in the AHRI Certification program. For verification of individual certified products, go to ahridirectory.org.

Trane - by Trane Technologies (NYSE: TT), a global innovator - creates comfortable, energy efficient indoor environments for commercial and residential applications. For more information, please visit trane.com or tranetechnologies.com.

Trane has a policy of continuous product and product data improvements and reserves the right to change design and specifications without notice. We are committed to using environmentally conscious print practices.