

TRANE®

Product Catalog

Horizon™ Outdoor Air Unit

Models: OABD, OABE, OABF, OADG, OAND,
OANE, OANF, OANG

Introduction

Trane Horizon Outdoor Air Unit

Models: OAB Rev5, OADG Rev6, OAN Rev5, OANG Rev6

Range: 3 to 80 Tons

The Trane Horizon Outdoor Air Unit DX and Water Source Heat Pump units for 100 percent outdoor air or dew point design applications lead the industry in:

- Indoor Air Quality (IAQ) Features
- Moisture management
- High quality and durability
- Advanced controls

Horizon units have precision performance for year-round dehumidification control and can condition 100 percent outside air to help meet strict ventilation code requirements. Applicable units are AHRI Certified and can be found in the AHRI Directory at www.ahridirectory.org.

The Horizon OAU is highly configurable to suit needs:

- Air cooled
- Electric heater
- Air source heat pump
- Hot water heater
- Energy recovery wheel
- Powered exhaust
- Water cooled
- Gas heater
- Water source heat pump
- Dual fuel
- Class 1A dampers
- Horizontal or vertical discharge and return paths

Copyright

This document and the information in it are the property of Trane, and may not be used or reproduced in whole or in part without written permission. Trane reserves the right to revise this publication at any time, and to make changes to its content without obligation to notify any person of such revision or change.

Trademarks

All trademarks referenced in this document are the trademarks of their respective owners.

Revision History

- Updated front cover image.
- Updated Introduction chapter.
- Updated Model Number Descriptions chapter.
- Added Key Benefits topic in Features and Benefits chapter.
- Updated Application Considerations chapter.
- Updated data tables in General Data chapter.

- Updated Unit Clearances, Curb Dimensions, and Dimensional Data chapter.
- Updated Indirect Gas-fired Furnace Heater chapter.
- Updated Typical unit weights table in Unit Weight and Rigging chapter.
- Updated Mechanical Specifications chapter.

Table of Contents

Model Number Descriptions	6
Horizon Outdoor Air Unit	6
Features and Benefits	15
Key Benefits	19
Application Considerations	22
Overview	22
System Configurations	22
Horizon™ Outdoor Air Unit (OAU) Operation	23
Horizon™ OAU with Reheat	23
Horizon™ OAU Outdoor Air Control without Reheat	25
Establishing Capacity Requirements	26
Cooling and Dehumidification Selection Criteria	26
Outdoor Airflow Balancing	29
Air to Air Energy Recovery	30
Condensate Drain Configuration	31
Acoustical Considerations	32
Clearance Requirements	32
Corrosive Environment	32
Duct Design	33
Controls Sequence	33
A2L Considerations	33
General Data	35
OAB Unit	35
OAND Rev 5 Unit	36
OAB Heat Pump Unit	37
OAND Rev 5 Heat Pump Unit	38
OADG Unit	39
OADG Heat Pump Unit	40
OANG Rev 6 Unit	41
Unit Clearances, Curb Dimensions, and Dimensional Data	42
OAN Rev 5 Units	42
OAB Units	50
OADG Units	55
OANG Rev 6 Units	61
Outdoor WSHP Units	68

Table of Contents

Indoor Water Source Heat Pump (WSHP) Units	81
Indirect Gas-fired Furnace Heater	89
Utility Connections	90
Unit Weight and Rigging	94
Unit Weight	94
Mechanical Specifications	97
Horizon Outdoor Air Mechanical Specifications	97
Appendix	108
Horizon™ OAU Filter Guide	108

Model Number Descriptions

Horizon Outdoor Air Unit

Model: OAN Rev5

Digit 1, 2 — Unit Type

OA = Outdoor Air

Digit 3 — Cabinet Size

N = N

Digit 4 — Major Design Sequence

C = Revision 4
D = Revision 5
E = Heat Pump
F = Indoor WSHP

Digit 5, 6, 7 — Normal Gross Cooling Capacity (MBh)

000 = No Cooling
360 = 30 Tons High Efficiency
420 = 35 Tons High Efficiency
480 = 40 Tons High Efficiency
540 = 45 Tons High Efficiency
600 = 50 Tons High Efficiency
648 = 54 Tons High Efficiency
720 = 60 Tons High Efficiency

Digit 8 — Minor Design Sequence

A = Vertical Discharge/Vertical Return
B = Vertical Discharge/
Horizontal Return
C = Horizontal Discharge/
Vertical Return
D = Horizontal Discharge/
Horizontal Return
E = Vertical Discharge/No Return
F = Horizontal Discharge/No Return
G = Vertical Discharge/
Split Vertical Return-Exhaust
H = Horizontal Discharge/
Split Vertical Return-Exhaust

Digit 9 — Voltage Selection

3 = 208-230/60/3
4 = 460/60/3
5 = 575/60/3

Digit 10 — Reserved for Future

Use Digit 11 — Evaporator Type

0 = No Cooling
B = DX 4-Row
C = DX 4-Row Interlaced
D = DX 6-Row Interlaced
F = Glycol/Chilled Water Coil

Digit 12 — Hot Gas Reheat

0 = No HGRH
1 = Fin and Tube Modulating
2 = Fin and Tube On/Off

Digit 13 — Compressor

0 = No Compressors
A = Scroll Compressors
B = Digital Scroll (1st Circuit Only)
C = Digital Scroll (1st and 2nd Circuit)
D = Variable Speed Scroll (1st Circuit Only)
E = Variable Speed Scroll (1st and 2nd Circuit)

F = Scroll Compressors w/Sound Attenuation Package

G = Digital Scroll (1st Circuit Only) w/Sound Attenuation Package

H = Digital Scroll (1st Circuit and 2nd Circuit) w/Sound Attenuation Package

J = Variable Speed Scroll (1st Circuit Only) w/Sound Attenuation Package

K = Variable Speed Scroll (1st Circuit and 2nd Circuit) w/Sound Attenuation Package

L = Variable Speed Scroll (1st Circuit), Digital Scroll (2nd Circuit)

M = Variable Speed Scroll (1st Circuit), Digital Scroll (2nd Circuit) w/Sound Attenuation Package

Digit 14 — Condenser

0 = No Condenser

1 = Air-Cooled Fin and Tube

2 = Air-Cooled Fin and Tube w/Head Pressure On/Off Control

3 = Water Cooled DX Condenser Copper/Steel

4 = Air-Cooled Fin and Tube w/Head Pressure Variable Speed

8 = Water Cooled DX Condenser Copper/Nickel

Digit 15 — Refrigerant Capacity Control

0 = No RCC Valve

A = RCC Valve on 1st Circuit

G = Low GWP Refrigerant and No RCC Valve

H = Low GWP Refrigerant and RCC Valve on 1st Circuit

J = Low GWP Refrigerant and RCC Valve on 1st and 2nd Circuit

Digit 16 — Indoor Fan Motor (IFM)

0 = Direct Drive w/VFD

1 = Direct Drive (VFD by Others)

4 = Direct Drive w/Shft Grounding Ring w/VFD

5 = Special Motor Option

Digit 17 — Indoor Fan Wheel

A = 120

B = 120.6

C = 140

D = 140.6

E = 160

F = 160.6

G = 180

H = 180.6

J = 200

K = 200.6

L = 180 × 2

M = 180.6 × 2

Digit 18 — Indoor Fan Motor Power (hp)

E = 1 hp – 1800 rpm

F = 1 hp – 3600 rpm

G = 1.5 hp – 1800 rpm

H = 1.5 hp – 3600 rpm

J = 2 hp – 1800 rpm

K = 2 hp – 3600 rpm

L = 3 hp – 1800 rpm

M = 3 hp – 3600 rpm

N = 5 hp – 1800 rpm

P = 5 hp – 3600 rpm

R = 7.5 hp – 1800 rpm

S = 7.5 hp – 3600 rpm

T = 10 hp – 1800 rpm

U = 10 hp – 3600 rpm

V = 15 hp – 1800 rpm

W = 15 hp – 3600 rpm

Digit 19 — Reserved for Future Use

Digit 20 — Heat Type (PRI/SEC)

0 = No Heat

A = Indirect-Fired (IF)

C = Electric – Stage

D = Electric – SCR Modulating

G = Dual Fuel (PRI-IF/SEC-ELEC-STAGED)

H = Dual Fuel (PRI-ELEC-SCR/SEC-ELEC-STAGED)

J = Hot Water

L = No Primary Heat, Secondary (ELEC-STAGED)

N = Dual Fuel (PRI-ELEC-STAGED/SEC-ELEC)

Q = Dual Fuel (PRI-HW/SEC-ELEC-STAGED)

Digit 21 — Primary Fuel Type

0 = No Heat

1 = Natural Gas

2 = Propane

3 = Electric – Open Coil

5 = Hot Water

7 = Natural Gas - 81% Eff.

8 = Propane - 81% Eff.

Digit 22 — Heat Capacity (Primary Heat Source)

	<u>IF</u>	<u>ELEC</u>	<u>Hot Water</u>
0 =	No Heat	No Heat	No Heat
A =	50 MBh	10 kW	1 Row/10 FPI
B =	75 MBh	20 kW	1 Row/12 FPI
C =	100 MBh	24 kW	1 Row/14 FPI
D =	125 MBh	28 kW	2 Row/10 FPI
E =	150 MBh	32 kW	2 Row/12 FPI
F =	200 MBh	40 kW	2 Row/14 FPI
G =	250 MBh	48 kW	3 Row/10 FPI
H =	300 MBh	60 kW	3 Row/12 FPI
J =	350 MBh	68 kW	3 Row/14 FPI
K =	400 MBh	79 kW	
L =	500 MBh	99 kW	
M =	600 MBh	111 kW	
N =	700 MBh	119 kW	
O =		111 kW	
P =	800 MBh	139 kW	
R =	1000 MBh	159 kW	
S =		179 kW	
T =		199 kW	
U =		215 kW	
X =	Special Heater Option		

Digit 23 — Heat Capacity (Secondary Heat Source)

	<u>IF</u>	<u>ELEC</u>
0 =	No Secondary Heat	No Secondary Heat
A =	50 MBh	10 kW
B =	75 MBh	20 kW
C =	100 MBh	24 kW
D =	125 MBh	28 kW
E =	150 MBh	32 kW
F =	200 MBh	40 kW
G =	250 MBh	48 kW
H =	300 MBh	60 kW
J =	350 MBh	68 kW
K =	400 MBh	79 kW
L =	500 MBh	99 kW
M =	600 MBh	111 kW
N =	700 MBh	119 kW
P =	800 MBh	139 kW
R =	1000 MBh	159 kW
S =		179 kW
T =		199 kW
U =		215 kW

Digit 24 — Corrosive Environment Package

0 =	No Corrosive Package
1 =	S/S Interior, S/S Evap Coil Casing
2 =	S/S Interior, Eco Coated Coils
3 =	S/S Interior, Copper/Copper Evap Coil
4 =	S/S Coil Casing
5 =	S/S Interior Casing
6 =	Eco-Coated Coils
7 =	S/S Coil Casing with Eco-Coated Coils
8 =	Copper/Copper Evap, HGRH Coils
9 =	Corrosion Resistant Package

Digit 25, 26 — Unit Controls

00 =	Non-DDC – Electromechanical
AC =	Trane – Discharge Air Control w/BACnet® (No Display)
AD =	Trane – Space Control w/BACnet (No Display)
AF =	Trane – Discharge Air Control w/BACnet w/Display
AG =	Trane – Space Control w/BACnet w/Display
AL =	Trane – Multi-Zone VAV Control w/BACnet w/Display
AN =	Trane – Multi-Zone VAV Control w/BACnet (No Display)
AP =	Trane – Single-Zone VAV Control w/BACnet w/Display
AR =	Trane – Single-Zone VAV Control w/BACnet (No Display)
BB =	Trane – Space Control w/BACnet (No Display) w/Thumbwheel
BC =	Trane – Space Control w/BACnet w/Display w/Thumbwheel
BG =	Trane – Single-Zone VAV Control w/BACnet w/Display w/Thumbwheel
BJ =	Trane – Single-Zone VAV Control w/BACnet (No Display) w/Thumbwheel
CA =	Trane – Lab Space Control w/BACnet (No Display)
CB =	Trane – Lab Space Control w/BACnet w/Display
CC =	Trane – Lab Discharge Air Control w/BACnet (No Display)
CD =	Trane – Lab Discharge Air Control w/BACnet w/Display
CE =	Trane – Lab Multi-Zone VAV Control w/BACnet (No Display)
CF =	Trane – Lab Multi-Zone VAV Control w/BACnet w/Display
CG =	Trane – Lab Space Control w/BACnet (No Display) w/Thumbwheel
CH =	Trane – Lab Space Control w/BACnet w/Display w/Thumbwheel
DA =	Trane – Horizon Thrive Control w/BACnet (No Display)
DB =	Trane – Horizon Thrive Control w/BACnet w/Display
XX =	Control Special

Digit 27 — Powered Exhaust Fan Motor (PFM) and Exhaust Dampers

0 =	No Powered Exhaust
1 =	Direct Drive w/VFD and Gravity Dampers
2 =	Direct Drive (VFD by Others)
5 =	Special Motor Option
6 =	Direct Drive w/VFD and Barometric Relief Damper
7 =	Direct Drive w/VFD and Isolation Dampers w/End Switch
8 =	Barometric Relief Dampers (NO PFM)

Digit 28 — Powered Exhaust Fan Wheel

0 =	No Powered Exhaust
A =	120
B =	120.6
C =	140
D =	140.6
E =	160
F =	160.6
G =	180
H =	180.6
J =	200
K =	200.6
L =	180 × 2
M =	180.6 × 2

Digit 29 — Powered Exhaust Fan Motor Power

0 =	No Powered Exhaust
E =	1 hp – 1800 rpm
F =	1 hp – 3600 rpm
G =	1.5 hp – 1800 rpm
H =	1.5 hp – 3600 rpm
J =	2 hp – 1800 rpm
K =	2 hp – 3600 rpm
L =	3 hp – 1800 rpm
M =	3 hp – 3600 rpm
N =	5 hp – 1800 rpm
P =	5 hp – 3600 rpm
R =	7.5 hp – 1800 rpm
S =	7.5 hp – 3600 rpm
T =	10 hp – 1800 rpm
U =	10 hp – 3600 rpm
V =	15 hp – 1800 rpm
W =	15 hp – 3600 rpm

Digit 30 — Hardware Template

- =	Prior to v8.0
1 =	v8.X, v9.X, or v10.X
2 =	v11.0 / Thrive v2.1
3 =	v11.1 – v11.3 / Thrive v2.1
4 =	v12.0 / Thrive v2.2
5 =	v12.1 / v12.2 / Thrive v2.3
6 =	v13.0 / Thrive v3.0 (Symbio™ 500)

Model Number Descriptions

Digit 31 — ERV (Requires Powered Exhaust)

0 = No ERV
A = ERV – Composite Construction
B = ERV – Composite Construction with Frost Protection w/VFD
C = ERV – Composite Construction with Bypass
D = ERV – Composite Construction with Frost Protection and Bypass
E = ERV – Aluminum Construction
F = ERV – Aluminum Construction with Frost Protection w/VFD
G = ERV – Aluminum Construction with Bypass
H = ERV – Aluminum Construction with Frost Protection and Bypass

Digit 32 — ERV Size

0 = No ERV
4 = 4634
5 = 5856
6 = 6488
7 = 6876
8 = 74122

Digit 33 — Damper Options

A = Modulating OA/RA Dampers w/o Economizer
B = Modulating OA/RA Dampers w/ Economizer w/ Space CO₂ Control (Field Installed)
C = Modulating OA/RA Dampers w/ Economizer w/ Return CO₂ Control (Factory Installed)
D = Modulating OA/RA Dampers w/o Economizer - Class 1A
E = Modulating OA/RA Dampers w/ Economizer w/ Space CO₂ Control (Field Installed) - Class 1A
F = Modulating OA/RA Dampers w/ Economizer w/ Return CO₂ Control (Factory Installed) - Class 1A
0 = 100% OA 2-Position Damper
1 = 100% OA 2-Position Damper w/RA 2-Position Damper
2 = Modulating OA and RA Dampers w/Economizer
3 = 100% OA 2-Position Damper – Class 1A
4 = 100% OA 2-Position Damper w/RA 2-Position Damper – Class 1A
5 = Modulating OA and RA Dampers w/Economizer – Class 1A
6 = 100% RA Opening (No Damper)
7 = 100% RA w/ 2-Position Damper
8 = 100% RA w/ 2-Position Damper – Class 1A

Digit 34 — Filtration Options

A = Aluminum Mesh Intake Filters (ALM)
B = MERV-8,30%, and ALM
C = MERV-13, 80%, and ALM
D = MERV-14, 95%, and ALM
E = MERV-8 30%, MERV-13 80%, and ALM
F = MERV-8 30%, MERV-14 95%, and ALM
G = MERV-8, 30%, and ALM, with UVC
H = MERV-13, 80%, and ALM, with UVC
J = MERV-14, 95%, and ALM, with UVC
K = MERV-8 30%, MERV-13 80%, ALM, and UVC
L = MERV-8 30%, MERV-14 95%, ALM, and UVC
X = Special Filter Options

Digit 35 — Smoke Detector (Factory-Installed)

0 = No Smoke Detector
1 = Supply Smoke Detector
2 = Return Smoke Detector
3 = Supply and Return Smoke Detectors

Digit 36 — Electrical Options

0 = Non-Fused Disconnect
A = Fused Disconnect Switch
B = Non-Fused Disconnect Switch w/Convenience Outlet
C = Fused Disconnect Switch w/Convenience Outlet
D = Dual Point Power
E = Dual Point Power w/Convenience Outlet
F = 65 SCCR Electrical Rating w/Non-Fused Disconnect
G = 65 SCCR Electrical Rating w/Fused Disconnect
H = 65 KAIC Electrical Rating w/Non-Fused Disconnect
J = 65 KAIC Electrical Rating w/Fused Disconnect
K = 65 KAIC Non-Fused w/Convenience Outlet
L = 65 KAIC Fused w/Convenience Outlet
M = 65 SCCR Non-Fused w/Convenience Outlet

Digit 37 — Airflow Monitoring

0 = No Airflow Monitoring
1 = Airflow Monitoring – IFM Piezo Ring
2 = Airflow Monitoring – PE Piezo Ring
3 = Airflow Monitoring – Outdoor Air with Display and IFM w/Piezo Ring
4 = Airflow Monitoring – IFM Piezo Ring and PE Piezo Ring
5 = Airflow Monitoring – Outdoor Air Monitoring w/Display Supply Air and Exhaust Air w/Piezo Rings

Digit 38 — Accessories

0 = No Options
A = Hailguards
B = LED Service Light
C = Hailguards and LED Service Light
D = LED Service Light in Exhaust Fan Section
E = LED Service Light in Supply and Exhaust Fan Section
F = Hailguards and LED Service Light in Exhaust Fan Section
G = Hailguards and LED Service Light in Supply and Exhaust Fan Section

Digit 39 — Altitude

0 = Sea Level to 1,000 Feet
1 = 1,001 to 2,000 Feet
2 = 2,001 to 3,000 Feet
3 = 3,001 to 4,000 Feet
4 = 4,001 to 5,000 Feet
5 = 5,001 to 6,000 Feet
6 = 6,001 to 7,000 Feet
7 = Above 7,000 Feet

Horizon Outdoor Air Unit

Model: OADG Rev6 and OANG Rev6

Digit 1, 2 — Unit Type

OA = Outdoor Air

Digit 3 — Cabinet Size

D = D
N = N

Digit 4 — Major Design Sequence

G = Revision 6

Digit 5, 6, 7 — Normal Gross Cooling Capacity (MBh)

000 = No DX Cooling
010 = 10 Tons High Efficiency
012 = 12 Tons High Efficiency
015 = 15 Tons High Efficiency
017 = 17 Tons High Efficiency
020 = 20 Tons High Efficiency
025 = 25 Tons High Efficiency
030 = 30 Tons High Efficiency
040 = 40 Tons High Efficiency
045 = 45 Tons High Efficiency
050 = 50 Tons High Efficiency
055 = 55 Tons High Efficiency
060 = 60 Tons High Efficiency
065 = 65 Tons High Efficiency
070 = 70 Tons High Efficiency
075 = 75 Tons High Efficiency
080 = 80 Tons High Efficiency

Digit 8 — Airflow Configuration

A = Vertical Discharge/No Return
B = Horizontal Discharge/No Return
C = Vertical Discharge/Vertical Return
D = Vertical Discharge/Horizontal Return/Exhaust
E = Horizontal Discharge/Vertical Return/Exhaust
F = Horizontal Discharge/Horizontal Return/Exhaust
G = Vertical Discharge/Vertical Return/Vertical Exhaust
H = Vertical Discharge/Vertical Return/Horizontal Exhaust
J = Vertical Discharge/Horizontal Return/Vertical Exhaust
K = Vertical Discharge/Horizontal Return/Horizontal Exhaust
L = Horizontal Discharge/Vertical Return/Vertical Exhaust
M = Horizontal Discharge/Vertical Return/Horizontal Exhaust
N = Horizontal Discharge/Horizontal Return/Vertical Exhaust
P = Horizontal Discharge/Horizontal Return/Horizontal Exhaust

Digit 9 — Voltage Selection

1 = 208/60/3
2 = 230–240/60/3
3 = 460/60/3
4 = 575/60/3

Digit 10 — Not Used

Digit 11 — Indoor Coil Type

0 = No Indoor Coil
C = DX 4-Row
D = DX 6-Row
F = Glycol/Chilled Water Coil – 4-Row
G = Glycol/Chilled Water Coil – 6-Row
H = Glycol/Chilled Water Coil with Cooney Freeze Block Technology – 4-Row
J = Glycol/Chilled Water Coil with Cooney Freeze Block Technology – 6-Row

Digit 12 — Reheat

0 = No Reheat
A = Fin and Tube Modulating HGRH
B = Fin and Tube On/Off HGRH

Digit 13 — Compressor

0 = No Compressor
A = Scroll Compressors
B = Digital Scroll – 1st Circuit Only
C = Digital Scroll – 1st Circuit and 2nd Circuit
D = eFlex™ – 1st Circuit Only
E = eFlex™ – 1st Circuit and 2nd Circuit
F = eFlex™ – 1st Circuit, Digital Scroll-2nd Circuit

Digit 14 — Outdoor Coil

0 = No Condenser
1 = Air-cooled Fin and Tube
3 = Water-cooled Copper/Nickel
4 = Water-cooled Copper/Steel
5 = ASHP Fin and Tube
7 = WSHP Copper/Nickel
8 = WSHP Copper/Steel

Digit 15 — Refrigerant Capacity Control

0 = No RCC Valve
1 = RCC Valve on 1st Circuit
2 = RCC Valve on 1st and 2nd Circuit
G = Low GWP Refrigerant and No RCC Valve
H = Low GWP Refrigerant and RCC Valve on 1st Circuit
J = Low GWP Refrigerant and RCC Valve on 1st and 2nd Circuit

Digit 16 — Heat Type — Primary

0 = No Heat
A = Indirect Fired NG (IF) – Standard Efficiency (80%)
B = Indirect Fired NG (IF) – High Efficiency (82%)
C = Indirect Fire NG (IF) – Premium Efficiency (+90%)

D = Indirect Fired LP (IF) – Standard Efficiency (80%)
E = Indirect Fired LP (IF) – High Efficiency (82%)

F = Indirect Fire LP (IF) – Premium Efficiency (+90%)
G = Hot Water

H = Electric – Staged
J = Electric – SCR Modulating
Q = Hot Water – Eco Coated Coils
R = Hot Water – S/S Coil Casing
S = Hot Water – S/S Coil Casing with Eco Coated Coils

Digit 17 — Heat Capacity — Primary

	IF	ELEC	HOT WATER
0	= No Heat		
A	= 50 MBh	5 kW	1 Row/10 FPI
B	= 75 MBh	10 kW	1 Row/12 FPI
C	= 100 MBh	15 kW	1 Row/14 FPI
D	= 125 MBh	20 kW	2 Row/10 FPI
E	= 150 MBh	24 kW	2 Row/12 FPI
F	= 200 MBh	28 kW	2 Row/14 FPI
G	= 250 MBh	32 kW	3 Row/10 FPI
H	= 300 MBh	40 kW	3 Row/12 FPI
J	= 350 MBh	48 kW	3 Row/14 FPI

K = 400 MBh 60 kW
L = 500 MBh 68 kW

M = 500 MBh (Dual 250) 79 kW
N = 600 MBh 99 kW

P = 600 MBh (Dual 300) 111 kW
R = 800 MBh 119 kW

S = 800 MBh (Dual 400) 139 kW
T = 1000 MBh 159 kW

U = 1000 MBh (Dual 500) 179 kW
V = 1200 MBh 199 kW

W = 215 kW
Y = 230 kW

Z = 250 kW

Digit 18 — Heat Type — Secondary

0 = No Secondary Heat
4 = Electric – Staged
5 = Electric – SCR Modulating

Model Number Descriptions

Digit 19 — Heat Capacity — Secondary

0	No Secondary Heat
A	5 kW
B	10 kW
C	15 kW
D	20 kW
E	24 kW
F	28 kW
G	32 kW
H	40 kW
J	48 kW
K	60 kW
L	68 kW
M	79 kW
N	99 kW
P	111 kW
R	119 kW

Digit 20 — Not Used

Digit 21 — Supply Fan Motor

A	1 hp – 1800 rpm
B	1 hp – 3600 rpm
C	1.5 hp – 1800 rpm
D	1.5 hp – 3600 rpm
E	2 hp – 1800 rpm
F	2 hp – 3600 rpm
G	3 hp – 1800 rpm
H	3 hp – 3600 rpm
J	5 hp – 1800 rpm
K	5 hp – 3600 rpm
L	7.5 hp – 1800 rpm
M	7.5 hp – 3600 rpm
N	10 hp – 1800 rpm
P	10 hp – 3600 rpm
R	15 hp – 1800 rpm
S	15 hp – 3600 rpm
T	20 hp – 1800 rpm
U	20 hp – 3600 rpm

Digit 22 — Supply Fan Motor Type

1	Direct Drive w/VFD
2	Direct Drive (VFD by Others)
3	Direct Drive w/Shft Grounding Ring w/VFD

Digit 23, 24 — Supply Fan Wheel Diameter

AA	12-in. Wheel
AB	12-in. – 60% Width Wheel
AC	14-in. Wheel
AD	14-in. – 60% Width Wheel
AE	16-in. Wheel
AF	16-in. – 60% Width Wheel
AG	18-in. Wheel
AH	18-in. – 60% Width Wheel
AJ	20-in. Wheel
AK	20-in. – 60% Width Wheel
AL	22-in. Wheel
AM	22-in. – 60% Width Wheel
AN	25-in. Wheel
AP	25-in. – 60% Width Wheel
BG	Dual 18-in. Wheel
BH	Dual 18-in. – 60% Width Wheel
BJ	Dual 20-in. Wheel
BK	Dual 20-in. – 60% Width Wheel
BL	Dual 22-in. Wheel
BM	Dual 22-in. – 60% Width Wheel
BN	Dual 25-in. Wheel
BP	Dual 25-in. – 60% Width Wheel

AP	25-in. – 60% Width Wheel
BG	Dual 18-in. Wheel
BH	Dual 18-in. – 60% Width Wheel
BJ	Dual 20-in. Wheel
BK	Dual 20-in. – 60% Width Wheel
BL	Dual 22-in. Wheel
BM	Dual 22-in. – 60% Width Wheel
BN	Dual 25-in. Wheel
BP	Dual 25-in. – 60% Width Wheel

Digit 25 — Exhaust Fan Motor

0	No Powered Exhaust
A	1 hp – 1800 rpm
B	1 hp – 3600 rpm
C	1.5 hp – 1800 rpm
D	1.5 hp – 3600 rpm
E	2 hp – 1800 rpm
F	2 hp – 3600 rpm
G	3 hp – 1800 rpm
H	3 hp – 3600 rpm
J	5 hp – 1800 rpm
K	5 hp – 3600 rpm
L	7.5 hp – 1800 rpm
M	7.5 hp – 3600 rpm
N	10 hp – 1800 rpm
P	10 hp – 3600 rpm
R	15 hp – 1800 rpm
S	15 hp – 3600 rpm
T	20 hp – 1800 rpm
U	20 hp – 3600 rpm

Digit 26 — Exhaust Fan Motor Type

0	No Powered Exhaust
1	Direct Drive w/VFD
2	Direct Drive (VFD by Others)
3	Direct Drive w/Shft Grounding Ring w/VFD

Digit 27, 28 — Exhaust Fan Wheel Diameter

00	No Powered Exhaust
AA	12-in. Wheel
AB	12-in. – 60% Width Wheel
AC	14-in. Wheel
AD	14-in. – 60% Width Wheel
AE	16-in. Wheel
AF	16-in. – 60% Width Wheel
AG	18-in. Wheel
AH	18-in. – 60% Width Wheel
AJ	20-in. Wheel
AK	20-in. – 60% Width Wheel
AL	22-in. Wheel
AM	22-in. – 60% Width Wheel
AN	25-in. Wheel
AP	25-in. – 60% Width Wheel
BG	Dual 18-in. Wheel
BH	Dual 18-in. – 60% Width Wheel
BJ	Dual 20-in. Wheel
BK	Dual 20-in. – 60% Width Wheel
BL	Dual 22-in. Wheel
BM	Dual 22-in. – 60% Width Wheel
BN	Dual 25-in. Wheel
BP	Dual 25-in. – 60% Width Wheel

Digit 29 — Airflow Monitoring

0	No Piezo Ring
1	Supply Fan Piezo Ring
2	Exhaust Fan Piezo Ring
3	Supply Fan Piezo Ring and Exhaust Fan Piezo Ring

Digit 30 — Not Used

Digit 31 — Unit Controls

0	No Controls
1	Space Control
2	Discharge Air Control
3	Multi-Zone VAV
4	Single-Zone VAV
5	Trane – Lab Space Control
6	Trane – Lab Discharge Air Control
7	Trane – Lab Multi-Zone VAV Control
8	Horizon Thrive Control

Digit 32 — Building Interface

0	No Controls
1	BACnet®

Digit 33 — Filter Options

0	No Filters
A	MERV-8, 30%
B	MERV-13, 80%
C	MERV-14, 95%
D	MERV-8 30%, MERV-13 80%
E	MERV-8 30%, MERV-14 95%

Digit 34 — Energy Recovery

0	No Energy Recovery
1	ERV – Composite Construction with Bypass for Frost Protection
2	ERV – Composite Construction with Frost Protection w/VFD
3	ERV – Aluminum Construction with Bypass for Frost Protection
4	ERV – Aluminum Construction with Frost Protection w/VFD

Digit 35 — Energy Recover Option, Purge

0	No Purge
1	Purge

Digit 36 — Energy Recover Wheel Size

0	No ERV
A	3014
B	3622
C	4136
D	4634
E	5262
F	5856
G	6488
H	6876
J	74122
K	81146
L	86170
M	92180

Digit 37 — Energy Recovery Option, Rotation Sensor

0 = No Rotation Sensor
1 = Rotation Sensor

Digit 38 — Damper Options

A = Modulating OA/RA Dampers w/o Economizer
B = Modulating OA/RA Dampers w/ Economizer w/ Space CO₂ Control (Field Installed)
C = Modulating OA/RA Dampers w/ Economizer w/ Return CO₂ Control (Factory Installed)
1 = 100% OA 2-Position Damper
2 = 100% OA 2-Position Damper w/RA 2-Position Damper
3 = Modulating OA and RA Dampers w/Economizer
4 = Modulating OA Damper
5 = Manually Adjusted OA Damper
6 = 100% RA Opening (No Damper)
7 = 100% RA w/ 2-Position Damper

Digit 39 — Exhaust Dampers

0 = No Exhaust Dampers
A = Gravity Dampers
B = Isolation Dampers
C = Barometric Relief Dampers

Digit 40 — Not Used

Digit 41 — Electrical Options

0 = Terminal Block – No Factory Installed Disconnect
A = Non-Fused Disconnect
B = Fused Disconnect Switch
C = 65 SCCR Electrical Rating w/Non-Fused Disconnect
D = 65 SCCR Electrical Rating w/Fused Disconnect
E = 65 KAIC Electrical Rating w/Non-Fused Disconnect
F = 65 KAIC Electrical Rating w/Fused Disconnect
G = Dual Point Power
H = Dual Point Power 65 KAIC
J = Dual Point Power 65 SCCR

Digit 42 — Corrosive Environment Package

0 = No Corrosive Package
A = Eco Coated Coils
B = S/S Interior
C = S/S Coil Casing
D = S/S Coil Casing with Eco Coated Coils
E = S/S Interior, Eco Coated Coils
F = Corrosion Resistant Package

Digit 43 — Outdoor Air Monitoring

0 = No Outdoor Air Monitoring
1 = Airflow Probes

Digit 44 — Condenser Fan Options

0 = No Condenser Fans
A = Standard Condenser Fan
B = Passive Head Pressure Control
C = Active Head Pressure Control
D = ECM Condenser Fans with Active Head Pressure Control
E = ECM Condenser Fans with Active Head Pressure Control for Sound Attenuation

Digit 45 — Compressor Sound Blankets and Sound Attenuation

0 = No Sound Attenuation Package
A = Compressor Sound Blankets
B = Compressor Sound Blankets with Sound Attenuation
Condenser Fans

Digit 46 — Smoke Detector

0 = No Smoke Detector
1 = Supply Smoke Detector
2 = Return Smoke Detector
3 = Supply and Return Smoke Detector
4 = Supply Smoke Detector (Factory Provided/Field Installed)
5 = Return Smoke Detector (Factory Provided/Field Installed)
6 = Supply and Return Smoke Detector (Factory Provided/Field Installed)

Digit 47 — Hailguards

0 = No Hailguards
A = Hailguards
B = Outdoor Coil Wind Blockers

Digit 48 — Service Lights

0 = No Service Lights
A = Supply Fan Section Service Light
B = Exhaust Fan Section Service Light
C = Supply and Exhaust Fan Section Service Light

Digit 49 — UV Lights

0 = No UV Lights
1 = UV Lights

Digit 50 — Not Used

Digit 51 — Unit Installation Location

A = Outdoor
B = Indoor

Digit 52 — Convenience Outlet

0 = No Convenience Outlet
A = Convenience Outlet

Digit 53 — Controls Display

0 = No Display
1 = TD-7 Factory Installed
2 = TD-7 Remote Mounted

Digit 54 — Cooling Controls

0 = No ReliaTel™
A = ReliaTel™
B = ReliaTel™ with BCIR Card

Digit 55 — Face and Bypass on Indoor Coil

0 = No Face and Bypass

Digit 56 — Thermostat

0 = No Thermostat
1 = Thumbwheel Thermostat

Digit 57 — Altitude

0 = Sea Level to 1000 Feet
1 = 1001 to 2000 Feet
2 = 2001 to 3000 Feet
3 = 3001 to 4000 Feet
4 = 4001 to 5000 Feet
5 = 5001 to 6000 Feet
6 = 6001 to 7000 Feet
7 = Above 7000 Feet

Digit 58 — Condensate Overflow Switch

0 = No Condensate Overflow Switch
A = Condensate Overflow Switch

Digit 59 — Frostat

0 = No Frostat™
A = Frostat™ Installed

Digit 60 — Not Used

Digit 61 — Outdoor Coil Fluid Type

0 = None
1 = Water
2 = Ethylene Glycol
3 = Propylene Glycol
4 = Methanol
5 = Other

Digit 62 — Minimum Damper Leakage

0 = Standard
1 = Class 1A

Digit 63, 64 — Hardware Template

00 = Prior to Hardware Template
AA = v7.X
AB = v8.X
AC = v9.X
AD = v10.0
AE = v11.0 / Thrive v2.1
AF = v11.1 / Thrive v2.1
AG = v11.2 / Thrive v2.1
AH = v11.3 / Thrive v2.1
AK = v12.0 / Thrive v2.2
AL = v12.1 / v12.2 / Thrive v2.3
AM = v13.0 / Thrive v3.0 (Symbio™ 500)

Digit 65, 66, 67, 68, 69 — Reserved for Future Use

Model Number Descriptions

Horizon Outdoor Air Unit

Model: OAB Rev5

Digit 1, 2 — Unit Type

OA = Outdoor Air

Digit 3 — Cabinet Size

B = B

Digit 4 — Major Design Sequence

D = Revision 1

E = Heat Pump

F = Indoor WSHP

Digit 5, 6, 7 — Normal Gross Cooling Capacity (MBh)

000 = No Cooling

036 = 3 Tons High Efficiency

048 = 4 Tons High Efficiency

060 = 5 Tons High Efficiency

072 = 6 Tons High Efficiency

084 = 7 Tons High Efficiency

096 = 8 Tons High Efficiency

108 = 9 Tons High Efficiency

Digit 8 — Minor Design Sequence

A = Vertical Discharge/Vertical Return

B = Vertical Discharge/Horizontal Return

C = Horizontal Discharge/Vertical Return

D = Horizontal Discharge/Horizontal Return

E = Vertical Discharge/No Return

F = Horizontal Discharge/No Return

Digit 9 — Voltage Selection

3 = 208-230/60/3

4 = 460/60/3

5 = 575/60/3

Digit 10 — Reserved for Future Use

Digit 11 — Evaporator Type

0 = No Cooling

B = DX 4-Row

C = DX 4-Row Interlaced

D = DX 6 Row Interlaced

F = Glycol/Chilled Water Coil

Digit 12 — Hot Gas Reheat

0 = No HGRH

1 = Fin and Tube Modulating

2 = Fin and Tube On/Off

Digit 13 — Compressor

0 = No Compressors

A = Scroll Compressors

B = Digital Scroll (1st Circuit Only)

C = Digital Scroll (1st Circuit and 2nd Circuit)

D = Variable Speed Scroll (1st Circuit Only)

E = Variable Speed Scroll (1st Circuit and 2nd Circuit)

F = Scroll Compressors w/Sound Attenuation Package
 G = Digital Scroll (1st Circuit Only) w/Sound Attenuation Package
 H = Digital Scroll (1st Circuit and 2nd Circuit) w/Sound Attenuation Package
 J = Variable Speed Scroll (1st Circuit Only) w/Sound Attenuation Package
 K = Variable Speed Scroll (1st Circuit and 2nd Circuit) w/Sound Attenuation Package
 L = Variable Speed Scroll (1st Circuit), Digital Scroll (2nd Circuit)
 M = Variable Speed Scroll (1st Circuit), Digital Scroll (2nd Circuit) w/Sound Attenuation Package

Digit 14 — Condenser

0 = No Condenser
 1 = Air Cooled Fin and Tube
 2 = Air Cooled Fin and Tube w/Head Pressure On/Off Control
 3 = Water Cooled DX Condenser Copper/Steel
 4 = Air Cooled Fin and Tube w/Head Pressure Variable Speed
 8 = Water Cooled DX Condenser Copper/Nickel

Digit 15 — Refrigerant Capacity Control

0 = No RCC Valve
 A = RCC Valve on 1st Circuit
 B = RCC Valve on 1st and 2nd Circuit
 G = Low GWP Refrigerant and No RCC Valve
 H = Low GWP Refrigerant and RCC Valve on 1st Circuit
 J = Low GWP Refrigerant and RCC Valve on 1st and 2nd Circuit

Digit 16 — Indoor Fan Motor (IFM)

1 = Direct Drive w/VFD
 4 = Special Motor Option

Digit 17 — Indoor Fan Wheel

J = 120.6
 K = 140.6
 L = 100.6

Digit 18 — Indoor Fan Motor (hp)

	<u>ECM</u>	<u>BELT DRIVE</u>	<u>DIRECT DRIVE</u>
E =		1 hp – 1800 rpm	
F =		1 hp – 3600 rpm	
G =		1.5 hp – 1800 rpm	
H =		1.5 hp – 3600 rpm	
J =		2 hp – 1800 rpm	
K =		2 hp – 3600 rpm	
L =		3 hp – 1800 rpm	
M =		3 hp – 3600 rpm	
N =		5 hp – 1800 rpm	
P =		5 hp – 3600 rpm	

Digit 19 — Reserved for Future Use

Digit 20 — Heat Type (PRI/SEC)

0 = No Heat
 A = Indirect Fired (IF)
 C = Electric – Staged
 D = Electric – SCR Modulating
 G = Dual Fuel (PRI-IF/SEC-ELEC-STAGED)
 H = Dual Fuel (PRI-ELEC-SCR/SEC-ELEC-STAGED)
 J = Hot water (HW)
 L = No Primary Heat, Secondary ELEC-STAGED
 N = Dual Fuel (PRI-ELEC-STAGED/SEC-ELEC-STAGED)
 Q = Dual Fuel (PRI-HW/SEC-ELEC-STAGED)
 T = Dual Fuel (PRI-IF/SEC-ELEC-SCR)
 U = Dual Fuel (PRI-ELEC-SCR/SEC-ELEC-SCR)
 V = No Primary Heat, Secondary ELEC-SCR
 W = Dual Fuel (PRI-ELEC-STAGED/SEC-ELEC-SCR)
 Y = Dual Fuel (PRI-HW/SEC-ELEC-SCR)
 X = Special Heat Option

Digit 21 — Primary Fuel Type

0 = No Heat
 1 = Natural Gas
 2 = Propane
 3 = Electric – Open Coil
 4 = Electric – Sheathed Coil
 5 = Hot Water
 7 = Nature Gas – 81% Eff.
 8 = Propane – 81% Eff.

Digit 22 — Heater Capacity —

Primary Heat Source

	<u>IF</u>	<u>ELEC</u>	<u>HOT WATER</u>
0	=	No Heat	No Heat
A	=	50 MBh	5 kW
B	=	75 MBh	10 kW
C	=	100 MBh	15 kW
D	=	125 MBh	20 kW
E	=	150 MBh	24 kW
F	=	200 MBh	28 kW
G	=		32 kW
H	=		40 kW
J	=		48 kW
K	=		60 kW
L	=		68 kW
M	=		79 kW
N	=		99 kW
P	=		111 kW
R	=		119 kW
X	=		Special Heater Option

Digit 23 — Heat Capacity —

Secondary Heat Source

ELEC

0	=	No Secondary Heat
A	=	5 kW
B	=	10 kW
C	=	15 kW

Digit 24 — Corrosive Environment Package

0	=	No Corrosive Package
1	=	S/S Interior, S/S Coil Casing
2	=	S/S Interior, Eco Coated Coils
3	=	S/S Interior, Copper/Copper Evap Coil
4	=	S/S Coil Casing
5	=	S/S Interior
6	=	Eco Coated Coils
7	=	S/S Coil Casing with Eco Coated Coils
8	=	Copper/Copper Evap, HGRH Coils
9	=	Corrosion Resistant Package

Digits 25, 26 — Unit Controls

00	=	Non DDC – Electromechanical
AC	=	Trane – Discharge Air Control w/BACnet® (No Display)
AD	=	Trane – Space Control w/BACnet (No Display)
AF	=	Trane – Discharge Air Control w/BACnet w/Display
AG	=	Trane – Space Control W/BACnet w/Display
AL	=	Trane – Multi-Zone Vav Control w/BACnet w/Display
AN	=	Trane – Multi-Zone Vav Control w/BACnet (No Display)
AP	=	Trane – Single-Zone Vav Control w/BACnet w/Display
AR	=	Trane – Single-Zone Vav Control w/BACnet (No Display)
BB	=	Trane – Space Control w/BACnet (No Display) w/Thumbwheel
BC	=	Trane – Space Control w/BACnet w/Display w/Thumbwheel
BG	=	Trane – Single-Zone Vav Control w/BACnet w/Display w/Thumbwheel
BJ	=	Trane – Single-Zone Vav Control w/BACnet (No Display) w/Thumbwheel
CA	=	Trane – Lab Space Control w/BACnet (No Display)
CB	=	Trane – Lab Space Control w/BACnet w/Display
CC	=	Trane – Lab Discharge Air Control w/BACnet (No Display)
CD	=	Trane – Lab Discharge Air Control w/BACnet w/Display
CE	=	Trane – Lab Multi-Zone Vav Control w/BACnet (No Display)
CF	=	Trane – Lab Multi-Zone Vav Control w/BACnet w/Display
CG	=	Trane – Lab Space Control w/BACnet (No Display) w/Thumbwheel
CH	=	Trane – Lab Space Control w/BACnet w/Display w/Thumbwheel
DA	=	Trane – Horizon Thrive Control w/BACnet (No Display)
DB	=	Trane – Horizon Thrive Control w/BACnet w/Display
XX	=	Control Special

Digit 27 — Powered Exhaust Fan Motor (PFM) and Exhaust Dampers

0	=	No Powered Exhaust
1	=	Direct Drive w/VFD
5	=	Special Motor Option
9	=	Barometric Relief Dampers (No PFM)
A	=	Direct Drive w/VFD and Barometric Relief Damper
B	=	Direct Drive w/VFD and Isolation Dampers w/End Switch

Digit 28 — Powered Exhaust Fan Wheel

0	=	No Powered Exhaust
J	=	120.6
K	=	140.6
L	=	100.6

Digit 29 — Powered Exhaust Fan Motor (hp)

	<u>ECM</u>	<u>DIRECT DRIVE</u>
0	=	No Powered Exhaust
E	=	1 hp – 1800 rpm
F	=	1 hp – 3600 rpm
G	=	1.5 hp – 1800 rpm
H	=	1.5 hp – 3600 rpm
J	=	2 hp – 1800 rpm
K	=	2 hp – 3600 rpm
L	=	3 hp – 1800 rpm
M	=	3 hp – 3600 rpm
N	=	5 hp – 1800 rpm
P	=	5 hp – 3600 rpm

Digit 30 — Hardware Template

-	=	Prior to v8.0
1	=	v8.X, v9.X, or v10.X
2	=	v11.0 / Thrive v2.1
3	=	v11.1 - v11.3 / Thrive v2.1
4	=	v12.0 / Thrive v2.2
5	=	v12.1 / v12.2 / Thrive v2.3
6	=	v13.0 / Thrive v3.0 (Symbio™ 500)

Digit 31 — ERV (Requires Powered Exhaust)

0	=	No ERV
A	=	ERV – Composite Construction w/Bypass
B	=	ERV – Composite Construction with Frost Protection w/VFD
C	=	ERV – Aluminum Construction w/Bypass
D	=	ERV – Aluminum Construction with Frost Protection w/VFD

Digit 32 — ERV Size

0	=	No ERV
1	=	3014
2	=	3622

Model Number Descriptions

Digit 33 — Damper Options

- A = Modulating OA/RA Dampers w/o Economizer
- B = Modulating OA/RA Dampers w/ Economizer w/ Space CO₂ Control (Field Installed)
- C = Modulating OA/RA Dampers w/ Economizer w/ Return CO₂ Control (Factory Installed)
- D = Modulating OA/RA Dampers w/o Economizer - Class 1A
- E = Modulating OA/RA Dampers w/ Economizer w/ Space CO₂ Control (Field Installed) - Class 1A
- F = Modulating OA/RA Dampers w/ Economizer w/ Return CO₂ Control (Factory Installed) - Class 1A
- 0 = 100% OA 2-Position Damper
- 1 = 100% OA 2-Position Damper w/RA 2-Position Damper
- 2 = Modulating OA and RA Dampers w/Economizer
- 3 = 100% OA 2-Position Damper – Class 1A
- 4 = 100% OA 2-Position Damper w/RA 2-Position Damper – Class 1A
- 5 = Modulating OA and RA Dampers w/Economizer – Class 1A
- 6 = 100% RA Opening (No Damper)
- 7 = 100% RA w/2-Position Damper
- 8 = 100% RA w/2-Position Damper – Class 1A

Digit 34 — Filtration Options

- A = No Filters
- B = MERV-8, 30%
- C = MERV-13, 80%
- D = MERV-14, 95%
- E = MERV-8 30%, MERV-13 80%
- F = MERV-8 30%, MERV-14 95%
- G = MERV-8, 30%, with UVC
- H = MERV-13, 80%, with UVC
- J = MERV-14, 95%, with UVC
- K = MERV-8 30%, MERV-13 80%, and UVC
- L = MERV-8 30%, MERV-14 95%, and UVC
- X = Special Filter Options

Digit 35 — Smoke Detector — Factory Installed

- 0 = No Smoke Detector
- 1 = Supply Smoke Detector
- 2 = Return Smoke Detector
- 3 = Supply and Return Smoke Detectors

Digit 36 — Electrical Options

- 0 = Terminal Block
- A = Non-Fused Disconnect
- B = Fused Disconnect Switch
- C = Non-Fused Disconnect w/ Convenience Outlet
- D = Fused Disconnect Switch w/ Convenience Outlet
- E = Dual Point Power
- F = Dual Point Power w/Convenience Outlet
- G = 65 SCCR Electrical Rating w/Non-Fused Disconnect
- H = 65 SCCR Electrical Rating w/ Fused Disconnect
- J = 65 KAIC Electrical Rating w/Non-Fused Disconnect
- K = 65 KAIC Electrical Rating w/Fused Disconnect
- L = 65 KAIC Non-Fused w/Convenience Outlet
- M = 65 KAIC Fused w/Convenience Outlet
- N = 65 SCCR Non-Fused w/Convenience Outlet

Digit 37 — Airflow Monitoring

- 0 = No Airflow Monitoring
- 1 = Airflow Monitoring – IFM Piezo Ring
- 2 = Airflow Monitoring – PE Piezo Ring
- 3 = Airflow Monitoring – Outdoor Air with Display and IFM w/Piezo Ring
- 4 = Airflow Monitoring – IFM Piezo Ring and PE Piezo Ring
- 5 = Airflow Monitoring – OA w/Display Supply and Exhaust Air w/Piezo Rings
- 6 = Airflow Monitoring – Outdoor Air Monitoring for Direct Fired Heat Units

Digit 38 — Accessories

- 0 = No Options
- A = Hailguards
- B = Hailguards and LED Service Light in Supply Fan Section
- C = LED Service Light in Supply Fan Section
- D = Hailguards and LED Service Light in Exhaust Fan Section
- E = Hailguards and LED Service Light in Supply and Exhaust Fan Section
- F = LED Service Light in Exhaust Fan Section
- G = LED Service Light in Supply and Exhaust Fan Section

Digit 39 — Altitude

- 0 = Sea Level to 1,000 feet
- 1 = 1,001 to 2,000 feet
- 2 = 2,001 to 3,000 feet
- 3 = 3,001 to 4,000 feet
- 4 = 4,001 to 5,000 feet
- 5 = 5,001 to 6,000 feet
- 6 = 6,001 to 7,000 feet
- 7 = Above 7,000 feet

Features and Benefits

We designed the Horizon™ Outdoor Air Unit based on customer requirements from across the country. Thorough analysis of the performance requirements resulted in a robust design with the ability to effectively operate over an expansive performance envelope required for the year-round treatment of outdoor air.

Also, we took into account today's HVAC market issues, such as indoor air quality (IAQ). We equipped the Horizon Outdoor Air Unit to meet your ventilation needs – in direct response to the ventilation and humidity control requirements of ASHRAE standards 62.1 and 90.1.

Trane Horizon Outdoor Air Unit leads the industry in the key areas of:

- indoor air quality (IAQ)
- energy efficiency
- high quality and durability
- advanced, integrated controls
- flexibility (including indoor installation)
- enhanced serviceability

Indoor Air Quality (IAQ) Features

- Stainless steel drain pan sloped in two directions to confirm proper drainage and reduce the potential for microbial growth
- Double-wall foamed panel construction throughout the indoor section of unit to provide, non-porous, cleanable interior surfaces
- Inlet hood with moisture eliminators
- High efficiency filter option with standard 2-, 4-, or 6-inch adjustable filter rack
- Piezometer airflow measurement option
- Easy filter access encourages regular changing
- Superior humidity control through refrigerant hot gas reheat for low dew point supply air

Energy Efficiency

- Total energy wheel option for recovered energy from centralized building exhaust
- Optional modulating recovered refrigerant reheat for unit supply air

High Quality and Durability

- Robust unit construction with 2-inch double wall panels with foam insulation for an R-value of 13
- Reversible, hinged access doors
- High quality, long-lasting latches and hinges for all access doors
- Standard factory protective prepainted finish on cabinet exterior with optional corrosion inhibiting coatings available for the unit exterior, interior and coils
- Refrigeration Detection System initiates mitigation actions at 12 percent LFL of R-454B

Advanced Controls

- All controls are factory-engineered, mounted, configured and tested to minimize field start-up time
- Symbio™ 500 BACnet® microprocessor control
- Human interface with touch-pad screen for monitoring, setting, editing and controlling
- Capable of supply-air control or zone control of both temperature and relative humidity
- Occupied and unoccupied control sequences
- Optional remote human interface for ease of control access without going outdoors

Features and Benefits

Flexibility

- Numerous heater options and temperature rise capabilities available
- Multiple roof curb options (1- or 2-inch vibration isolation, horizontal discharge, multiple heights) and seismic certification
- Dual fuel option with electric preheat and electric, indirect fired gas, or hot water primary heat
- Optional indoor WSHP installation with ducted OA/EA and horizontal supply and return
- Optional split return/exhaust

Figure 1. Condenser side view of the Trane Horizon™ outdoor air unit

Figure 2. Condenser side view of the Trane Horizon™ outdoor air unit water source heat pump

Enhanced Serviceability

- Hinged access doors for ease of maintenance and service
- Easy-open door latches
- Slide out access direct-drive plenum fan
- Optional slide out, self-cleaning total-energy wheel
- Sight glass for each refrigeration circuit
- Optional control display
- High voltage cover

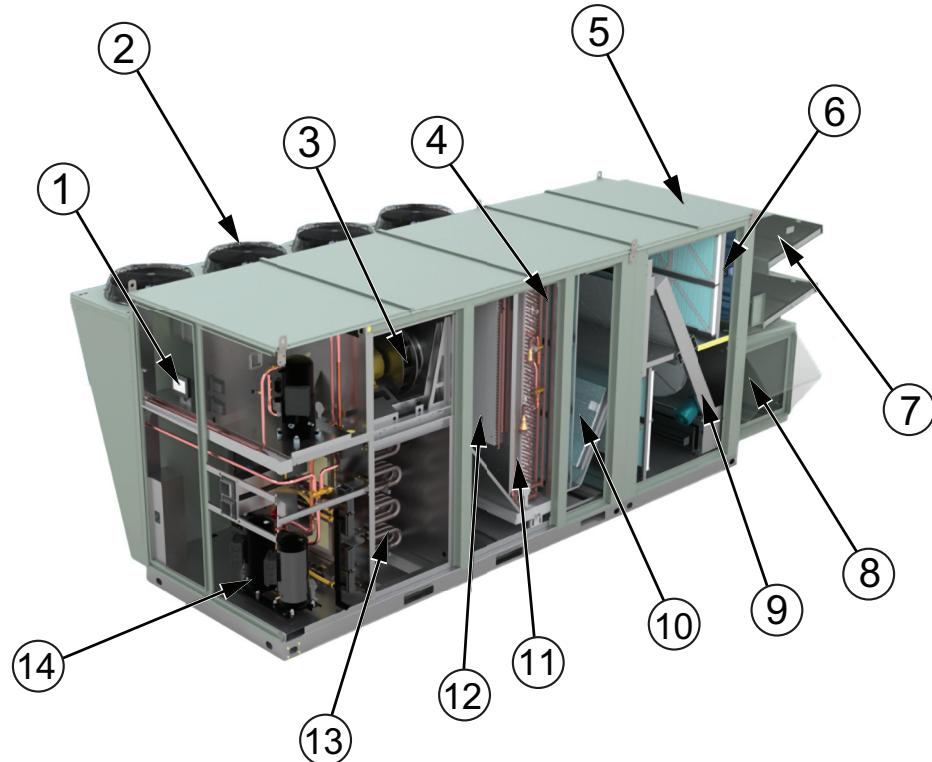
Standard Unit Features

- Multiple cabinet sizes with airflow range from 500 to 20,000 CFM
- Two-inch double-wall, R-13 construction (including unit floor and roof) with heavy gauge galvanized metal skin
- R-454B optimized design
- Outdoor air inlet hood
- Prepainted exterior finish
- Air-cooled DX refrigeration system
- Water-cooled DX refrigeration system with WSHP unit
- Completely factory-piped and leak-tested refrigeration system
- Stainless steel drain pans sloped in two planes
- Scroll compressors
- Single-point power connections for units with optional total-energy wheel, powered exhaust, and electric heat
- Filter rack adjustable for 2-, 4-, or 6-inch filters
- Factory-assembled inlet hood with 2-inch mist eliminators
- Non-fused disconnect switch
- Type 439 stainless steel heat exchanger
- Class 2 low leak parallel blade air damper with edge seals
- High-efficiency fan motors
- Variable frequency drive (VFD)
- Neoprene vibration isolation under supply and exhaust fan base and compressors
- Low ambient operation down to 40°F

Standard Control Features

- Fully integrated, factory-installed and commissioned microelectronic controls
- Supply airflow proving
- Emergency stop for safety interlock
- Occupied/unoccupied control modes
- High turn-down (up to 20:1) modulating indirect gas-fired heat
- Clogged filter switch
- Refrigerant detection system and mitigation response, per safety standard UL 60335-2-40

Features and Benefits



Optional Features

- SCR electric heat
- Hot water coils
- Indirect-fired gas heat
- Class 1A, ultra low leak parallel blade air damper with edge seals
- CO₂ sensor, factory or field installed
- Modulating damper control systems
- Low ambient/head pressure control down to 0°F
- Pleated media filters (2-inch MERV-8, 2-inch MERV-13, 4-inch MERV-14, or a combination 2-inch/4-inch filter)
- 120 V UVC downstream of evaporator coil
- Adjustable powered exhaust
- Exhaust dampers (gravity, barometric relief, and 2-position isolation)
- Fused disconnect switch
- Smoke detectors (supply and/or return)
- Stainless steel inner liner
- Integral total-energy wheel
- Protective coatings for the coils
- Factory or field-wired convenience outlet
- Air source heat pump
- Water source heat pump
- Hailguards
- LED service lights
- Direct drive BI airfoil plenum fan
- Digital scroll compressors on 1st and 2nd circuits
- Variable speed compressors with eFlex™ technology
- Unit mounted or remote mounted human interface panel
- Horizontal supply/return through the unit casing for units with indirect fired gas heat, hot water heat, or no heat option
- Horizontal supply/return and ducted OA/EA for indoor WSHP installation
- Split return/exhaust paths
- Chilled water coils with optional Cooney Freeze Block
- Compressor sound blankets
- Condensate overflow switch
- 65 kA SCCR rating
- Mechanical refrigeration capacity control (RCC)

Key Benefits

Figure 3. Horizon cutaway view

Table 1. Key features

Item number	Feature	Description
1	Symbio™ 500 controller	Programmable controller with optional easy to read human interface.
2	Condenser fans	Optional head pressure control with VFD.
3	Supply fan	Standard direct-drive with VFD plenum fan with slide out service access.
4	Filter rack	Standard 6-inch max internal capacity adjustable filter rack with dirty filter switch.
5	Double wall panels	Standard 2-inch double wall R-13 insulated foam panels.
6	Pre-heat	Optional on/off electric pre-heat for ERV applications.
7	Inlet hood	2-inch aluminum mesh filters in inlet hood with optional outdoor airflow monitoring system.
8	Exhaust fan	Optional direct drive with VFD plenum fan powered exhaust with gravity or isolated dampers.
9	Energy recovery wheel	Optional auxiliary cabinet for total energy wheel with standard modulating bypass dampers.
10	Return air	Optional 2-position or modulating with economizer return air damper control.
11	Evaporator coil	Standard 4 or 6 row interlaced evaporator coil with stainless steel drain pan.
12	Hot gas reheat	Optional modulating hot gas reheat coil.
13	Primary heater	Optional high turndown indirect fired gas heater, modulating SCR electric heater, or hot water coil.
14	Compressors	Optional digital scroll, eFlex variable speed scroll or APR refrigeration capacity controller on circuit1.

Features and Benefits

Symbio™ 500 Programmable Controller

Horizon units are equipped with the Symbio 500 programmable controller which provides advanced controls, unit diagnostics, and integration capabilities. If a unit is ordered with controls, it comes standard with a pre-programmed Symbio 500 that allows setpoints to be adjusted via an optional compatible touchscreen user interface, Symbio UI, or a technician on-site with Tracer® TU software. Symbio 500 controllers communicate via BACnet MS/TP or BACnet® IP network protocols allowing seamless integration with Building Automation Systems (BAS).

Symbio UI Web-Based Interface

Symbio UI is a powerful web-based application offering intuitive access to unit controls, monitoring, security, and diagnostics without the need for special tools or proprietary software. Using a standard USB connection to the Service Tool port on the controller, technicians and facility managers can quickly connect to the unit and access a full suite of operational tools via any compatible web browser (Internet Explorer does not support Symbio UI). Future remote capabilities coming later.

Comprehensive monitoring and control allow for real-time performance review and adjustments to optimize comfort and efficiency. View and adjust key parameters, including: Alarms and Faults, Point Lists, Data Logs, Schedules, Security settings, and Protocol Configuration.

Freezestat

Horizon units equipped with hot water heating will come standard with a factory provided, factory installed freezestat for freeze protection. The freezestat is a mechanical thermostat that will react and alarm in near freezing conditions to prevent coil damage and system downtime due to repairs. Installed directly downstream of the coil, temperatures are measured leaving the coil to detect freezing conditions. Once in alarm, the Freezestat responds by immediately shutting down the supply fan to prevent freezing conditions, and opens the hot water valve fully open. This diagnostic requires a manual reset via software and does not require physical access to the unit for units with remote access or tied to a BMS. For this sequence to work properly, the field provided hot water valve must be installed in a spring-open position when unpowered.

CO₂ Demand Control Ventilation

With Demand Control Ventilation the unit can modulate the outdoor and return air dampers to increase or decrease the volume of outside air to prevent CO₂ building up in the space during periods of high occupancy. The maximum setpoint for CO₂ control is adjustable and the unit will adjust the dampers, ensuring greater indoor air quality for occupants. There are two options available for selection;

1. Factory provided, factory installed return air CO₂ sensor,
2. Factory provided, field installed space CO₂ sensor. In addition to selecting the CO₂ control, you must select modulating outdoor and return air dampers for this functionality. You will need a return air path to the unit for CO₂ control using the outdoor and return air dampers.

Mixed Air Temperature Sensor

The Mixed Air Temperature sensor is an averaging temperature sensor that's used to measure the temperature entering the indoor coil. On units without an ERV, this is the average temperature of the outdoor and return air paths. Units equipped with an ERV, this is the average temperature of the return air and the air leaving the ERV. A Mixed Air Temperature Sensor comes standard on units selected with modulating outdoor and return air dampers, or units with an ERV. This sensor is used for monitoring the entering air conditions and has a Mixed Air Low Limit, which prevents overcooling during Economizer Mode in cool conditions.

Exhaust Fan Space Static Pressure Control

Horizon units are engineered to maintain optimal building pressurization by controlling space static pressure through modulated exhaust fan operation. This advanced control strategy enables precise regulation of building pressure, even as outdoor airflow volumes fluctuate. The unit controller continuously monitors and adjusts exhaust airflow by comparing space pressure to atmospheric pressure. This functionality is standard on models equipped with an exhaust fan and modulating outdoor and return air dampers.

A factory-provided and factory-installed space pressure transducer is included with the unit. Field installation of a pressure sensing tube—from the controlled space to the unit—is required to complete the setup. The atmospheric pressure tap includes a dedicated sensing device specifically designed to remain unaffected by wind and precipitation, ensuring accurate and stable pressure readings. This device is factory-provided, field-installed. Units are factory-set to maintain a slightly positive pressure of 0.01-inch w.c., but this setting can be field-adjusted to meet specific application requirements.

Supply Duct Static High Limit Alarm

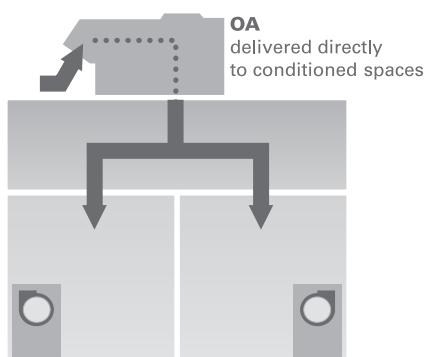
The Supply Duct High Static Alarm is an integrated protection feature designed to prevent damage to supply ductwork by continuously monitoring duct static pressure. If pressure levels exceed a predetermined safety threshold, the system initiates an immediate shutdown to protect both the duct system and unit components. This safeguard is automatically enabled on all units equipped with a supply duct static pressure transducer—standard on units configured with Multi-Zone VAV control—or when a duct static transducer is field-installed and configured. This ensures reliable overpressure protection in both factory-configured and field-adapted applications.

Application Considerations

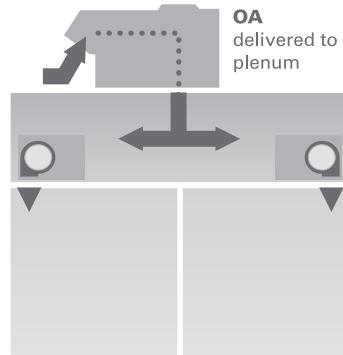
Overview

Outdoor Air Unit Functions

The Horizon™ Outdoor Air Unit (OAU) provides conditioned outdoor air suitable for mechanical ventilation or make-up air. The Horizon OAU conditions outdoor air as necessary to meet system performance requirements by ventilation with filtration, cooling, dehumidification, and/or heating. The Horizon OAU may deliver ventilation air in a number of ways. See “[System Configurations](#),” p. 22 and [Figure 7, p. 24](#), [Figure 8, p. 24](#), and [Figure 10, p. 25](#) for more information.


- Ventilation with Filtration
- Dehumidification
- Cooling
- Heating

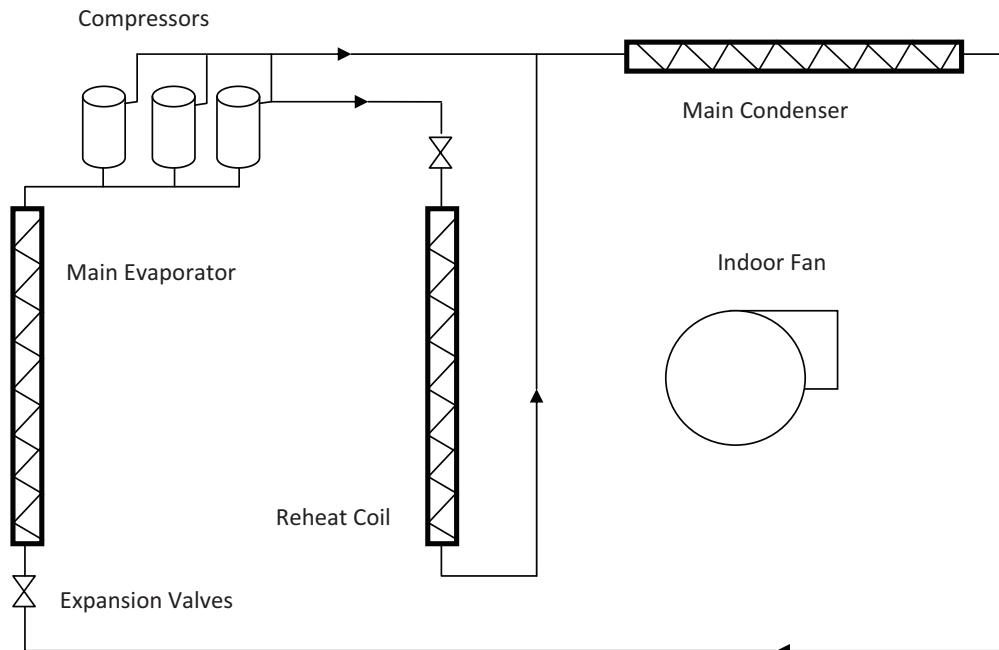
System Configurations


Dedicated outdoor air systems (DOAS) can deliver conditioned outdoor air in one of the following ways:

1. Conditioned outdoor air supplied directly to each occupied space, with the local terminal unit controlling the space dry-bulb temperature. See [Figure 4, p. 22](#).
2. Conditioned outdoor air supplied directly to local terminal units, or return ducts of local RTUs, which deliver a mixture of the conditioned outdoor air and (conditioned) recirculated air to the space. See [Figure 5, p. 23](#).
3. Conditioned outdoor air supplied directly to a single space to control the space temperature and humidity. For example, this application will provide temperature and humidity control of ventilated spaces, such as commercial kitchens or laboratories.

Figure 4. Direct discharge to conditioned space

Figure 5. Indirect discharge to fan-coil units


Horizon™ Outdoor Air Unit (OAU) Operation

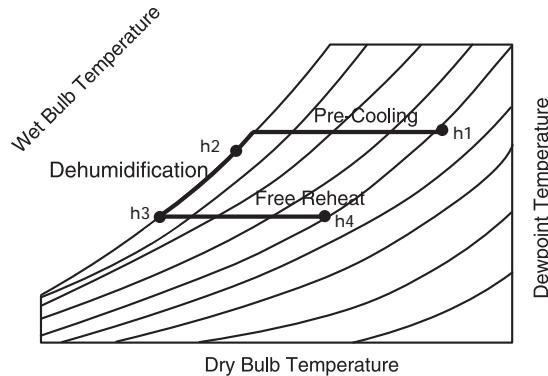
The Horizon OAU can use either DX cooling, condenser reheat, electric or gas heat to condition outdoor air. The unit controls modulate cooling and heating capacity, reducing the supply air temperature swings associated with staged heating and cooling.

Horizon™ OAU with Reheat

[Figure 6, p. 23](#) shows the Horizon OAU system with a DX refrigerant circuit design using reheat.

Figure 6. Refrigeration system diagram with reheat

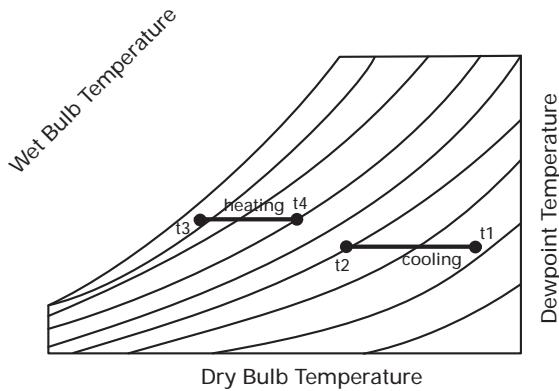
Application Considerations


Dehumidification

Consider [Figure 7, p. 24](#). If the outdoor air dew point is above the dehumidification setpoint (or in the case of zone control, the zone RH is above the RH setpoint), the Horizon™ OAU will:

- cool the outdoor air to remove required moisture and
- reheat to meet the discharge temperature setpoint.

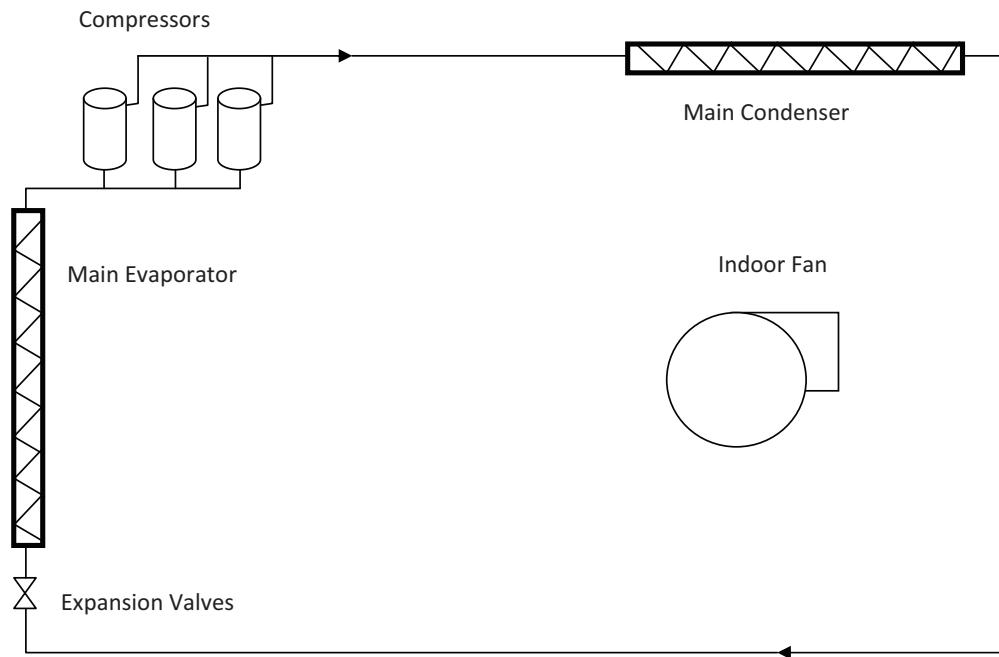
At h1, 100 percent outdoor air enters the Horizon OAU. The Horizon OAU filters, cools, and dehumidifies the air as it moves through the evaporator coil. Air leaves the evaporator coil saturated at the preset dew point condition (h3) and is reheated by the reheat coil to the pre-set reheat temperature setpoint (h4). The reheat coil transfers energy to the airstream. A liquid solenoid valve effectively modulates the reheat capacity. The outdoor condenser rejects surplus heat. The reheat circuit is first on and last off, so reheat energy is available at full and part load conditions. Since both the dew point setpoint and discharge temperature setpoint are fully adjustable, the desired supply air conditions are maintained at all load conditions.


Figure 7. Psychrometric chart with dehumidification and reheat

Cooling or Heating

Consider [Figure 8, p. 24](#). If the outdoor air dew point or zone RH is equal to or below the dehumidification setpoint, the Horizon™ OAU will heat or cool the outdoor air to separate cooling or heating setpoints. At t1 or t3, 100 percent outdoor air enters the Horizon OAU. The Horizon OAU filters, and cools or heats the air as it is drawn through the evaporator and heating section. The air leaves the Horizon OAU at the cooling or heating discharge setpoint (t2 or t4).

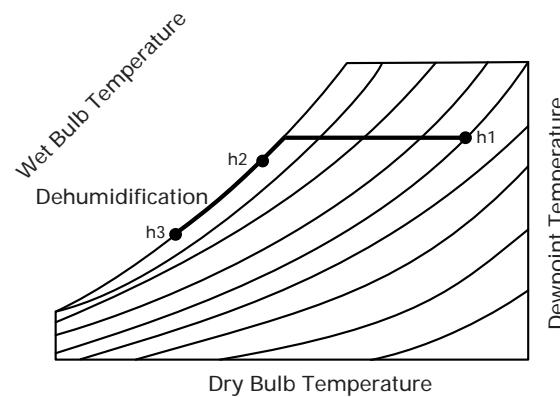
Figure 8. Psychrometric chart with cooling or heating only



Horizon™ OAU Outdoor Air Control without Reheat

Figure 9, p. 25 shows the Horizon OAU DX system, using a refrigerant circuit design without reheat.

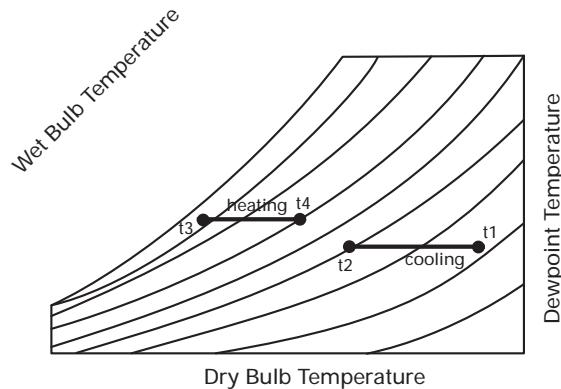
Note: Space control not available without reheat.


Figure 9. Refrigeration system diagram without reheat

Dehumidification

Consider Figure 10, p. 25. If the outdoor air dew point is above the dehumidification setpoint, the Horizon™ OAU will dehumidify the outdoor air. 100 percent outdoor air enters the Horizon OAU (h1). The unit filters, cools and dehumidifies the air as it is drawn through the evaporator coils. Air leaves the evaporator coils saturated at a preset dew point setpoint (h3). Since the dew point setpoint is fully adjustable, the desired dew point condition is maintained at all load conditions.

Figure 10. Psychrometric chart with dehumidification, no reheat



Application Considerations

Cooling or Heating

Consider [Figure 11, p. 26](#). If the outdoor air dew point is below the dehumidification setpoint, the Horizon™ OAU will heat or cool the outdoor air to separate cooling or heating setpoints. 100 percent outdoor air enters the Horizon OAU (t_1 or t_3). The unit filters and cools or heats the air as it is drawn through the evaporators and heating section. The air leaves the Horizon OAU at the cooling or heating setpoint.

Figure 11. Psychrometric chart with cooling and heating only

Establishing Capacity Requirements

Determining the Horizon™ OAU capacity requirements requires careful thought. Light Commercial equipment is typically selected based on design **sensible** conditions. Since **latent** loads drive the need for the Horizon OAU, base the selection on design **latent** conditions.

Cooling and Dehumidification Selection Criteria

Evaporator Design Entering Conditions

For many climates the peak outdoor air enthalpy occurs at a time when the outdoor dry-bulb temperature is not the highest. Refer to the chapter on climatic design information in the ASHRAE Handbook of Fundamentals. The cooling and dehumidification design condition data is provided three ways:

1. Design dry-bulb temperature with mean coincident wet bulb temperature
2. Design wet-bulb temperature with mean coincident dry-bulb temperature
3. Design dew point temperature with mean coincident dry-bulb temperature

The design wet-bulb condition typically represents a significantly higher outdoor air enthalpy than the design dry-bulb condition. Use the condition that represents the highest enthalpy as the entering evaporator selection condition.

Evaporator Design Leaving Conditions

Due to the uncertainty of the local terminal unit latent capacity at part load, it is usually most straightforward to size the Horizon™ OAU to handle the entire latent load on the system, both indoor and outdoor. With this design approach, the terminal units may do some latent cooling (dehumidification) during periods of higher sensible load. At these times, the space will run slightly drier than the design RH limit. This is why it makes sense to select the Horizon OAU to limit the space RH to a maximum allowable level for those conditions when the terminal units are providing no space latent cooling, such as 60 percent RH. Using lower humidity limits may result in an unnecessary increase in system operating energy use.

Use [Table 2, p. 27](#), [Table 3, p. 27](#), and [Table 4, p. 28](#) to identify the appropriate supply air dew point for specific design conditions. For a more detailed discussion on determining the selection criteria of a

Horizon OAU, refer to *Dedicated Outdoor Air Systems, Application Guide* (SYS-APG001-EN) or *Dehumidification in HVAC Systems, Applications Engineering Manual* (SYS-APM004-EN).

Reheat

Table 2. Supply air dew point temperature, 75°F at 60 percent RH space limit

Latent Load Btu/h per Person	CFM per person										
	10	15	20	25	30	35	40	45	50	55	60
100	54.6	56.6	57.5	58.1	58.4	58.7	58.9	59.0	59.2	59.2	59.3
120	53.3	55.8	57.0	57.6	58.1	58.4	58.6	58.8	58.9	59.1	59.2
140	52.0	55.0	56.4	57.2	57.7	58.1	58.3	58.6	58.7	58.9	59.0
160	50.6	54.2	55.8	56.7	57.3	57.8	58.1	58.3	58.5	58.7	58.8
180	49.2	53.3	55.2	56.3	57.0	57.4	57.8	58.1	58.3	58.5	58.6
200	47.7	52.5	54.6	55.8	56.6	57.1	57.5	57.8	58.1	58.3	58.4
220	46.1	51.6	54.0	55.3	56.2	56.8	57.2	57.6	57.9	58.1	58.3
240	—	50.6	53.3	54.8	55.8	56.5	57.0	57.3	57.6	57.9	58.1
260	—	49.7	52.7	54.3	55.4	56.1	56.7	57.1	57.4	57.7	57.9
280	—	48.7	52.0	53.8	55.0	55.8	56.4	56.8	57.2	57.5	57.7
300	—	47.7	51.3	53.3	54.6	55.5	56.1	56.6	57.0	57.3	57.5
320	—	46.6	50.6	52.8	54.2	55.1	55.8	56.3	56.7	57.1	57.3
340	—	45.5	49.9	52.3	53.8	54.8	55.5	56.1	56.5	56.8	57.1
360	—	—	49.2	51.7	53.3	54.4	55.2	55.8	56.3	56.6	57.0
380	—	—	48.5	51.2	52.9	54.1	54.9	55.5	56.0	56.4	56.8
400	—	—	47.7	50.6	52.5	53.7	54.6	55.3	55.8	56.2	56.6
420	—	—	46.9	50.1	52.0	53.3	54.3	55.0	55.6	56.0	56.4
440	—	—	46.1	49.5	51.6	53.0	54.0	54.7	55.3	55.8	56.2
460	—	—	45.3	48.9	51.1	52.6	53.6	54.4	55.1	55.6	56.0
480	—	—	—	48.3	50.6	52.2	53.3	54.2	54.8	55.4	55.8
500	—	—	—	47.7	50.2	51.8	53.0	53.9	54.6	55.1	55.6

Note: Minimum dew point selectable is 45°F.

Table 3. Supply air dew point temperature, 75°F at 55 percent RH space limit

Latent Load Btu/h per Person	CFM per person										
	10	15	20	25	30	35	40	45	50	55	60
100	51.6	53.8	54.9	55.5	55.9	56.1	56.3	56.5	56.6	56.7	56.8
120	50.2	53.0	54.2	55.0	55.5	55.8	56.1	56.2	56.4	56.5	56.6
140	48.8	52.1	53.6	54.5	55.1	55.5	55.8	56.0	56.2	56.3	56.4
160	47.2	51.2	53.0	54.0	54.6	55.1	55.5	55.7	55.9	56.1	56.2
180	45.6	50.2	52.3	53.5	54.2	54.8	55.2	55.5	55.7	55.9	56.1
200	—	49.3	51.6	53.0	53.8	54.4	54.9	55.2	55.5	55.7	55.9
220	—	48.3	50.9	52.4	53.4	54.1	54.5	54.9	55.2	55.5	55.7
240	—	47.2	50.2	51.9	53.0	53.7	54.2	54.6	55.0	55.2	55.5
260	—	46.2	49.5	51.4	52.5	53.3	53.9	54.4	54.7	55.0	55.3
280	—	45.1	48.8	50.8	52.1	53.0	53.6	54.1	54.5	54.8	55.1
300	—	—	48.0	50.2	51.6	52.6	53.3	53.8	54.2	54.6	54.9
320	—	—	47.2	49.7	51.2	52.2	53.0	53.5	54.0	54.3	54.6
340	—	—	46.4	49.1	50.7	51.8	52.6	53.3	53.7	54.1	54.4
360	—	—	45.6	48.5	50.2	51.4	52.3	53.0	53.5	53.9	54.2
380	—	—	—	47.9	49.8	51.0	52.0	52.7	53.2	53.7	54.0
400	—	—	—	47.2	49.3	50.6	51.6	52.4	53.0	53.4	53.8
420	—	—	—	46.6	48.8	50.2	51.3	52.1	52.7	53.2	53.6
440	—	—	—	46.0	48.3	49.8	50.9	51.8	52.4	53.0	53.4
460	—	—	—	45.3	47.8	49.4	50.6	51.5	52.2	52.7	53.2
480	—	—	—	—	47.2	49.0	50.2	51.2	51.9	52.5	53.0
500	—	—	—	—	46.7	48.6	49.9	50.9	51.6	52.2	52.7

Note: Minimum dew point selectable is 45°F.

Application Considerations

Table 4. Supply air dew point temperature, 75°F at 50 percent RH space limit

Latent Load Btu/h per Person	CFM per person										
	10	15	20	25	30	35	40	45	50	55	60
100	48.4	50.8	51.9	52.6	53.0	53.3	53.6	53.8	53.9	54.0	54.1
120	46.8	49.8	51.3	52.1	52.6	53.0	53.3	53.5	53.6	53.8	53.9
140	45.2	48.9	50.6	51.5	52.2	52.6	52.9	53.2	53.4	53.5	53.7
160	—	47.9	49.8	51.0	51.7	52.2	52.6	52.9	53.1	53.3	53.5
180	—	46.8	49.1	50.4	51.3	51.8	52.3	52.6	52.9	53.1	53.3
200	—	45.7	48.4	49.8	50.8	51.5	51.9	52.3	52.6	52.8	53.0
220	—	—	47.6	49.3	50.3	51.1	51.6	52.0	52.3	52.6	52.8
240	—	—	46.8	48.7	49.8	50.7	51.3	51.7	52.1	52.4	52.6
260	—	—	46	48.1	49.4	50.3	50.9	51.4	51.8	52.1	52.4
280	—	—	45.2	47.4	48.9	49.8	50.6	51.1	51.5	51.9	52.2
300	—	—	—	46.8	48.4	49.4	50.2	50.8	51.3	51.6	51.9
320	—	—	—	46.2	47.9	49.0	49.8	50.5	51.0	51.4	51.7
340	—	—	—	45.5	47.3	48.6	49.5	50.2	50.7	51.1	51.5
360	—	—	—	—	46.8	48.2	49.1	49.8	50.4	50.9	51.3
380	—	—	—	—	46.3	47.7	48.7	49.5	50.1	50.6	51.0
400	—	—	—	—	45.7	47.3	48.4	49.2	49.8	50.4	50.8
420	—	—	—	—	45.2	46.8	48.0	48.9	49.6	50.1	50.6
440	—	—	—	—	—	46.3	47.6	48.5	49.3	49.8	50.3
460	—	—	—	—	—	45.9	47.2	48.2	49.0	49.6	50.1
480	—	—	—	—	—	45.4	46.8	47.9	48.7	49.3	49.8
500	—	—	—	—	—	—	46.4	47.5	48.4	49.1	49.6

Note: Minimum dew point selectable is 45°F.

The Trane Horizon™ OAU utilizes recovered energy from the cooling process to reheat the air leaving the evaporator coil as required to meet the discharge air setpoint. The reheat refrigeration circuit is adequate to deliver enough reheat to supply neutral-temperature air (e.g., 75°F dry-bulb) under most operating conditions. On very low load days, the reheat circuit may not contain enough energy to meet the desired reheat setpoint.

Heating

The Horizon™ OAU has electric, heat pump, hot water, or gas heat options. The electric heat option is available in 0°F to 80°F temperature rise offerings with staged or SCR modulation. This means that the lowest temperature rise provided depends only on heater size and unit airflow. Calculate the temperature rise to confirm that it provides acceptable control. The electric heat will modulate to maintain heating setpoint.

When using hot water heat, the unit controller will modulate a field-provided coil control valve. Provide an ethylene glycol and water mixture or other means of freeze protection for the hot water coil if the Horizon OAU will be subject to sub-freezing temperatures.

Capacity Control

The capacity control system on the Horizon™ Outdoor Air Unit is flexible enough to accommodate a variety of system applications. These applications include:

- Treating outdoor air to supply a single space or multiple spaces or
- Simultaneously meet building make-up air needs while controlling the temperature and relative humidity of a single space.

Each of these applications requires careful consideration to achieve the desired results.

Discharge Air Control

For many multiple space, dedicated outdoor air systems, the Horizon™ OAU will continuously supply outdoor air at a dry-bulb setpoint and a dew point that does not exceed its dew point setpoint. This control approach is simple because it allows the unit to function independent of local terminal unit operation or actual space conditions. If the unit selection criteria is determined using the method suggested in ["Establishing Capacity Requirements," p. 26](#), the Outdoor Air Unit will limit the space relative humidity to the target level.

Many dedicated outdoor air systems supply reheated air directly to terminal units or to spaces that have terminal units performing local sensible cooling. This results in the local terminal units re-cooling the previously re-heated outdoor air. Resetting the supply air dry-bulb temperature of the Outdoor Air Unit offers the opportunity to minimize the amount of time re-cooling occurs. See ["Cooling Setpoint," p. 29](#) for more information.

Cooling Setpoint

Because the Trane Horizon™ OAU dehumidifies the outdoor air by cooling it, this cool outdoor air can reduce the sensible cooling load on the local terminal unit. At low space sensible loads, the cool outdoor air may sub-cool the space, causing the local terminal unit to add heat (new energy heat). Therefore, reset occupied Space Cooling Setpoint (SPCS – Space Control Sequence) or Evaporator Cooling Setpoint (ECS – Outdoor Air Control Sequence) of the Horizon OAU to minimize space sensible re-cooling so the terminal unit with the lowest sensible load is almost at zero cooling capacity (within the limit of the dew point setpoint). To take full advantage of space demand based dry-bulb reset, you may need to size some of the local terminal units based on neutral outdoor air temperature. This strategy will more effectively manage occupant comfort during seasonal changeover for two-pipe terminal unit systems. Because the Horizon OAU is not connected to the chiller or boiler plant, accomplish this by resetting the Outdoor Air Unit SPCS or ECS to keep the critical zone at zero heating capacity when the boiler is off and zero cooling capacity when the chiller is off. A Trane Integrated Comfort™ system can provide this control capability.

Unoccupied Space Humidity Control

The Horizon™ OAU provides conditioned outdoor air for the ventilation and/or make-up air needs of a building during occupied hours. It can also limit building relative humidity during unoccupied hours. To do this, provide a return air path to the Horizon OAU and place a relative humidity sensor in the space served by the Horizon OAU or in a common relief air path (like a return corridor) if the Horizon OAU serves multiple spaces. The unit will cycle as required to limit the space humidity to the unoccupied dew point Setpoint (NSDS) setpoint. Reheat and return air damper options are required for this operation. For dedicated outdoor air systems ducted to terminal units, these units must cycle with the operation of the Horizon OAU. A Trane Integrated Comfort™ system can provide this control capability.

Space Control

For single space applications, the Horizon OAU can control space temperature and limit space relative humidity. To do this, size the airflow to meet whichever is the highest: the space loads and ventilation and/or make-up air needs of the application. Install a temperature sensor in the space to provide temperature control and reset the supply air temperature. If reset of the supply air dew point is desired, install a space relative humidity sensor in the space to provide relative humidity limit control.

Outdoor Airflow Balancing

Establish final unit airflow through a field air balancing procedure. Change the fan speed through VFD Setpoint via the Symbio™ 500 controller (direct drive fan motor).

Application Considerations

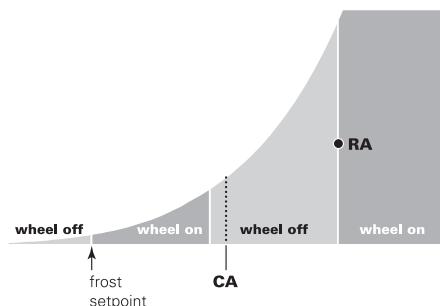
Air to Air Energy Recovery

Energy recovery can significantly reduce HVAC system first-cost and operating energy costs. You can use recovered energy for two purposes:

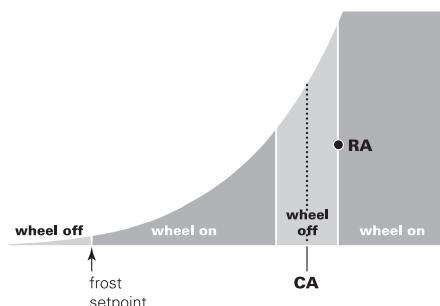
1. To temper or reheat supply air for independent control of sensible and latent capacity, or
2. To precondition outdoor air as it enters the building for ventilation.

The Horizon™ OAU offers refrigerant heat recovery for reheating the supply air. To precondition the outdoor air, use the optional total-energy wheel to recover energy from building exhaust.

Controlling the Total-Energy Wheel


One way to control an energy recovery device is to turn it on and off with the Horizon™ OAU system exhaust fan. In this case, the total energy wheel enables when the unit is in occupied mode and the exhaust fan is running. While this control method is certainly simple and effective in some applications, it may not provide the expected energy saving benefit, particularly when cold air (vs. neutral air) is supplied to the building.

Another more effective approach is to use the outdoor air dry-bulb to determine when to energize or de-energize the energy recovery device. See [Figure 13, p. 30](#) for an example of this simplified control. In addition to being more effective from a control standpoint, it's also a very simple control method because the wheel is enabled when all of the following are true:


- Unit is in occupied mode
- Exhaust fan is enabled
- Symbio™ 500 controller calls for unit to operate in dehumidification, cooling, or heating modes
- Outside air temperature is above the frost protection setpoint (default setpoint 12°F).

If using the Horizon OAU to deliver cold, dry conditioned air to the building (outdoor air is cooled to a low dew point but not reheated), use the cooling setpoint control strategy (see [“Cooling Setpoint,” p. 29](#)).

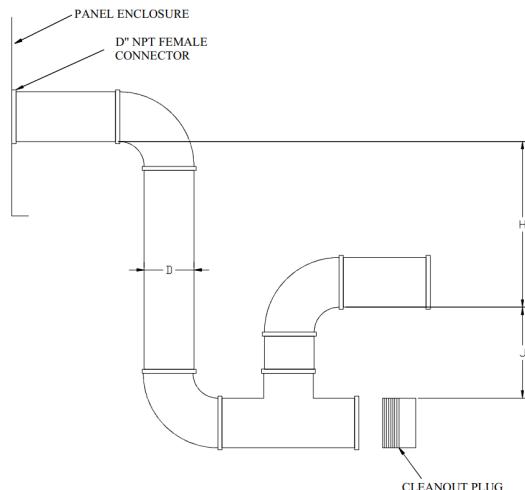
Figure 12. Dry-bulb control in a cold DB/dry DP application

Figure 13. Dry-bulb control in a neutral DB/dry DP application

Cross Leakage

All energy wheels have some cross leakage. Therefore, do not use energy wheels in applications involving toxic or hazardous air streams. The percentage of cross leakage depends on the pressure differentials across the wheel section. With Trane Horizon™ OAU energy wheels, the exhaust air transfer ratios are typically low (less than 4 percent).

Condensate Drain Configuration


Horizon™ OAU units are selected based on dehumidification capability. As such, condensate can form at a high rate. Therefore, the Horizon OAU drain pan and condensate line are sized and designed accordingly. However, an often-overlooked element of proper condensate drainage is proper P-Trap and drain line sizing and installation. An incorrectly-designed and -installed P-Trap can restrict condensate flow or cause water in the condensate drain pan to **spit** or **geyser** which may cause condensate overflow. Carefully install and trap the drain pan to confirm adequate condensate removal under all conditions.

An evaporator condensate drain connection is provided on each unit. For more information, see *Horizon Outdoor Air Unit R-454B Refrigerant V13 Controls Installation, Operation, and Maintenance* (OAU-SVX009*-EN).

A condensate trap must be installed at the unit due to the drain connection being on the **negative pressure side** of the fan. Install the P-Trap using the guidelines in [Figure 14, p. 31](#).

Pitch drain lines connected to P-Trap at least 1/2-inch for every 10-feet of horizontal run to assure proper condensate flow. Do not allow the horizontal run to sag causing a possible double-trap condition which could result in condensate backup due to **air lock**.

Figure 14. Condensate trap installation

Table 5. Condensate P-Trap sizing based on static pressure

Pressure (In. WC)	H	J
1	2	1
2	3	1.5
3	4	2
4	5	2.5
5	6	3

Notes:

1. Pitch drain at least 1/2 in. per 10 ft. horizontal run.
2. Condensate drain pan will not drain properly if P-trap is not primed and of adequate height to allow for cabinet operating negative pressure.
3. Pressure is the static pressure measured in the drain pan. If unsure of operating static, use the design total static.
4. For variable air volume applications, pressure must be at the maximum operating static.

Application Considerations

Acoustical Considerations

Proper unit placement is critical to reducing transmitted sound levels from the Horizon™ OAU to the building. Therefore, consider acoustic concerns during the design phase and place the unit accordingly. The most economical means of avoiding an acoustical problem is to place the unit(s) away from acoustically critical areas. If possible, do not locate units directly above areas such as: offices, conference rooms, executive office areas, and classrooms. Instead, ideal locations to consider are: over corridors, utility rooms, toilets, or other areas where higher sound levels directly below the unit(s) are acceptable.

Follow these basic guidelines for unit placement to minimize sound transmission through the building structure.

1. Never cantilever the compressor side of the unit. A structural cross member or full perimeter roof curb, supported by roof structural members, must support this side of the unit.
2. Locate the unit center of gravity close to or over column or main support beam.
3. If the roof structure is very light, replace roof joists by a structural shape in the critical areas described above.
4. If several units are to be placed on one span, stagger them to reduce deflection over that span.

It is impossible to totally quantify the building structure effect on sound transmission because it is dependent on how the roof and building members respond to the Horizon OAU sound and vibration. However, following the guidelines listed above will help reduce sound transmissions.

Clearance Requirements

Follow the recommended unit clearances to assure adequate serviceability, maximum capacity, and peak operating efficiency. Reducing unit clearances may result in condenser coil starvation or warm condenser air recirculation. If the recommended clearances are not possible on a particular job, consider the following:

- Do the clearances available allow for major service work, such as changing compressors or coils?
- Do the clearances available allow for proper outside air intake, exhaust air removal, and condenser airflow?
- If screening around the unit is used, is there a possibility of air recirculation from the exhaust to the outside air intake or from condenser exhaust to condenser intake?

Review any actual clearances that appear inadequate with your local Trane sales engineer.

When two or more units are placed side by side, increase the distance between the units to twice the recommended single unit clearance. Stagger the units for these two reasons:

1. To reduce span deflection if more than one unit is placed on a single span. Reducing deflection discourages sound transmission.
2. To assure proper exhaust air diffusion before contact with the adjacent unit outside air intake.

Corrosive Environment

Sites that are located near the coast and/or sites exposed to corrosive substances are recommended to equip units with protective measures ensuring there is no degradation from environmental factors. Corrosive environment offerings include stainless steel interior, stainless steel coil casing and eco-coated coils.

Duct Design

It is important to note that the rated capacities of the Horizon™ OAU can be met only if the unit is properly installed. A well-designed duct system is essential to meet these capacities.

Satisfactory air distribution throughout the system requires an unrestricted and uniform airflow from the Horizon OAU discharge duct.

However, when job conditions dictate installation of elbows near the Horizon OAU outlet, using guide vanes may reduce capacity loss and static pressure loss.

Controls Sequence

For sequence of operation, see *Horizon Outdoor Air Unit R-454B Refrigerant V13 Controls Installation, Operation, and Maintenance* (OAU-SVX009*-EN).

A2L Considerations

This product is listed to UL standard 60335-2-40, Household and Similar Electrical Appliances – Safety – Part 2-40: Particular Requirements for Electrical Heat Pumps, Air-Conditioners and Dehumidifiers, which defines safe design and use strategies for equipment using A2L refrigerants. This standard limits the refrigerant concentration in a space in the event of a refrigerant leak.

To meet the requirements, the UL standard defines minimum room area, refrigerant charge limit, minimum circulation airflow and/or ventilation airflow requirements, and limits the use of ignition sources in ductwork and spaces. The standard may require a unit refrigerant leak detection system.

Depending on the application, a specific requirement of ANSI/ASHRAE Standard 15, Safety Standard for Refrigeration Systems, could be more stringent than UL 60335-2-40 requirements. See *Refrigeration Systems and Machinery Rooms Application Considerations for Compliance with ASHRAE® Standard 15-2022 Application Engineering Manual* (APP-APM001*-EN) for more information.

Minimum Room Area Limits

Equipment with R-454B charge amounts greater than 3.91 lb per circuit may require additional circulation or ventilation airflow mitigation strategies. In this case, there are two minimum room area (A_{min}) thresholds:

- The first threshold defines when equipment serving a single room is required to provide circulation airflow, either continuous or activated by a leak detection system. A ducted system requires circulation airflow unless the smallest room it serves is larger than the adjusted A_{min} threshold. This product contains a leak detection system if a circuit charge is greater than 3.91 lbs. As a result, no further leak detection system evaluation is required.
- The second threshold defines when additional ventilation airflow is required. If the room area, A or T_A, is below the adjusted A_{min} or T_{Amin} threshold, additional ventilation is required to remove refrigerant in the event of a leak. Refer to UL 60335-2-40 Clause GG.8 and ANSI/ASHRAE Standard 15 Section 7 for natural and mechanical ventilation requirements. See equipment nameplate for minimum room area.

Application Considerations

Determining Room Area (A or TA)

The room area (A) is the room area enclosed by the projection to the floor of the walls, partitions, and doors of the space that the equipment serves. For ducted systems, total room area (TA) of all rooms connected by ducts, may be used instead of A.

Rooms connected by drop ceilings only are not considered a single room. Rooms on the same floor of the building, and connected by an open passageway, can be considered part of the same room if the passageway is a permanent opening, extends to the floor and is intended for people to walk through. Adjacent rooms on the same floor of the building and connected by permanent openings in the walls and/or doors between rooms (including gaps between the wall and the floor), can be considered part of the same room if the openings meet the following criteria.

- The opening is permanent and cannot be closed.
- Openings extending to the floor, such as door gaps, need to be at least 20mm above the floor covering surface.
- Natural ventilations opening areas must meet the requirements of ANSI\ASHRAE Standard 15-2022, Section 7.2.3.2.

Rooms that are connected by a mechanical ventilation system can be considered a single room area if the mechanical ventilation system meets the requirements of ANSI\ASHRAE Standard 15-2022, Section 7.6.4.

Refrigerant Detection System (RDS)

The refrigerant detection system consists of one or more refrigerant detection sensors. When the system detects a refrigerant leak, the following mitigation actions will be initiated. Once refrigerant is no longer detected, mitigation will continue for 5 minutes. The 5-minute timer operation is performed by the sensor.

- If a leak is detected in the airstream, energize the supply fan(s) to deliver a required minimum amount of circulation airflow for dilution of refrigerant.
- If a leak is detected in the controls cabinet, the supply fan(s) will be de-energized and mechanical ventilation in the controls cabinet will be energized.
- Disable heater operation.
- Disable compressor operation.
- Provide an output status signal to fully open all zoning dampers, such as VAV boxes or fire dampers. This output status is to be used as a 24 Vac trigger for a 24 Vac compatible relay coil being utilized for power transmission to audible alarms, visual alarms, and additional mechanical ventilation for units installed indoors.

Building or unit fire and smoke detection systems will override the refrigerant detection system operation and will shut the unit down.

General Data

OAB Unit

- Up to 7.9 ISMRE2^(a)
- Up to 7.3 ISMRE2-70^(a)
- Cooling options: DX, Chilled Water
- Heating options: IF Gas Heat, Electric Heat, Hot Water Heat, Heat Pump

(a) Rated in accordance with AHRI Standard 920 (I-P) - 2020. Applicable units are certified and can be found in the AHRI Directory at www.ahridirectory.org.

Table 6. OAB unit data

	3 Tons	4 Tons	5 Tons	6 Tons	7 Tons	8 Tons	9 Tons
	036	048	060	072	084	096	108
Performance							
Gross Cooling Capacity, Btu	40,724	47,876	59,996	72,439	82,534	90,262	109,374
Compressor							
Number	1	1	1	1	1	1	1
Type	Scroll						
Outdoor Fan							
Type	Propeller						
Number Used	1	1	1	1	1	1	1
Diameter, in. (mm)	27	27	27	27	27	27	27
Drive Type	Direct						
No. Speeds	1	1	1	1	1	1	1
CFM (m ³ /h)	7,000	7,000	7,000	7,000	7,000	7,000	7,000
Number Motors	1	1	1	1	1	1	1
Motor HP (kW), per motor	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Motor RPM	1140	1140	1140	1140	1140	1140	1140
Indoor Fan							
Type	Backward Curved						
Number Used	1	1	1	1	1	1	1
Diameter	Varies						
Drive Type	Direct Drive						
Number Motors	1	1	1	1	1	1	1
Motor HP (kW), Standard-Oversized	2.68–4.0	2.68–4.0	2.68–4.0	2.68–4.0	2.68–4.0	2.68–4.0	2.68–4.0
Motor RPM	1750 - 3500	1750 - 3500	1750 - 3500	1750 - 3500	1750 - 3500	1750 - 3500	1750 - 3500
Filters							
Type Furnished	Varies						
Evap Size, in. (Qty)	20 x 24 x 2 (2)						
Type Furnished	MERV-8						
ERV Size, in. (Qty)	20 x 24 x 2 (4)						
Refrigerant Charge, lb of R-454B	See Nameplate						

General Data

OAND Rev 5 Unit

- Up to 7.6 ISMRE2^(a)
- Up to 7.1 ISMRE2-70^(a)
- Cooling options: DX, Chilled Water
- Heating options: IF Gas Heat, Electric Heat, Hot Water Heat, Heat Pump

(a) Rated in accordance with AHRI Standard 920 (I-P) - 2020. Applicable units are certified and can be found in the AHRI Directory at www.ahridirectory.org.

Table 7. OAND Rev 5 unit data

30 Tons	35 Tons	40 Tons	45 Tons	50 Tons	54 Tons	60 Tons
360	420	480	540	600	648	720
Cooling Performance						
Gross Cooling Capacity, Btu (kW)	351,414	409,244	456,992	526,698	596,876	642,213
Compressor						
Number	2	2	4	4	4	4
Type	Scroll	Scroll	Scroll	Scroll	Scroll	Scroll
Outdoor Fan						
Type	Propeller	Propeller	Propeller	Propeller	Propeller	Propeller
Number Used	4	4	4	4	4	4
Diameter, in. (mm)	24	24	24	24	24	24
Drive Type	Direct	Direct	Direct	Direct	Direct	Direct
No. Speeds	1	1	1	1	1	1
CFM (m ³ /h)	26,000	26,000	26,000	26,000	32,000	32,000
Number Motors	4	4	4	4	4	4
Motor HP (kW), per motor	1.0	1.0	1.0	1.0	1.5	1.5
Motor RPM	1140	1140	1140	1140	1140	1140
Indoor Fan						
Type	Backward Inclined	Backward Inclined	Backward Inclined	Backward Inclined	Backward Inclined	Backward Inclined
Number Used	1	1	1 or 2	1 or 2	1 or 2	1 or 2
Diameter	Varies	Varies	Varies	Varies	Varies	Varies
Drive Type	Direct Drive	Direct Drive	Direct Drive	Direct Drive	Direct Drive	Direct Drive
Number Motors	1	1	1 or 2	1 or 2	1 or 2	1 or 2
Motor HP (kW), Standard-Oversized	1.5-15	1.5-15	2.0-15	2.0-15	3.0 - 15	3.0 - 15
Motor RPM	1750-3500	1750-3500	1750-3500	1750-3500	1750-3500	1750-3500
Filters	See "Horizon™ OAU Filter Guide," p. 108 in Appendix					
Refrigerant Charge, lb of R-454B	See Nameplate					

OAB Heat Pump Unit

- Up to 9.0 ISCOPE2^(a)
- Up to 7.7 ISMRE2^(a)
- Up to 7.0 ISMRE2-70^(a)
- Heating options: IF Gas Heat, Electric Heat, Hot Water Heat, Heat Pump

(a) Rated in accordance with AHRI Standard 920 (I-P) - 2020. Applicable units are certified and can be found in the AHRI Directory at www.ahridirectory.org.

Table 8. OAB Heat pump unit data

	3 Tons	4 Tons	5 Tons	6 Tons	7 Tons	8 Tons
	036	048	060	072	084	096
Cooling Performance						
Gross Cooling Capacity, Btu (kW)	38,654	44,592	55,867	67,404	76,840	86,461
Compressor						
Number	1	1	1	1	1	1
Type	Scroll	Scroll	Scroll	Scroll	Scroll	Scroll
Outdoor Fan (Air Source Heat Pump only)						
Type	Propeller	Propeller	Propeller	Propeller	Propeller	Propeller
Number Used	1	1	1	1	1	1
Diameter, in. (mm)	27	27	27	27	27	27
Drive Type	Direct	Direct	Direct	Direct	Direct	Direct
No. Speeds	1	1	1	1	1	1
CFM (m ³ /h)	7,000	7,000	7,000	7,000	7,000	7,000
Number Motors	1	1	1	1	1	1
Motor HP (kW), per motor	1.0	1.0	1.0	1.0	1.0	1.0
Motor RPM	1140	1140	1140	1140	1140	1140
Indoor Fan						
Type	Backward Curved					
Number Used	1	1	1	1	1	1
Diameter	Varies	Varies	Varies	Varies	Varies	Varies
Drive Type	Direct Drive					
Number Motors	1	1	1	1	1	1
Motor HP (kW), Standard–Oversized	2.68–4.0	2.68–4.0	2.68–4.0	2.68–4.0	2.68–4.0	2.68–4.0
Motor RPM, Standard–Oversized	1750–3500	1750–3500	1750–3500	1750–3500	1750–3500	1750–3500
Filters						
Type Furnished	Varies	Varies	Varies	Varies	Varies	Varies
Evap Size, in. (Qty)	20 x 24 x 2 (2)	20 x 24 x 2 (2)	20 x 24 x 2 (2)	20 x 24 x 2 (4)	20 x 24 x 2 (4)	20 x 24 x 2 (4)

General Data

OAND Rev 5 Heat Pump Unit

- Up to 7.1 ISCOPE2^(a)
- Up to 7.4 ISMRE2^(a)
- Up to 7.1 ISMRE2-70^(a)
- Heating options: IF Gas Heat, Electric Heat, Hot Water Heat, Heat Pump

(a) Rated in accordance with AHRI Standard 920 (I-P) - 2020. Applicable units are certified and can be found in the AHRI Directory at www.ahridirectory.org.

Table 9. OAN Rev 5 Heat pump unit data

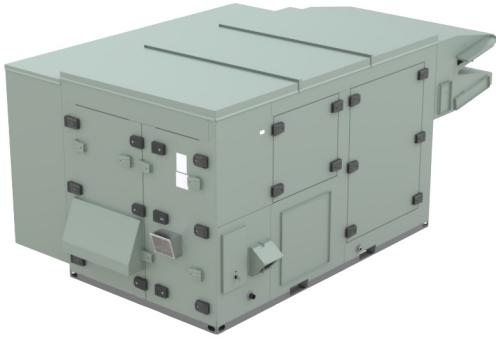
	30 Tons	35 Tons	40 Tons	45 Tons	50 Tons	54 Tons
	360	420	480	540	600	648
Performance						
Gross Cooling Capacity, Btu (kW)	341,332	394,966	446,202	493,794	592,071	624,599
Compressor						
Number	2	3	3	3	4	4
Type	Scroll	Scroll	Scroll	Scroll	Scroll	Scroll
Outdoor Fan (Air Source Heat Pump only)						
Type	Propeller	Propeller	Propeller	Propeller	Propeller	Propeller
Number Used	4	4	4	4	4	4
Diameter, in. (mm)	24	24	24	24	24	24
Drive Type	Direct	Direct	Direct	Direct	Direct	Direct
No. Speeds	1	1	1	1	1	
CFM (m ³ /h)	26,000	26,000	26,000	26,000	32,000	32,000
Number Motors	4	4	4	4	4	4
Motor HP (kW), per motor	1.0	1.0	1.0	1.0	1.5	1.5
Motor RPM	1140	1140	1140	1140	1140	1140
Indoor Fan						
Type	Backward Inclined	Backward Inclined	Backward Inclined	Backward Inclined	Backward Inclined	Backward Inclined
Number Used	1	1	1 or 2	1 or 2	1 or 2	1 or 2
Diameter	Varies	Varies	Varies	Varies	Varies	Varies
Drive Type	Direct Drive	Direct Drive	Direct Drive	Direct Drive	Direct Drive	Direct Drive
Number Motors	1	1	1 or 2	1 or 2	1 or 2	1 or 2
Motor HP (kW), Standard–Oversized	1.5 - 15	1.5 - 15	2.0 - 15	2.0 - 15	3.0 - 15	3.0 - 15
Motor RPM	1750 - 3500	1750 - 3500	1750 - 3500	1750 - 3500	1750 - 3500	1750 - 3500
Filters	See "Horizon™ OAU Filter Guide," p. 108 in Appendix					
Refrigerant Charge, lb of R-454B	See Nameplate					

OADG Unit

- Up to 8.1 ISMRE2^(a)
- Up to 6.9 ISMRE2-70^(a)
- Cooling options: DX, Chilled Water
- Heating options: IF Gas Heat, Electric Heat, Hot Water Heat, Heat Pump

(a) Rated in accordance with AHRI Standard 920 (I-P) - 2020. Applicable units are certified and can be found in the AHRI Directory at www.ahridirectory.org.

Table 10. OADG unit data


	10 Tons	12 Tons	15 Tons	17 Tons	20 Tons	25 Tons	30 Tons
Performance, 6-row							
Gross Cooling Capacity, Btu (kW)	125,375	142,180	196,617	211,189	234,116	315,477	394,549
Performance, 4-row							
Gross Cooling Capacity, Btu (kW)	122,587	138,891	186,324	202,971	225,971	—	—
Compressor							
Number	2	2	2	2	2	2	2
Type	Scroll	Scroll	Scroll	Scroll	Scroll	Scroll	Scroll
Outdoor Fan (Air Source Heat Pump only)							
Type	Propeller	Propeller	Propeller	Propeller	Propeller	Propeller	Propeller
Number Used	2	2	2	2	2	3	3
Diameter, in. (mm)	27	27	27	27	27	27	27
Drive Type	Direct	Direct	Direct	Direct	Direct	Direct	Direct
No. Speeds	1	1	1	1	1	1	1
CFM (m ³ /h)	7,000	7,000	7,000	7,000	7,000	7,000	7,000
Number Motors	2	2	2	2	2	3	3
Motor HP (kW), per motor	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Motor RPM	1140	1140	1140	1140	1140	1140	1140
Indoor Fan							
Type	Airfoil	Airfoil	Airfoil	Airfoil	Airfoil	Airfoil	Airfoil
Number Used	1	1	1	1	1	1	1
Diameter	Varies	Varies	Varies	Varies	Varies	Varies	Varies
Drive Type	Direct Drive	Direct Drive	Direct Drive	Direct Drive	Direct Drive	Direct Drive	Direct Drive
Number Motors	1	1	1	1	1	1	1
Motor HP (kW), Standard–Oversized	1-7.5	1-7.5	1-7.5	1-7.5	1-7.5	1-7.5	1-7.5
Motor RPM	1750 - 3500	1750 - 3500	1750 - 3500	1750 - 3500	1750 - 3500	1750 - 3500	1750 - 3500
Filters	See "Horizon™ OAU Filter Guide," p. 108 in Appendix						
Refrigerant Charge, lb of R-454B	See Nameplate						

General Data

OADG Heat Pump Unit

- Up to 7.1 ISCOPE2^(a)
- Up to 8.0 ISMRE2^(a)
- Up to 7.1 ISMRE2-70^(a)
- Heating options: IF Gas Heat, Electric Heat, Hot Water Heat, Heat Pump

(a) Rated in accordance with AHRI Standard 920 (I-P) - 2020. Applicable units are certified and can be found in the AHRI Directory at www.ahridirectory.org.

Table 11. OADG Heat pump unit data

	10 Tons	12 Tons	15 Tons	17 Tons	20 Tons	25 Tons	30 Tons
Performance							
Gross Cooling Capacity, Btu	121,332	137,535	194,707	201,757	236,420	328,400	360,000
Compressor							
Number	2	2	2	2	2	2	2
Type	Scroll	Scroll	Scroll	Scroll	Scroll	Scroll	Scroll
Outdoor Fan (Air Source Heat Pump only)							
Type	Propeller	Propeller	Propeller	Propeller	Propeller	Propeller	Propeller
Number Used	2	2	2	3	3	3	3
Diameter, in. (mm)	27	27	27	27	27	27	27
Drive Type	Direct	Direct	Direct	Direct	Direct	Direct	Direct
No. Speeds	1	1	1	1	1	1	1
CFM (m ³ /h)	7,000	7,000	7,000	7,000	7,000	7,000	7,000
Number Motors	2	2	2	3	3	3	3
Motor HP (kW), per motor	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Motor RPM	1140	1140	1140	1140	1140	1140	1140
Indoor Fan							
Type	Airfoil	Airfoil	Airfoil	Airfoil	Airfoil	Airfoil	Airfoil
Number Used	1	1	1	1	1	1	1
Diameter	Varies	Varies	Varies	Varies	Varies	Varies	Varies
Drive Type	Direct Drive	Direct Drive	Direct Drive	Direct Drive	Direct Drive	Direct Drive	Direct Drive
Number Motors	1	1	1	1	1	1	1
Motor HP (kW), Standard-Oversized	1-7.5	1-7.5	1-7.5	1-7.5	1-7.5	1-7.5	1-7.5
Motor RPM	1750 - 3500	1750 - 3500	1750 - 3500	1750 - 3500	1750 - 3500	1750 - 3500	1750 - 3500
Filters	See "Horizon™ OAU Filter Guide," p. 108 in Appendix						
Refrigerant Charge, lb of R-454B	See Nameplate						

OANG Rev 6 Unit

- Up to 8.4 ISMRE2^(a)
- Up to 7.4 ISMRE2-70^(a)
- Cooling options: DX, Chilled Water
- Heating options: IF Gas Heat, Electric Heat, Hot Water Heat

(a) Rated in accordance with AHRI Standard 920 (I-P) - 2020. Applicable units are certified and can be found in the AHRI Directory at www.ahridirectory.org.

Table 12. OANG Rev 6 unit data

	40 Tons	45 Tons	50 Tons	55 Tons	60 Tons	70 Tons	80 Tons
Cooling Performance							
Gross Cooling Capacity, Btu	487,698	539,740	601,892	645,148	699,401	822,340	899,241
Compressor							
Number	4	4	4	4	4	4	4-6
Type	Scroll	Scroll	Scroll	Scroll	Scroll	Scroll	Scroll
Outdoor Fan (Air Source Heat Pump only)							
Type	Propeller	Propeller	Propeller	Propeller	Propeller	Propeller	Propeller
Number Used	4	4	4	6	6	6	6
Diameter, in. (mm)	30	30	30	30	30	30	30
Drive Type	Direct	Direct	Direct	Direct	Direct	Direct	Direct
No. Speeds	1	1	1	1	1	1	1
CFM (m ³ /h)	40,000	40,000	40,000	60,000	60,000	60,000	60,000
Number Motors	4	4	4	6	6	6	6
Motor HP (kW), per motor	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Motor RPM	1140	1140	1140	1140	1140	1140	1140
Indoor Fan							
Type	Backward Inclined	Backward Inclined	Backward Inclined	Backward Inclined	Backward Inclined	Backward Inclined	Backward Inclined
Number Used	1 or 2	1 or 2	1 or 2	1 or 2	1 or 2	1 or 2	1 or 2
Diameter	Varies	Varies	Varies	Varies	Varies	Varies	Varies
Drive Type	Direct Drive	Direct Drive	Direct Drive	Direct Drive	Direct Drive	Direct Drive	Direct Drive
Number Motors	1 or 2	1 or 2	1 or 2	1 or 2	1 or 2	1 or 2	1 or 2
Motor HP (kW), Standard–Oversized	1.5 - 20	1.5 - 20	1.5 - 20	1.5 - 20	1.5 - 20	1.5 - 20	1.5 - 20
Motor RPM	1750 - 3500	1750 - 3500	1750 - 3500	1750 - 3500	1750 - 3500	1750 - 3500	1750 - 3500
Filters	See "Horizon™ OAU Filter Guide," p. 108 in Appendix						
Refrigerant Charge, lb of R-454B	See Nameplate						

Unit Clearances, Curb Dimensions, and Dimensional Data

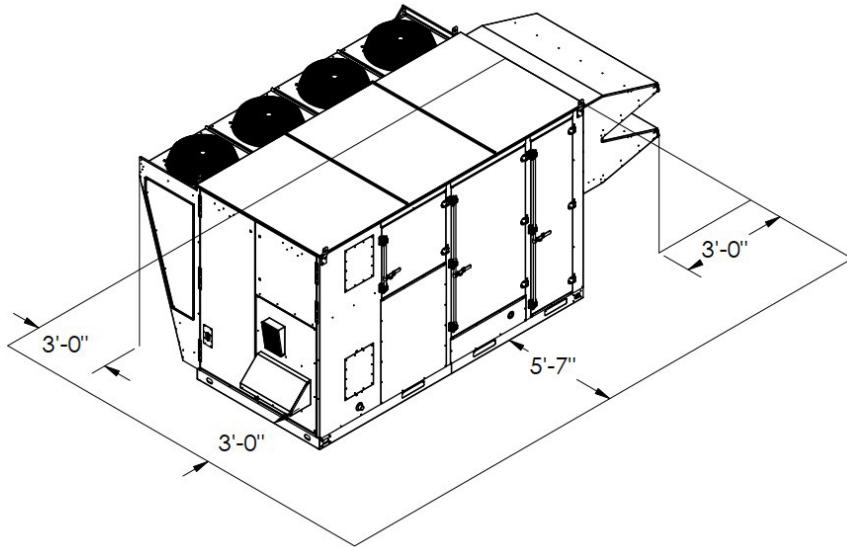
⚠ WARNING

Combustible Materials!

Failure to maintain proper clearance between the unit and combustible materials could cause a fire which could result in death, serious injury, or property damage. Refer to unit nameplate and installation instructions for proper clearances.

⚠ AVERTISSEMENT

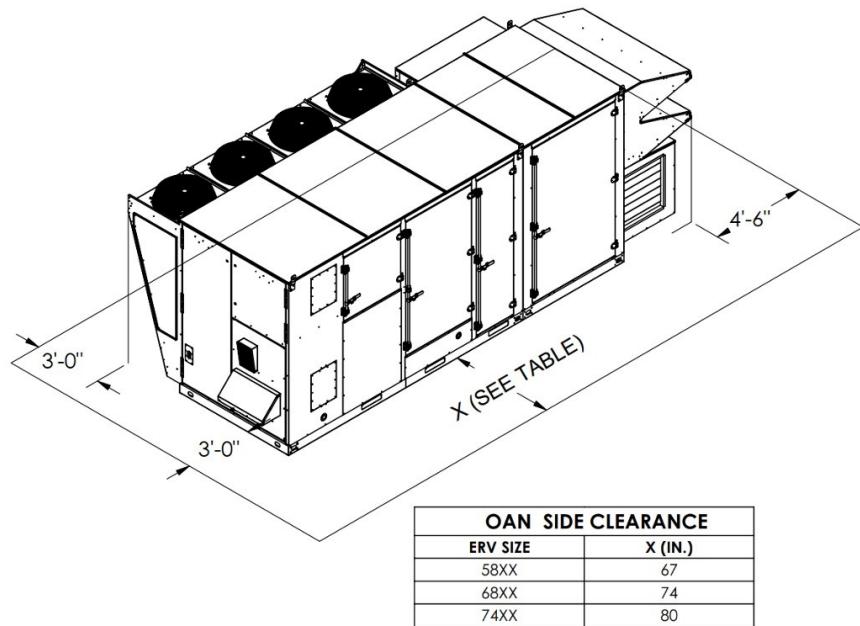
Matériaux combustibles!


Tout manquement à l'obligation de maintenir une distance appropriée entre l'échangeur de chaleur de l'unité, les surfaces de ventilation et les matériaux combustibles peut provoquer un incendie pouvant résulter en des blessures corporelles graves, voire mortelles, ou des dommages matériels. Reportez-vous à la plaque signalétique de l'unité et aux instructions d'installation pour connaître les distances appropriées.

OAN Rev 5 Units

Unit Clearances

Note: Minimum clearance above the unit is 72-inches.


Figure 15. Typical installation clearances for OAN unit

Note: Minimum clearance above the unit is 72-inches.

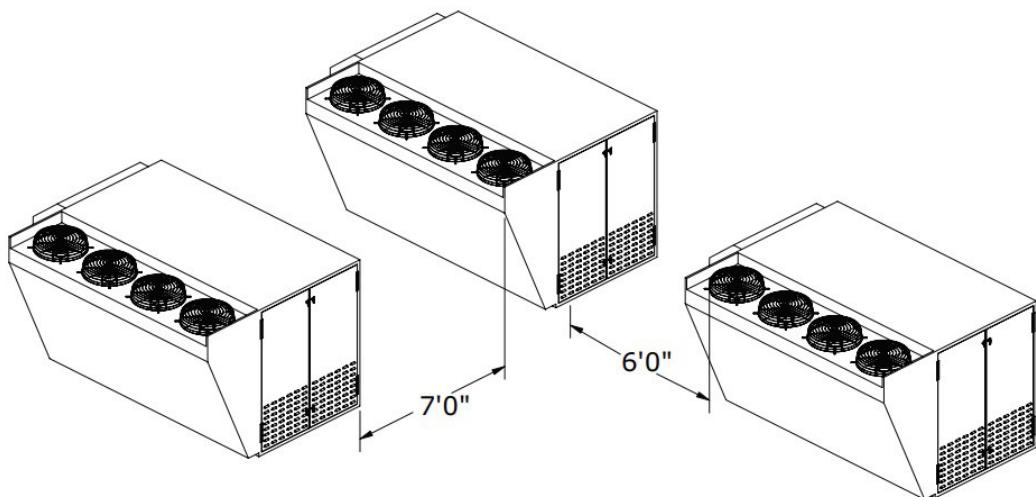
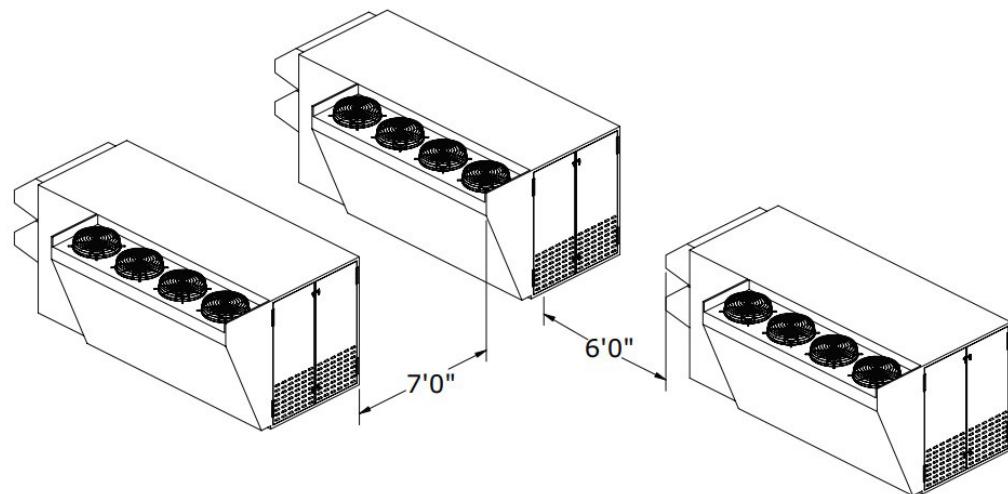
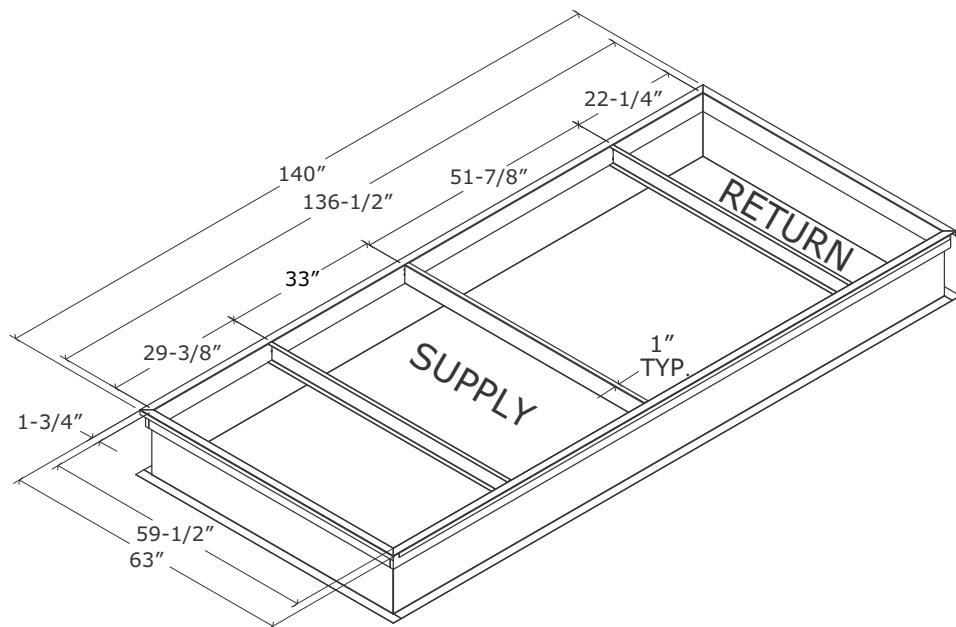

Unit Clearances, Curb Dimensions, and Dimensional Data

Figure 16. Typical installation clearances for OAN unit with auxiliary cabinet

Note: Certain options require auxiliary cabinet. See project-specific unit submittals.


Figure 17. Typical installation clearances for OAN unit

Unit Clearances, Curb Dimensions, and Dimensional Data


Figure 18. Typical installation clearances for OAN unit with auxiliary cabinet

Note: Certain options require auxiliary cabinet. See project-specific unit submittals.

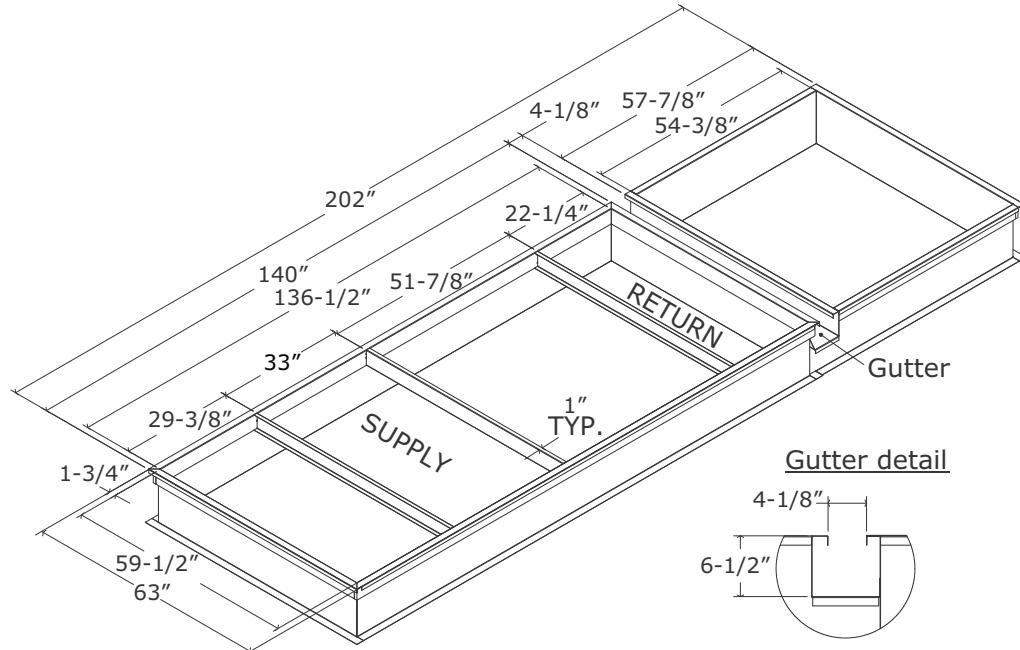
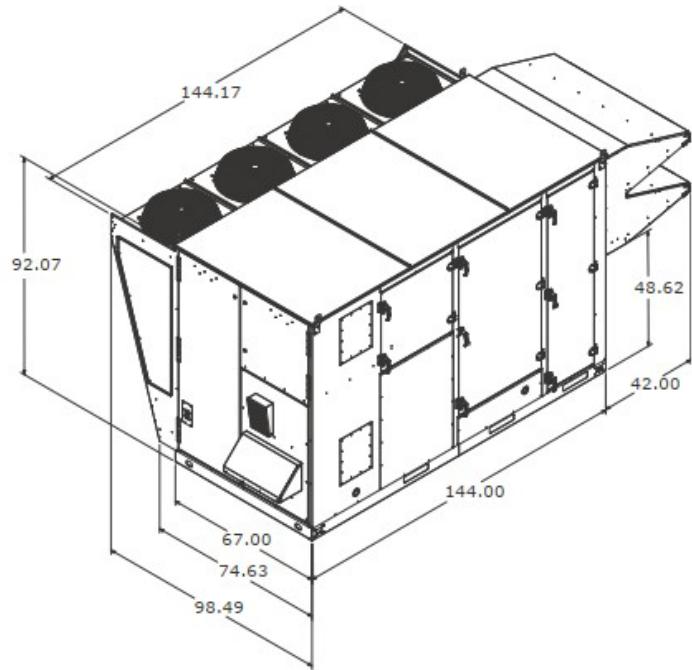

Curb Dimensions

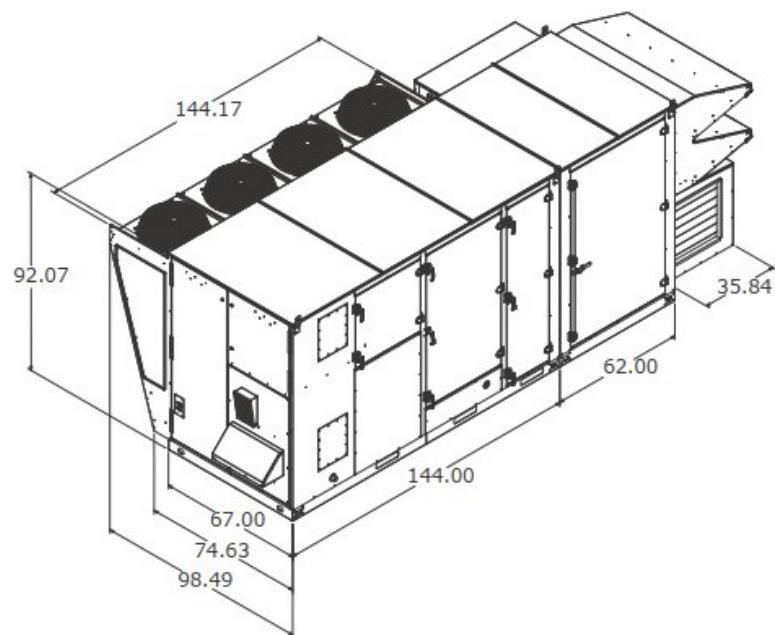
Figure 19. Unit curb data for OAN 30 to 60 tons

Unit Clearances, Curb Dimensions, and Dimensional Data

Figure 20. Unit curb data for OAN 30 to 60 tons with auxiliary cabinet


Note: Certain options require auxiliary cabinet. See project-specific unit submittals.

Unit Clearances, Curb Dimensions, and Dimensional Data



Dimensional Data

Figure 21. Unit dimensional data for OAN 30 to 60 tons, vertical supply and vertical/no return without ERV

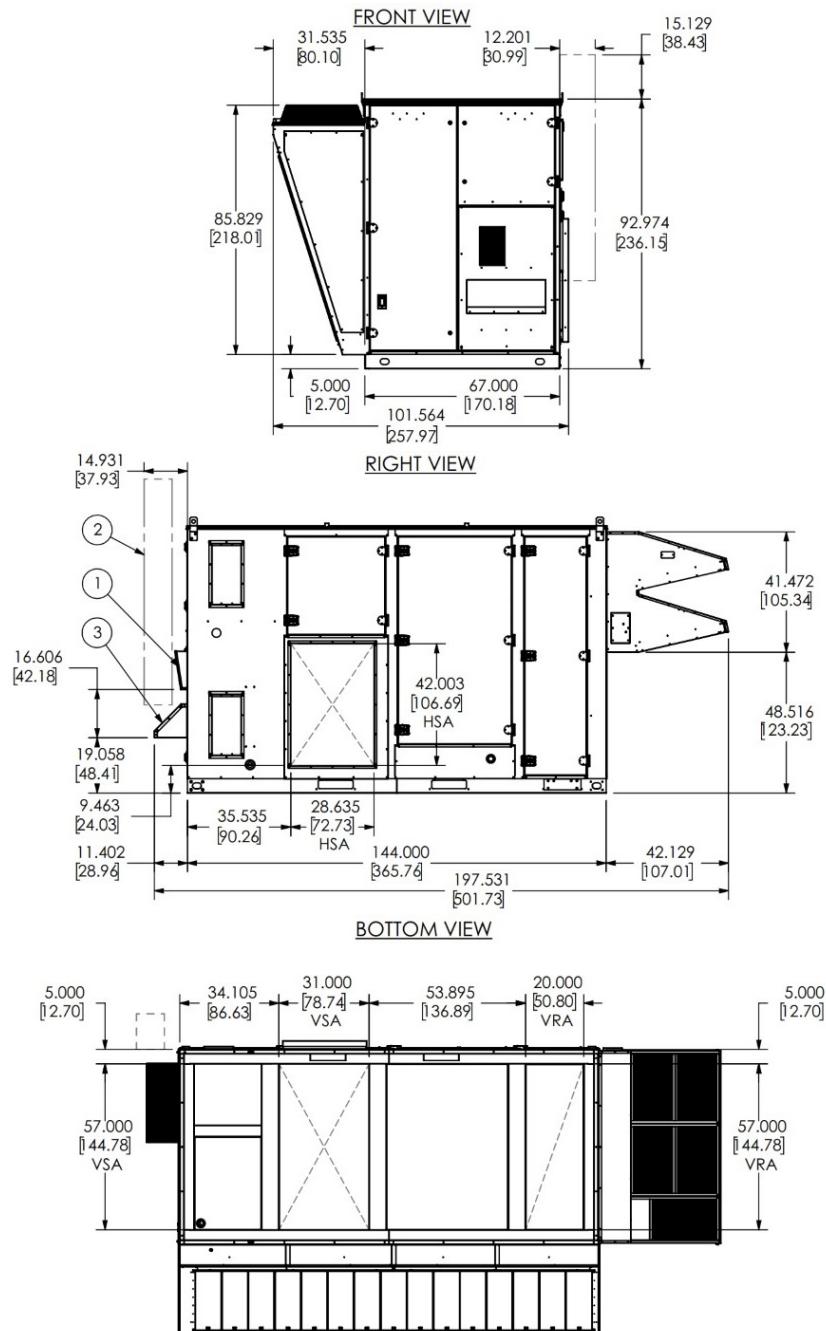
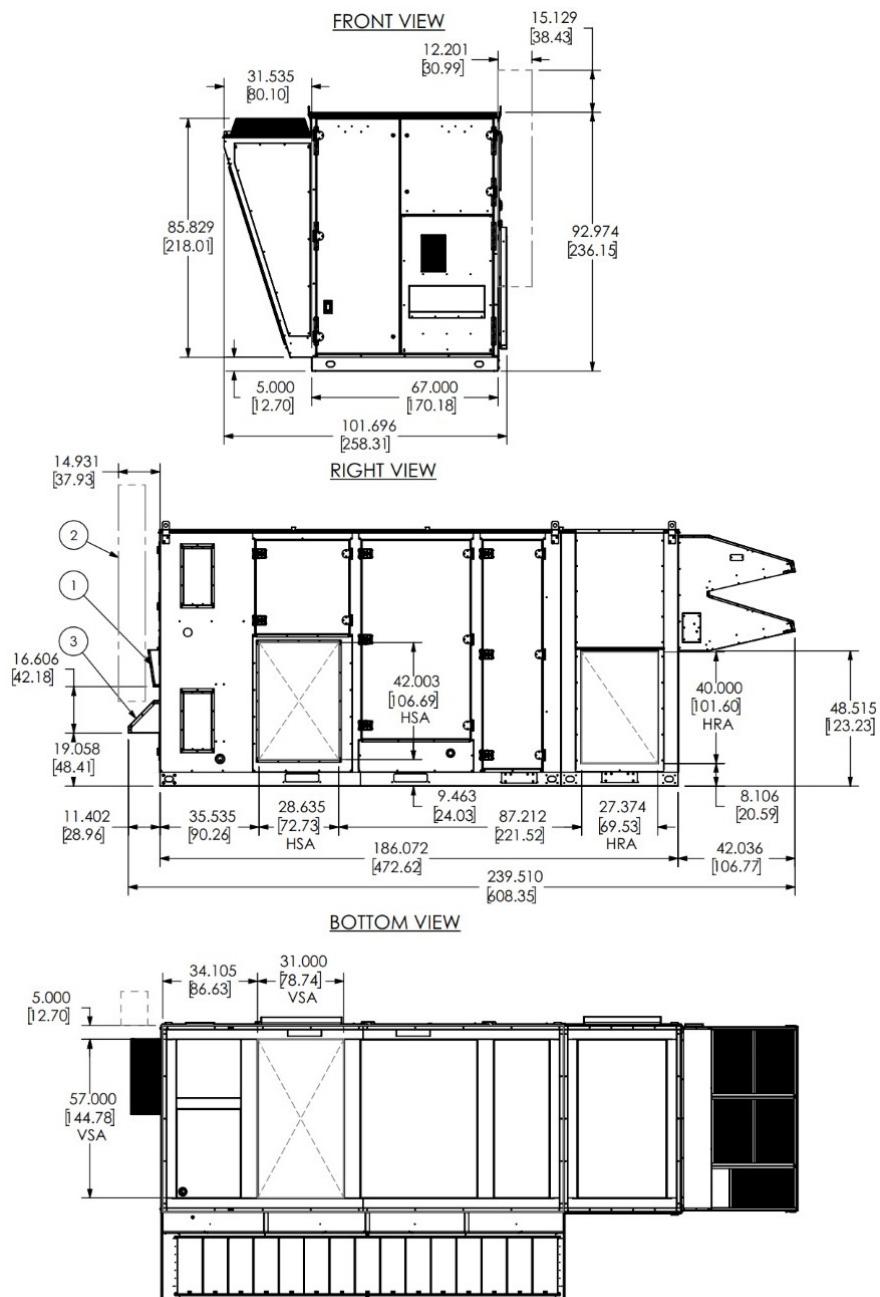


Figure 22. Unit dimensional data for OAN 30 to 60 tons with auxiliary cabinet, vertical supply and vertical return with ERV

Unit Clearances, Curb Dimensions, and Dimensional Data

Figure 23. Unit dimensional data for OAN 30 to 60 tons, vertical/no return (dual dimensions, in. [cm])

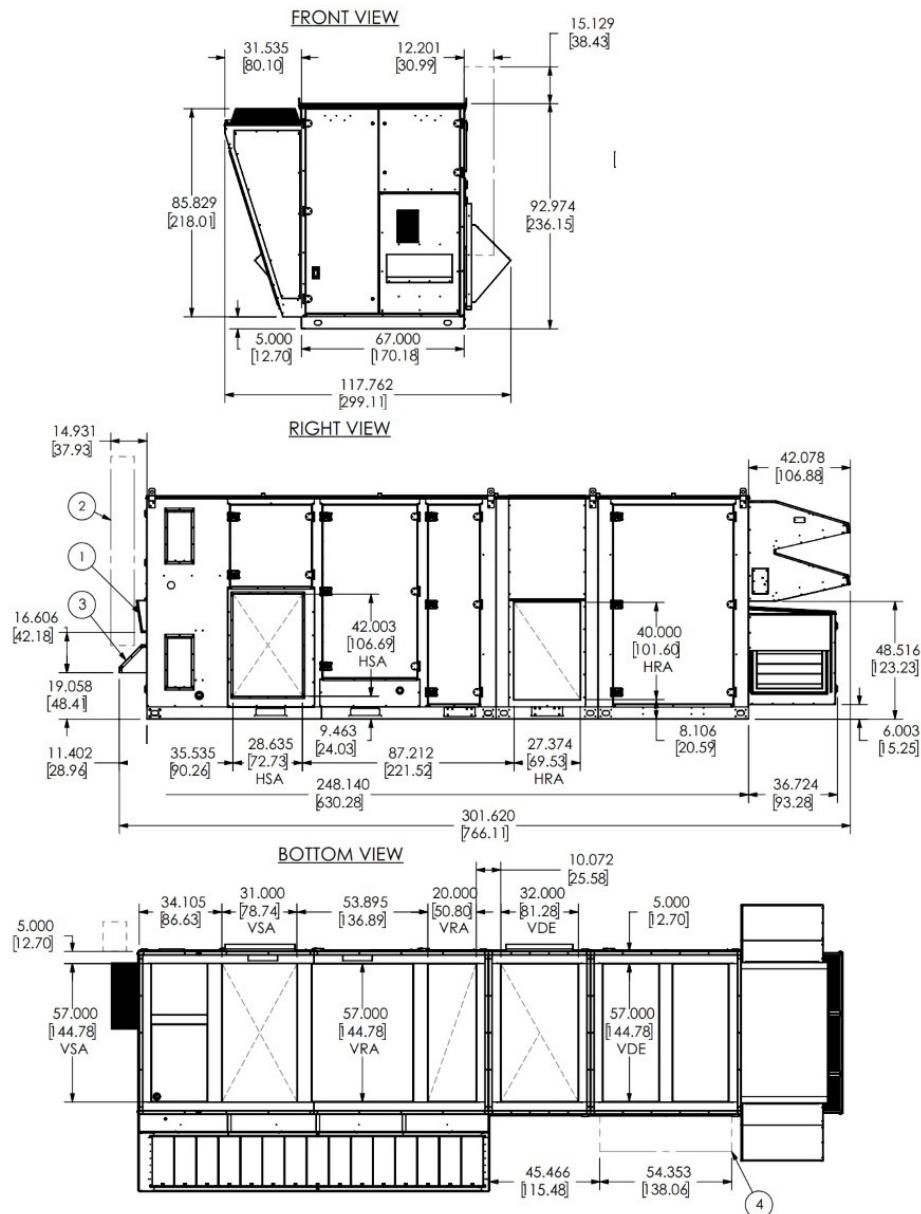


CONFIGURATION SPECIFIC NOTES:

1. FLUE HOOD: INCLUDED WITH 300-500MBH GAS HEAT
2. FLUE EXTENSION: INCLUDED WITH 600-1000MBH GAS HEAT
3. COMBUSTION AIR INTAKE: INCLUDED WITH GAS HEAT

Unit Clearances, Curb Dimensions, and Dimensional Data

Figure 24. Unit dimensional data for OAN 30 to 60 tons horizontal return (dual dimensions, in. [cm])



CONFIGURATION SPECIFIC NOTES:

1. FLUE HOOD: INCLUDED WITH 300-500MBH GAS HEAT
2. FLUE EXTENSION: INCLUDED WITH 600-1000MBH GAS HEAT
3. COMBUSTION AIR INTAKE: INCLUDED WITH GAS HEAT

Unit Clearances, Curb Dimensions, and Dimensional Data

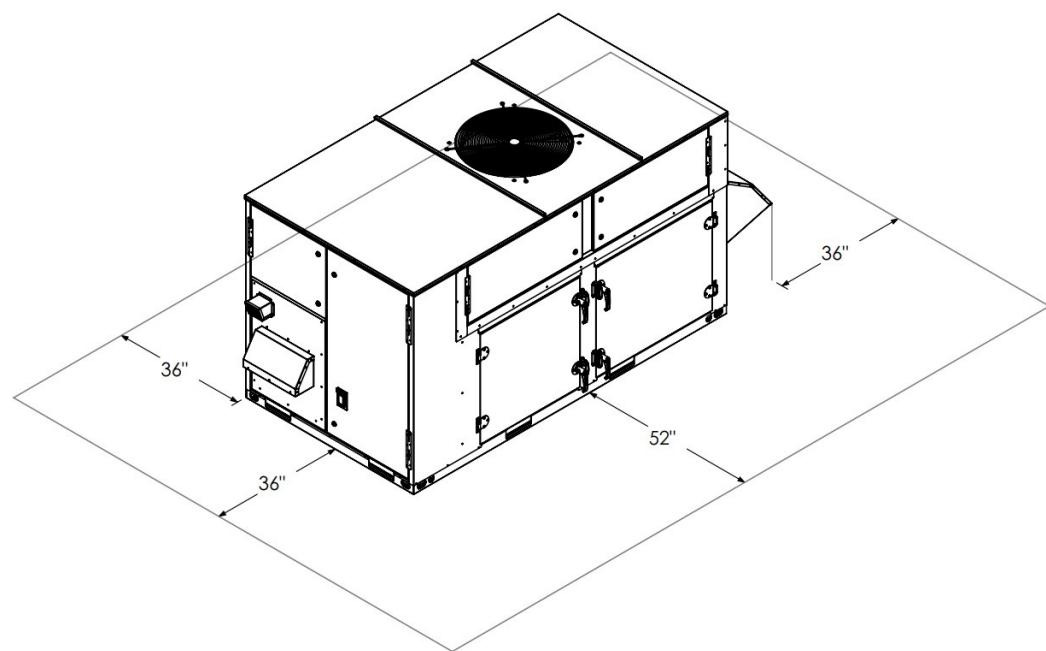
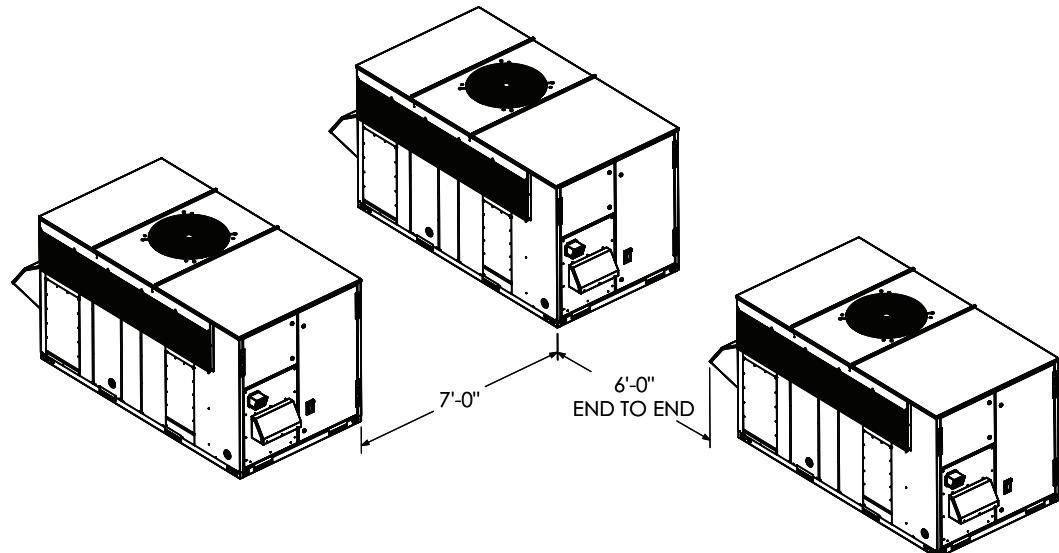
Figure 25. Unit dimensional data for OAN 30 to 60 tons, vertical/horizontal supply and horizontal return with ERV (dual dimensions, in. [cm])

CONFIGURATION SPECIFIC NOTES:

1. FLUE HOOD: INCLUDED WITH 300-500MBH GAS HEAT
2. FLUE EXTENSION: INCLUDED WITH 600-1000MBH GAS HEAT
3. COMBUSTION AIR INTAKE: INCLUDED WITH GAS HEAT
4. ERV EXTENSION: ENERGY RECOVERY 68-74XX

Note: Certain options require auxiliary cabinet. Vertical Dedicated Exhaust (VDE) is a selectable configuration and is not standard. See project-specific unit submittals.

Unit Clearances, Curb Dimensions, and Dimensional Data

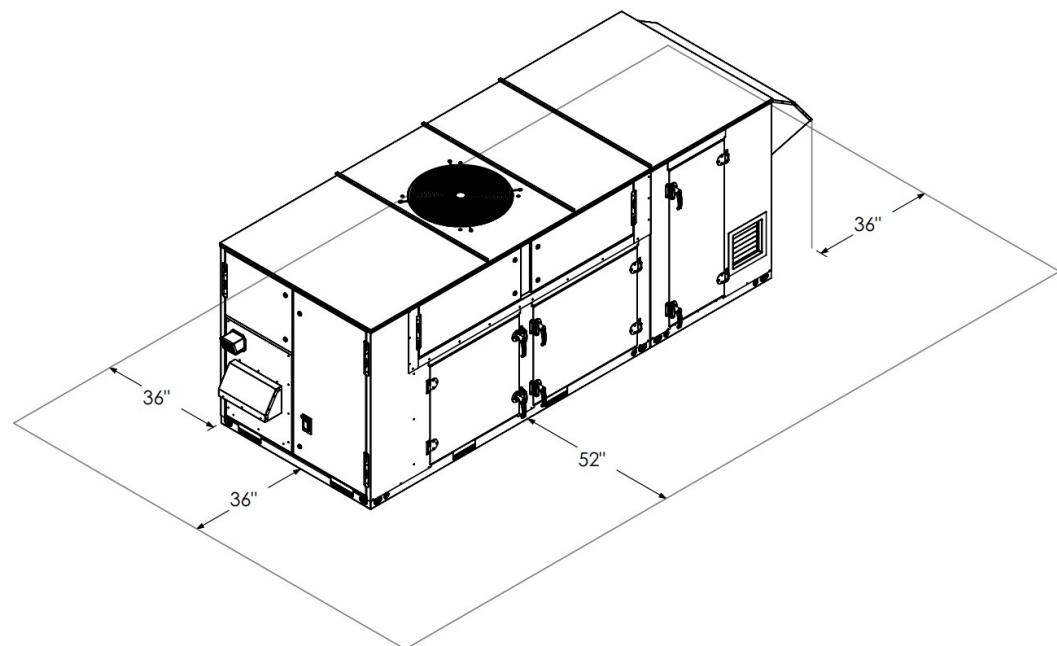
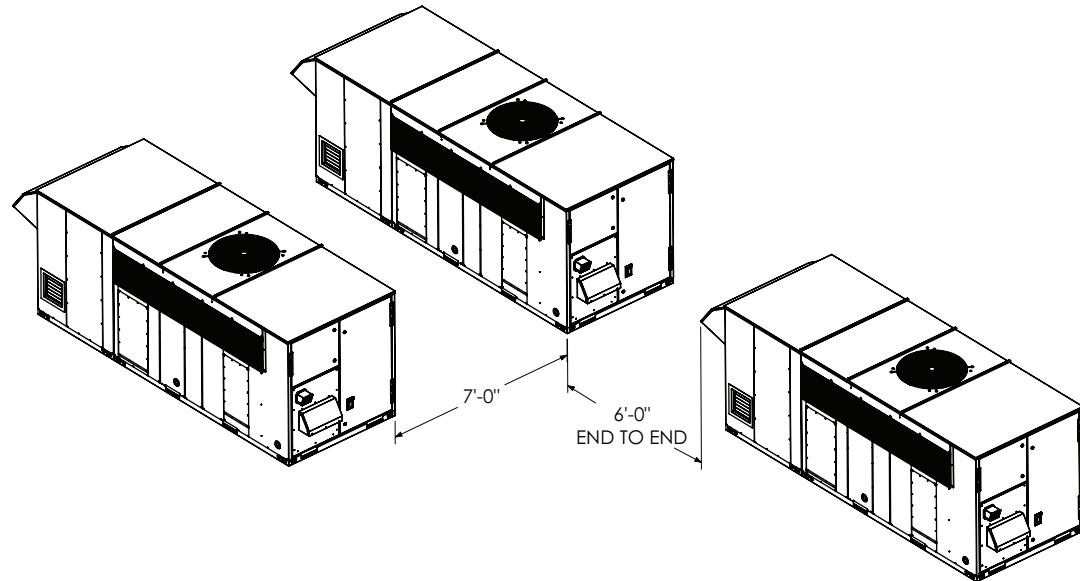



OAB Units

Unit Clearances

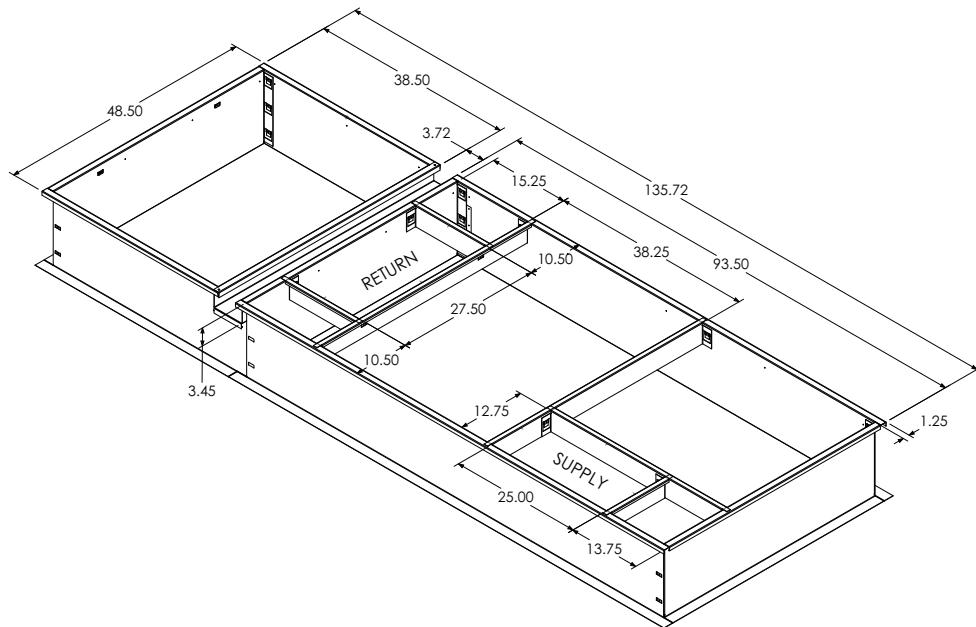
Note: Minimum clearance above the unit is 72-inches.

Figure 26. Typical installation clearances for OAB unit

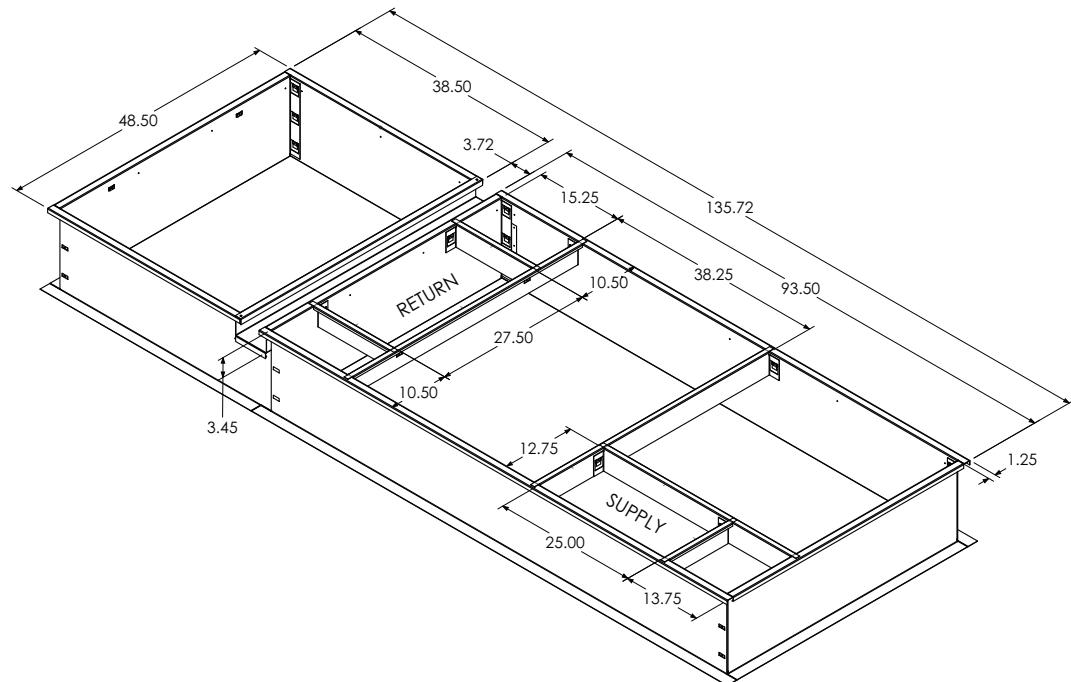


Note: Minimum clearance above the unit is 72-inches.

Unit Clearances, Curb Dimensions, and Dimensional Data

Figure 27. Typical installation clearances for OAB unit with auxiliary cabinet


Note: Certain options require auxiliary cabinet. See project-specific unit submittals.

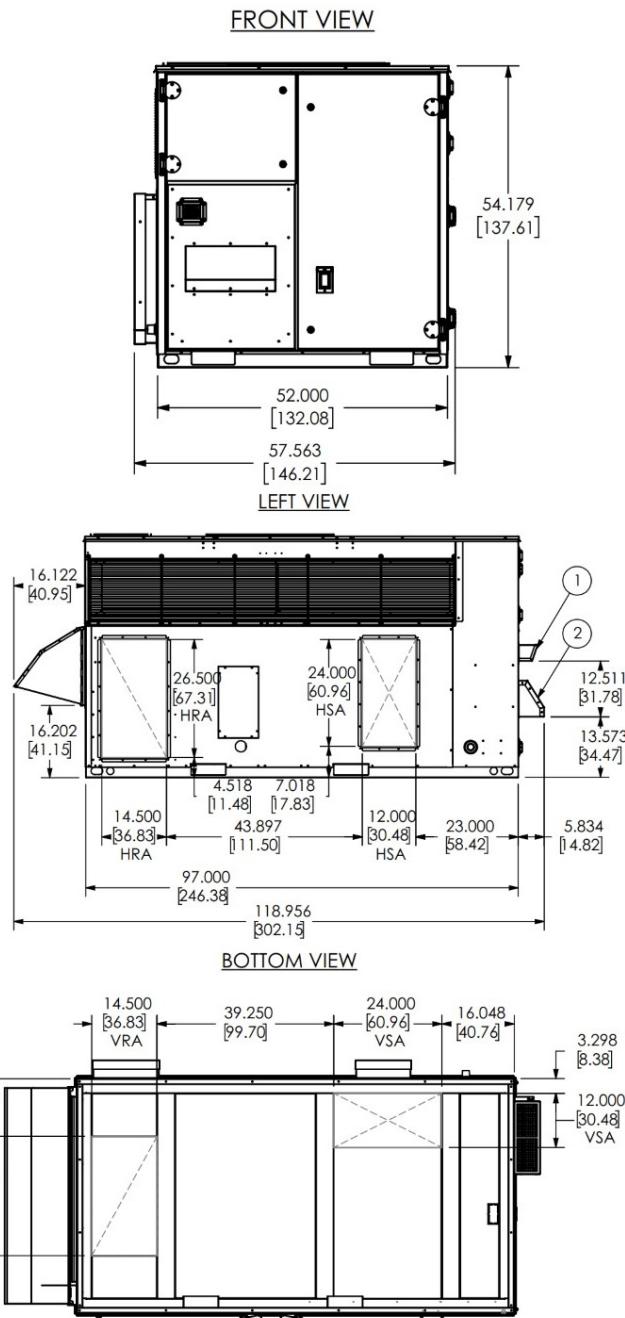
Unit Clearances, Curb Dimensions, and Dimensional Data



Curb Dimensions

Figure 28. Unit curb data for OAB 3 to 9 tons

Figure 29. Unit curb data for OAB 3 to 9 tons with auxiliary cabinet

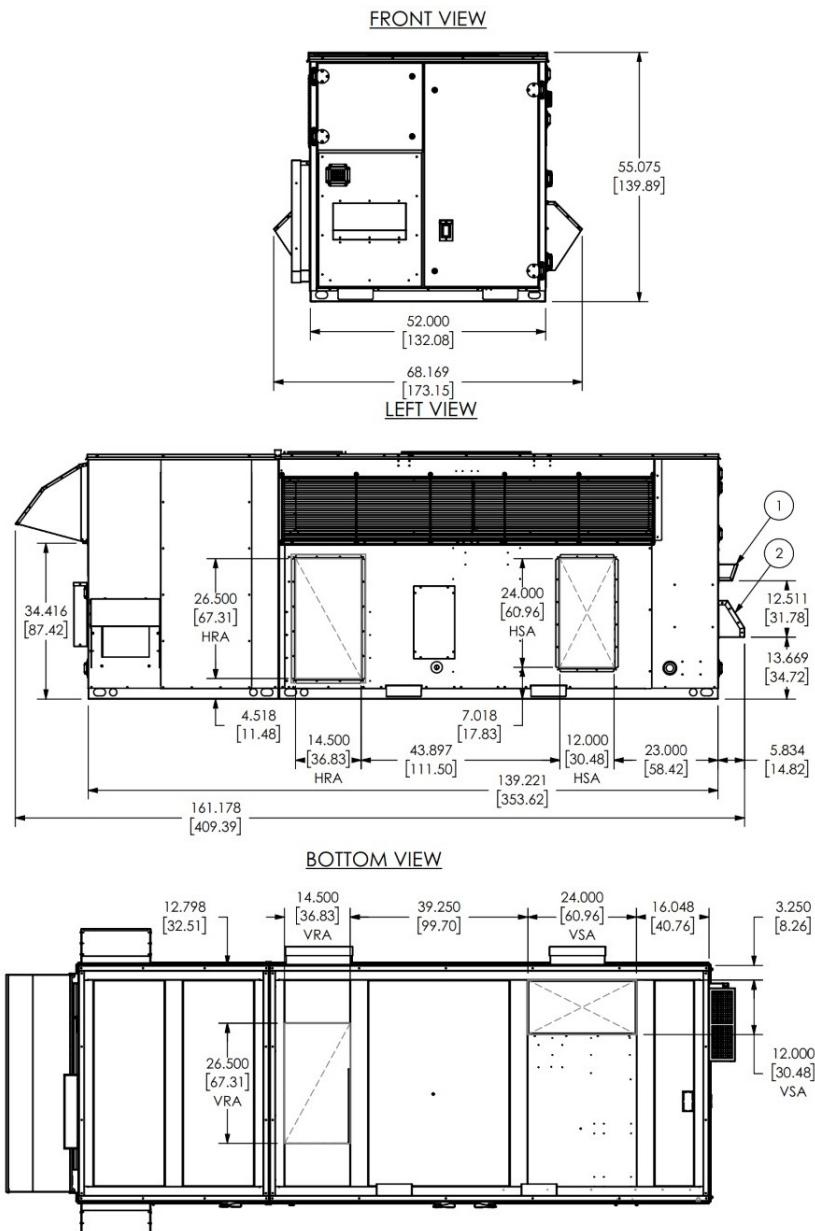


Note: Certain options require auxiliary cabinet. See project-specific unit submittals.

Unit Clearances, Curb Dimensions, and Dimensional Data

Dimensional Data

Figure 30. Unit dimensional data for OAB 3 to 9 tons (dual dimensions, in. [cm])


CONFIGURATION SPECIFIC NOTES:

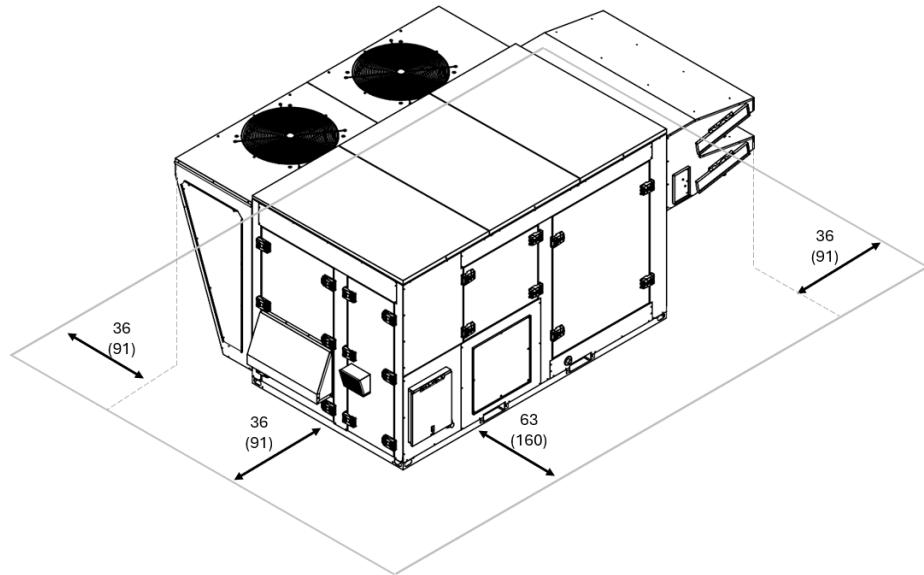
1. FLUE HOOD: INCLUDED WITH GAS HEAT
2. COMBUSTION AIR INTAKE: INCLUDED WITH GAS HEAT

Note: See project-specific unit submittals.

Unit Clearances, Curb Dimensions, and Dimensional Data

Figure 31. Unit dimensional data for OAB 3 to 9 tons with auxiliary cabinet (dual dimensions, in. [cm])

CONFIGURATION SPECIFIC NOTES:


1. FLUE HOOD: INCLUDED WITH GAS HEAT
2. COMBUSTION AIR INTAKE: INCLUDED WITH GAS HEAT

Note: Certain options require auxiliary cabinet. See project-specific unit submittals.

OADG Units

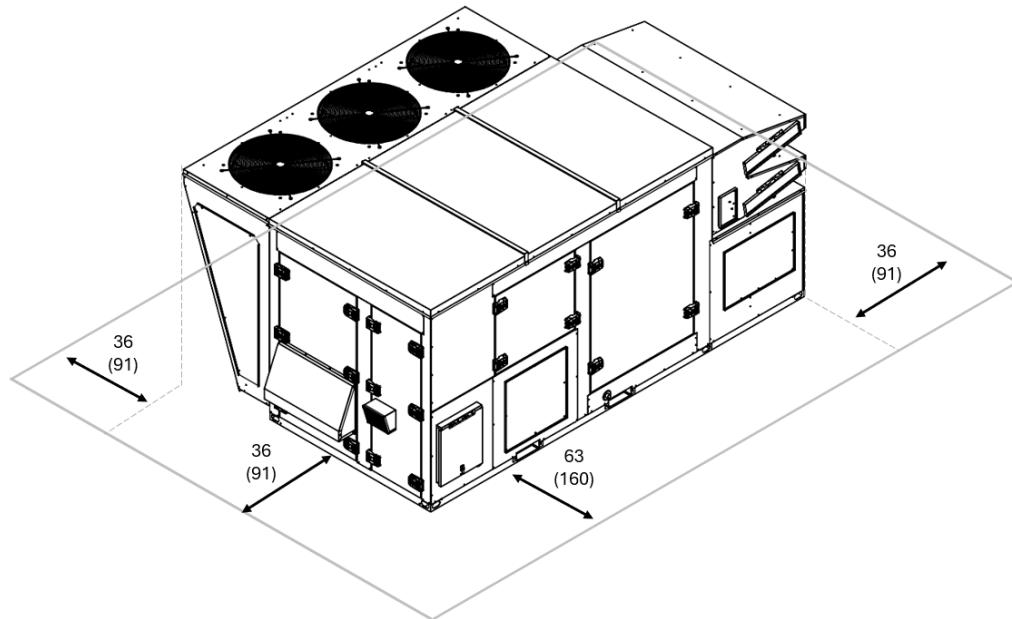
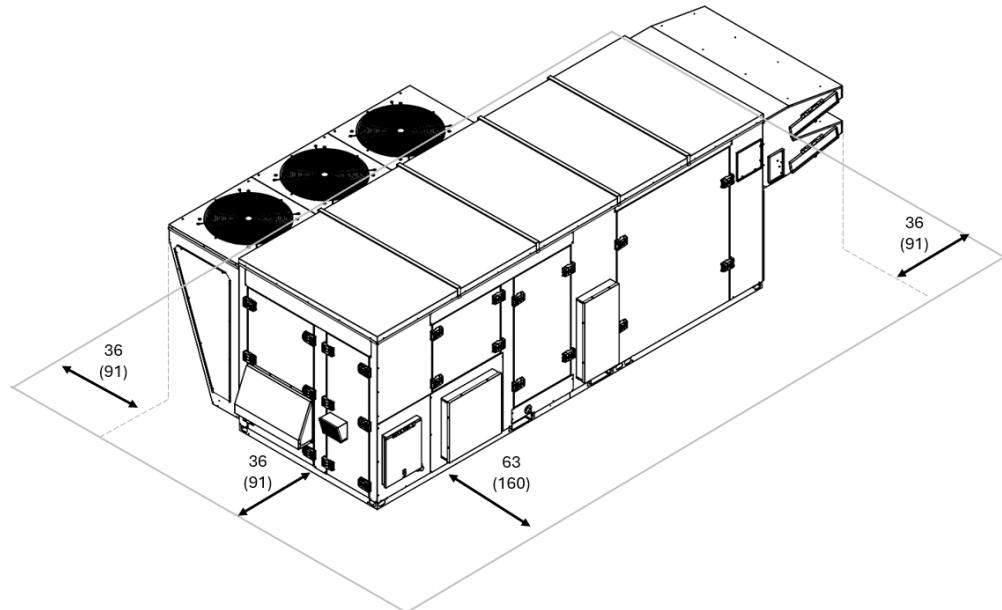

Unit Clearances

Figure 32. Installation clearances for units with no powered exhaust or ERV, in. (cm)

Note: Minimum of 72-inches (182.9 cm) clearance is required above the condenser fans.

Figure 33. Installation clearances for unit with powered exhaust but no ERV, in. (cm)



Note: Minimum of 72-inches (182.9 cm) clearance is required above the condenser fans.

Unit Clearances, Curb Dimensions, and Dimensional Data

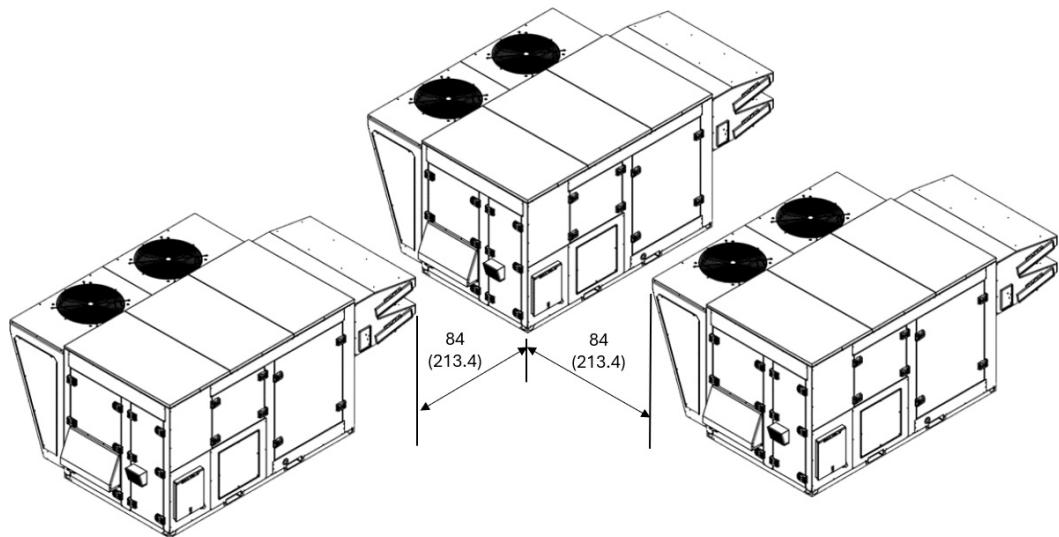


Figure 34. Installation clearances for unit with ERV, in. (cm)

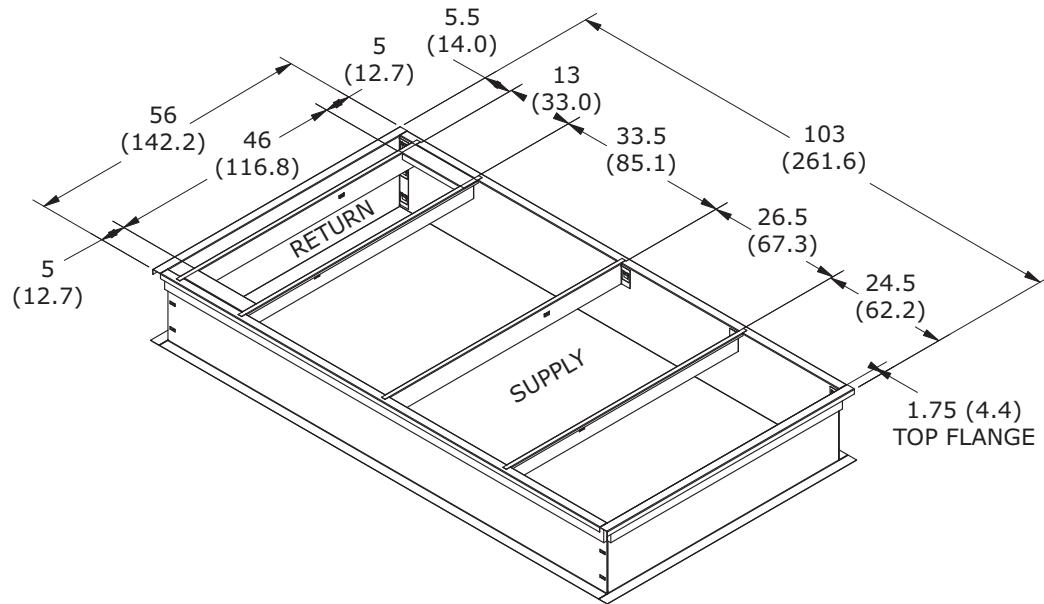
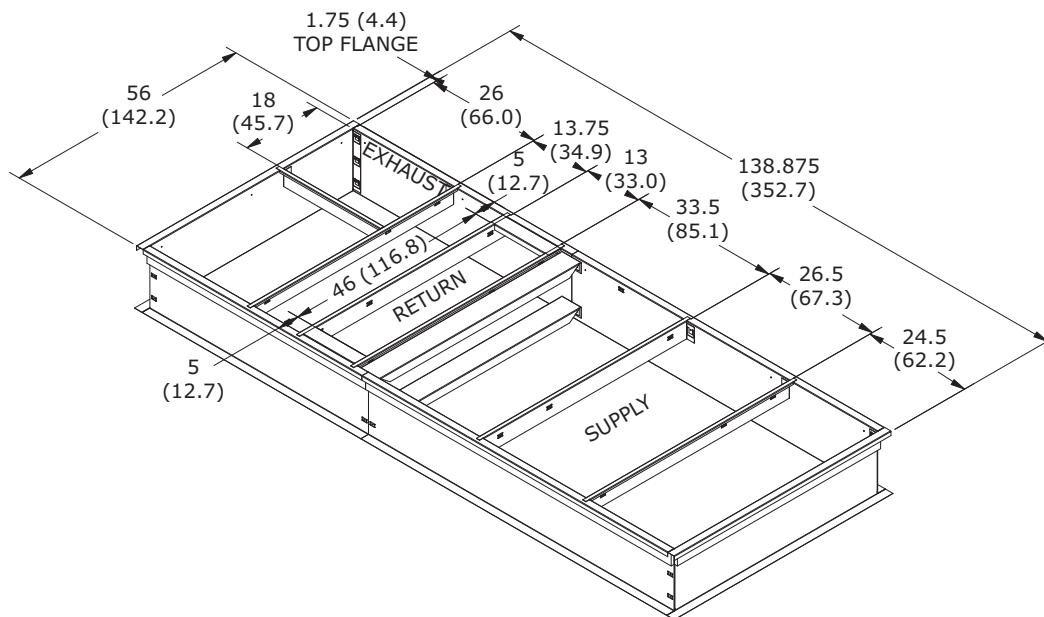

Note: Minimum of 72-inches (182.9 cm) clearance is required above the condenser fans.

Figure 35. Unit to unit clearance, in. (cm)



Curb Dimensions

Figure 36. Unit curb data for OADG cabinet with no powered exhaust or ERV, in. (cm)

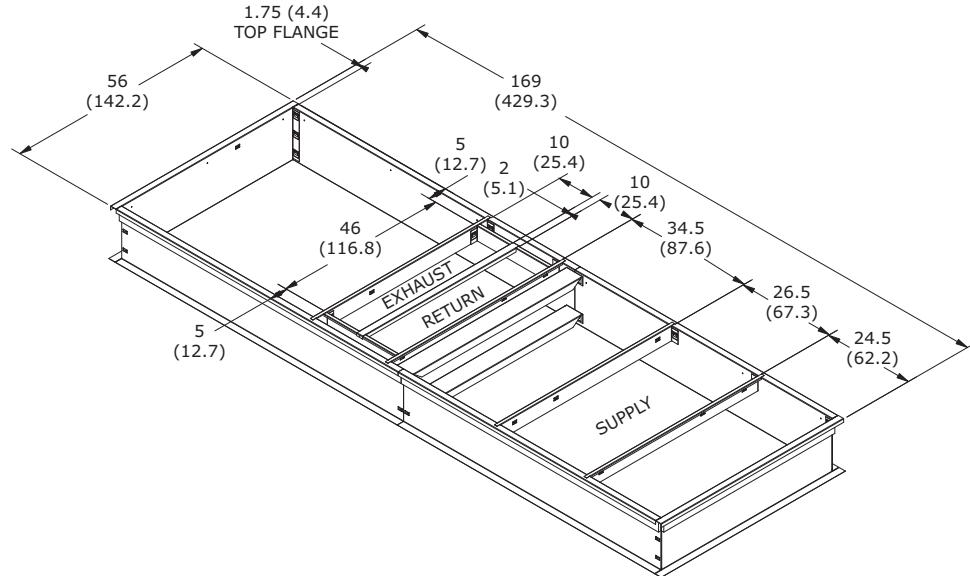


Figure 37. Unit curb data for OADG cabinet with powered exhaust but no ERV, in. (cm)

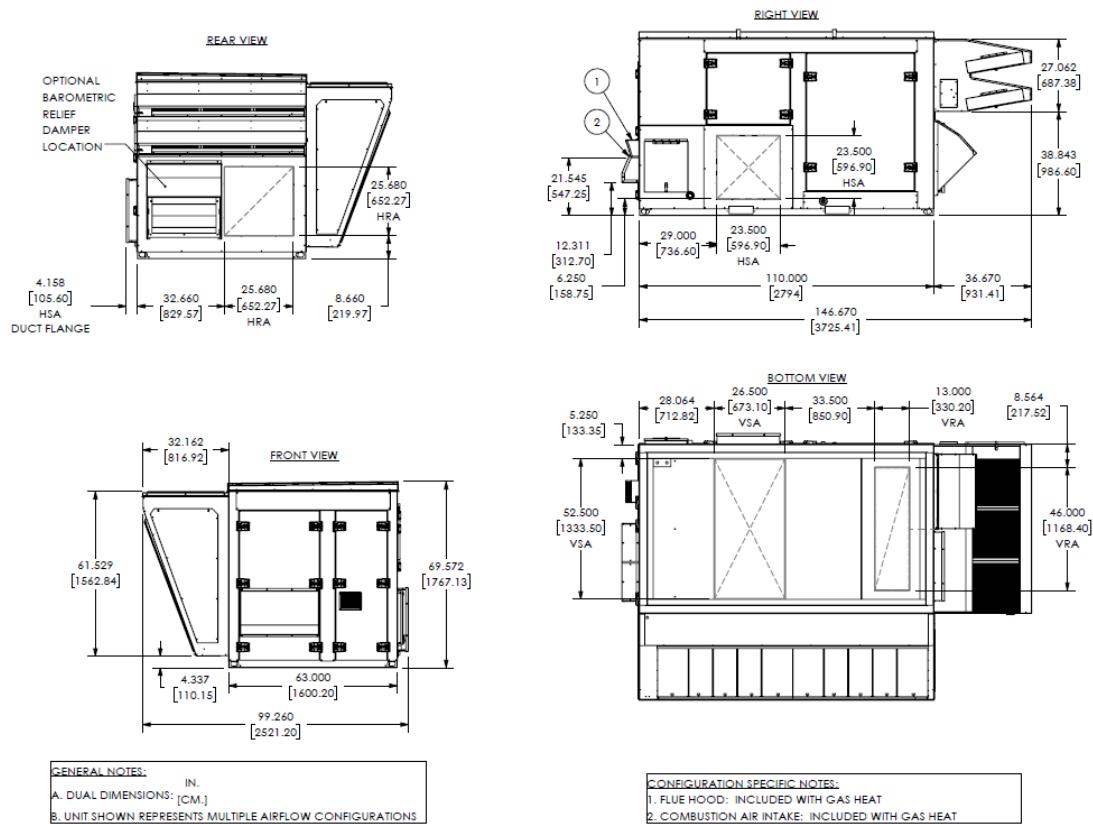
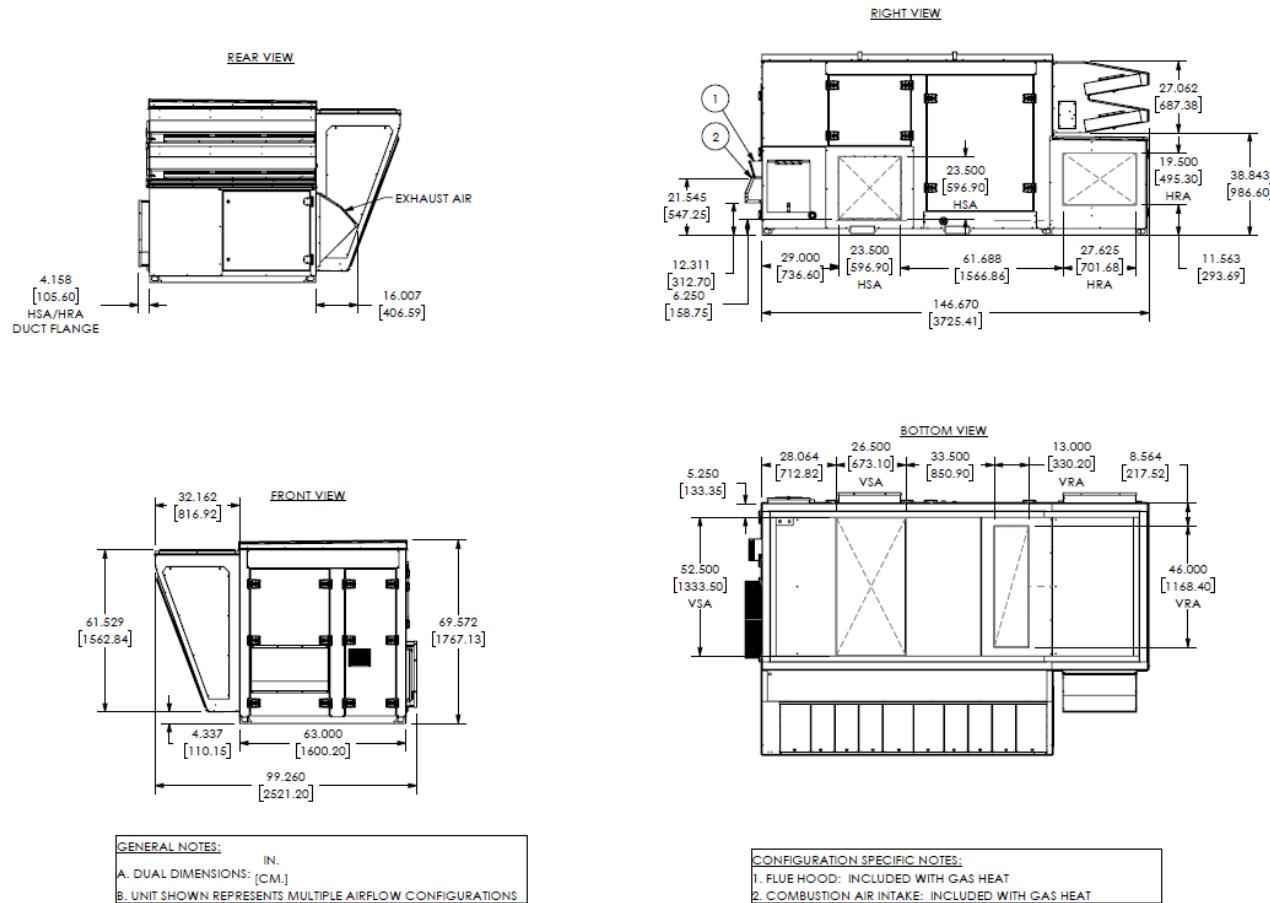

Unit Clearances, Curb Dimensions, and Dimensional Data

Figure 38. Unit curb data for OADG cabinet with ERV, in. (cm)

Dimensional Data

Figure 39. Unit dimensional data for OADG unit with no powered exhaust or ERV, in. (cm)

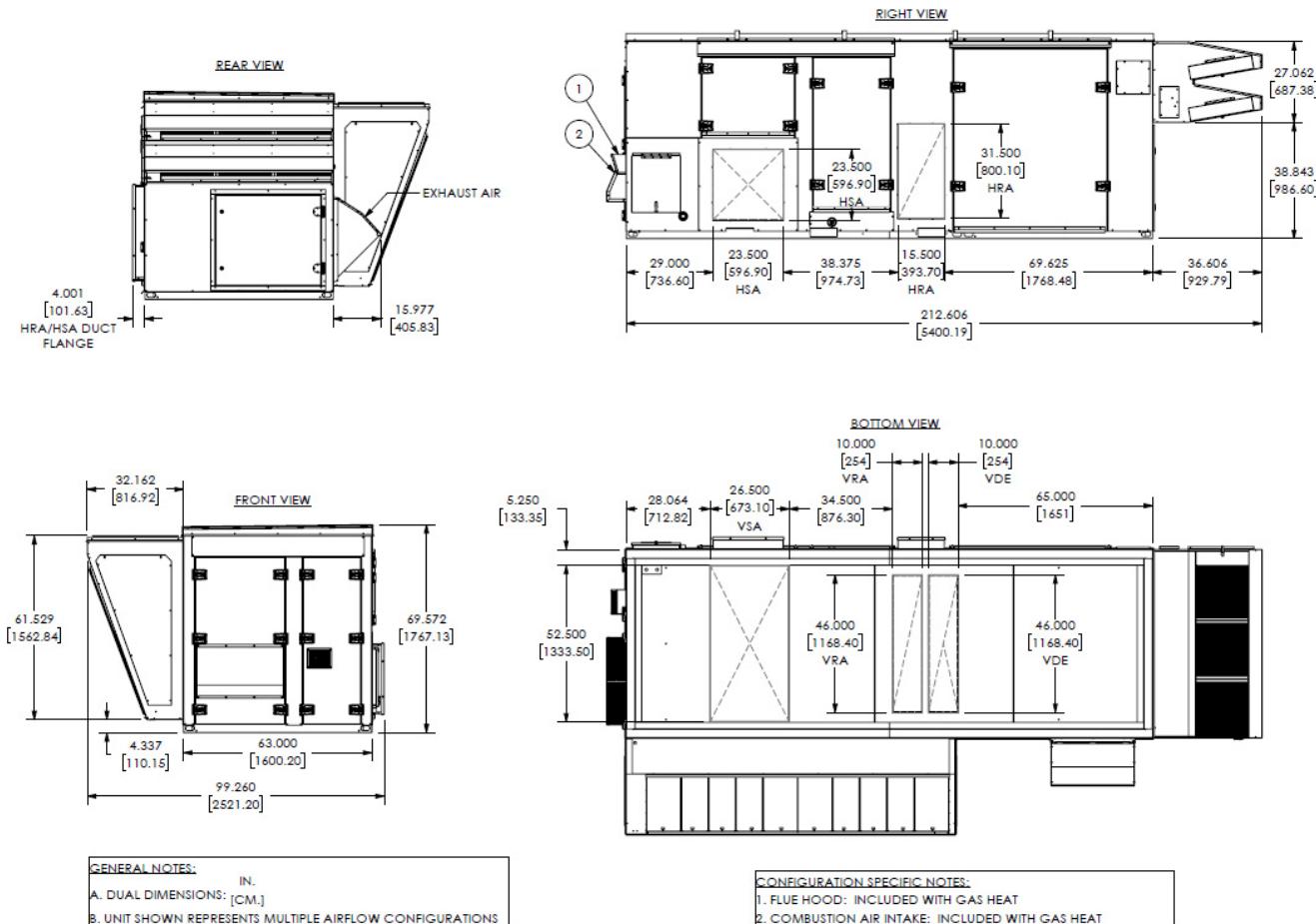


Unit Clearances, Curb Dimensions, and Dimensional Data

Notes:

- Units with no cooling will have the same dimensions, less the condensing section.
- Units with chilled water cooling will have the same dimensions, less the condensing section, and with an 18-inches (45.7 cm) deep pipe cabinet added.
- See project-specific unit submittals.

Figure 40. Unit dimensional data for OADG cabinet with powered exhaust but no ERV, in. (cm)



Notes:

- Units with no cooling will have the same dimensions, less the condensing section.
- Units with chilled water cooling will have the same dimensions, less the condensing section, and with an 18-inches (45.7 cm) deep pipe cabinet added.
- See project-specific unit submittals.

Unit Clearances, Curb Dimensions, and Dimensional Data

Figure 41. Unit dimensional data for OADG cabinet with ERV, in. (cm)

Notes:

- Vertical Dedicated Exhaust (VDE) is a selectable configuration and is not standard.
- Units with no cooling will have the same dimensions, less the condensing section.
- Units with chilled water cooling will have the same dimensions, less the condensing section, and with an 18-inches (45.7 cm) deep pipe cabinet added.
- See project-specific unit submittals.

OANG Rev 6 Units

Unit Clearances

Figure 42. Installation clearances for units with no powered exhaust or ERV, in. (cm)

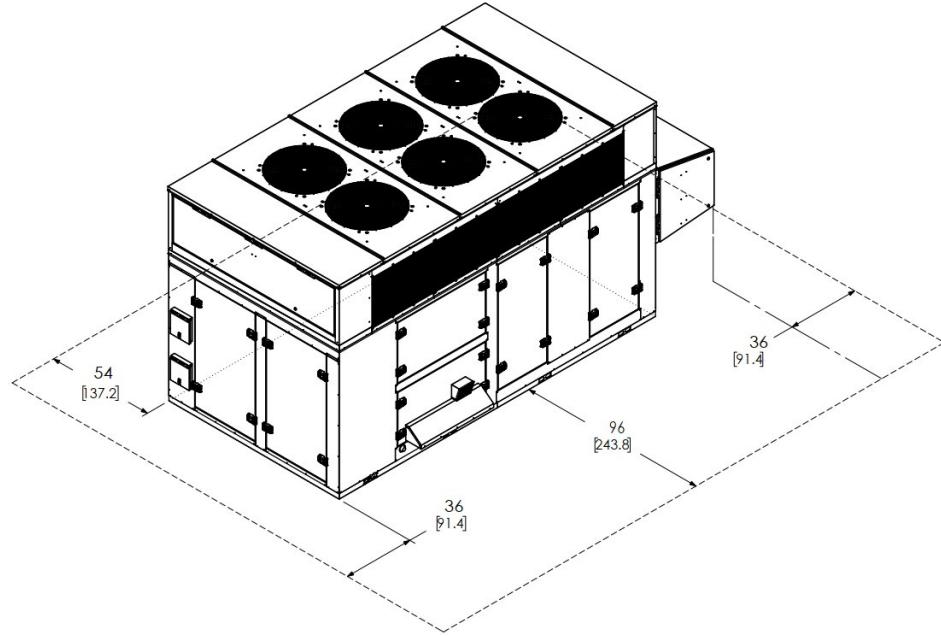
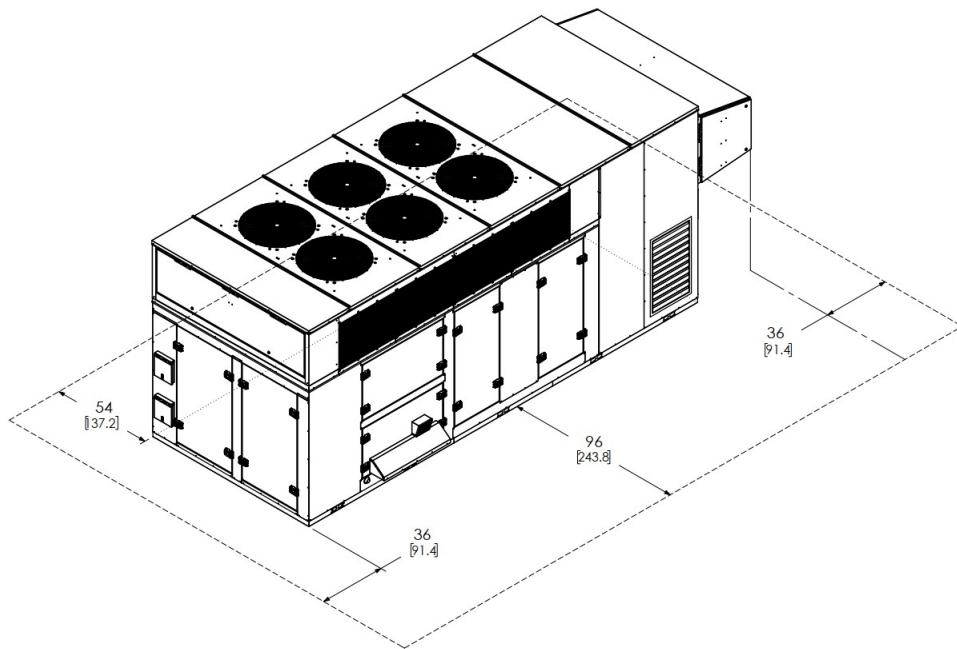
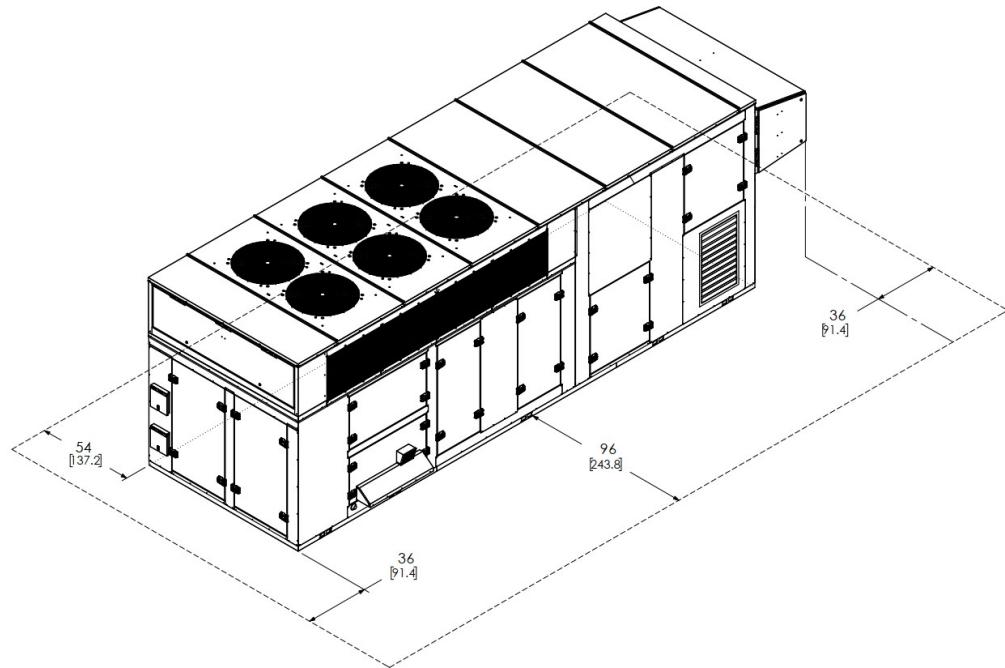



Figure 43. Installation clearances for unit with powered exhaust but no ERV, in. (cm)



Note: Minimum of 72-inches (182.9 cm) clearance is required above the condenser fans.

Unit Clearances, Curb Dimensions, and Dimensional Data

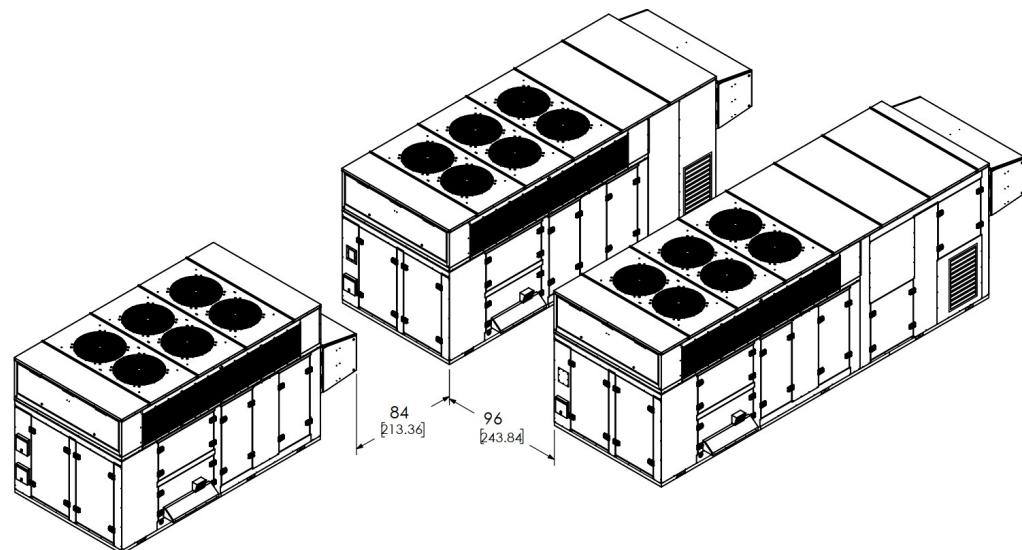


Figure 44. Installation clearances for unit with ERV, in. (cm)

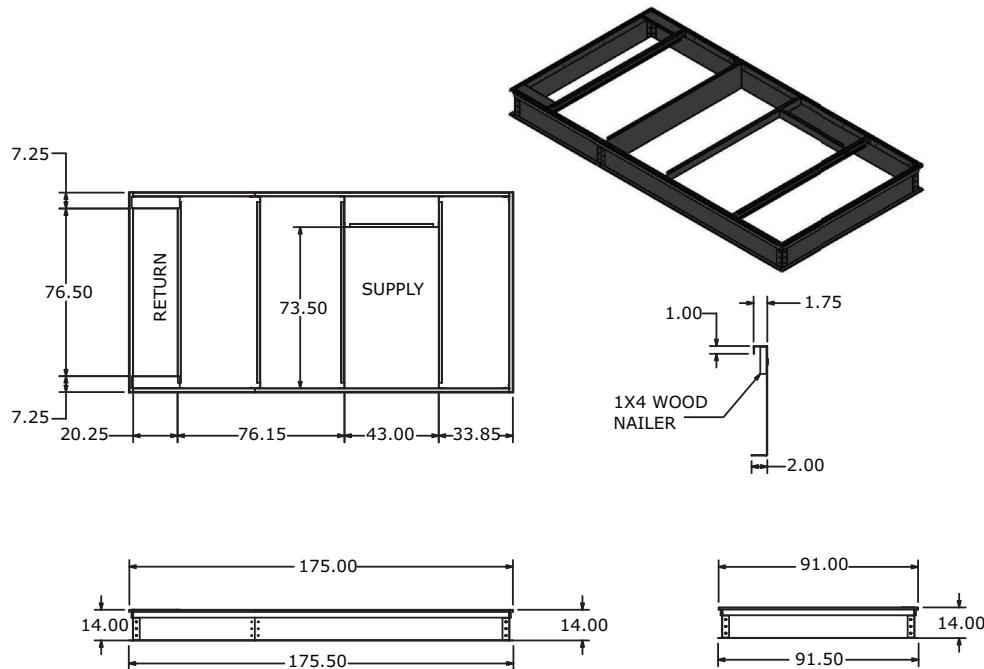
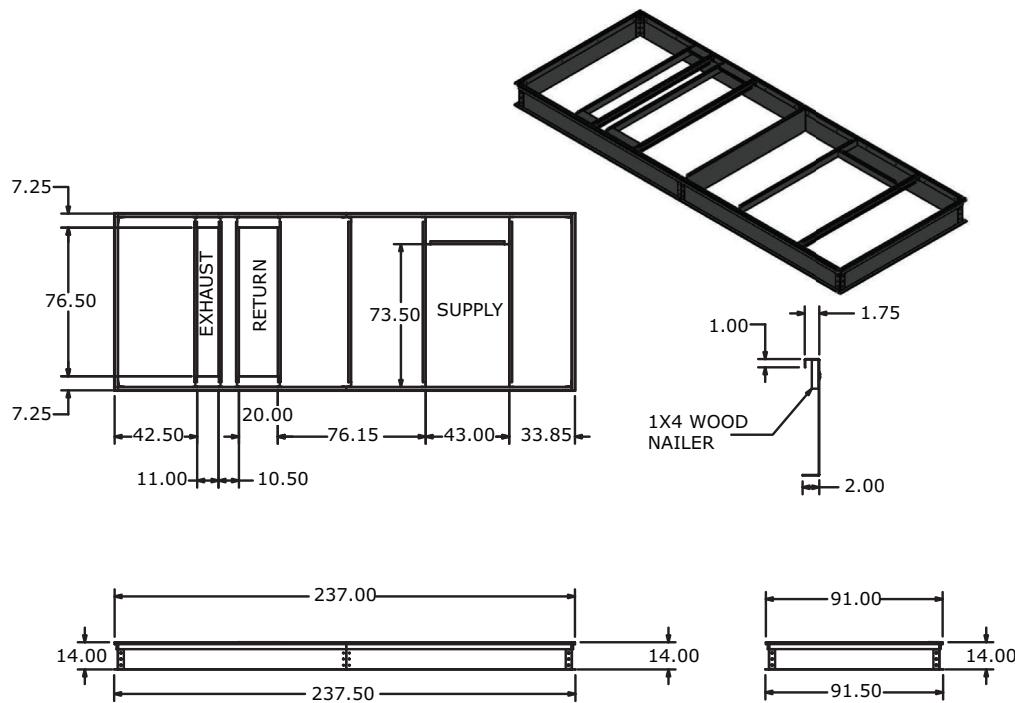
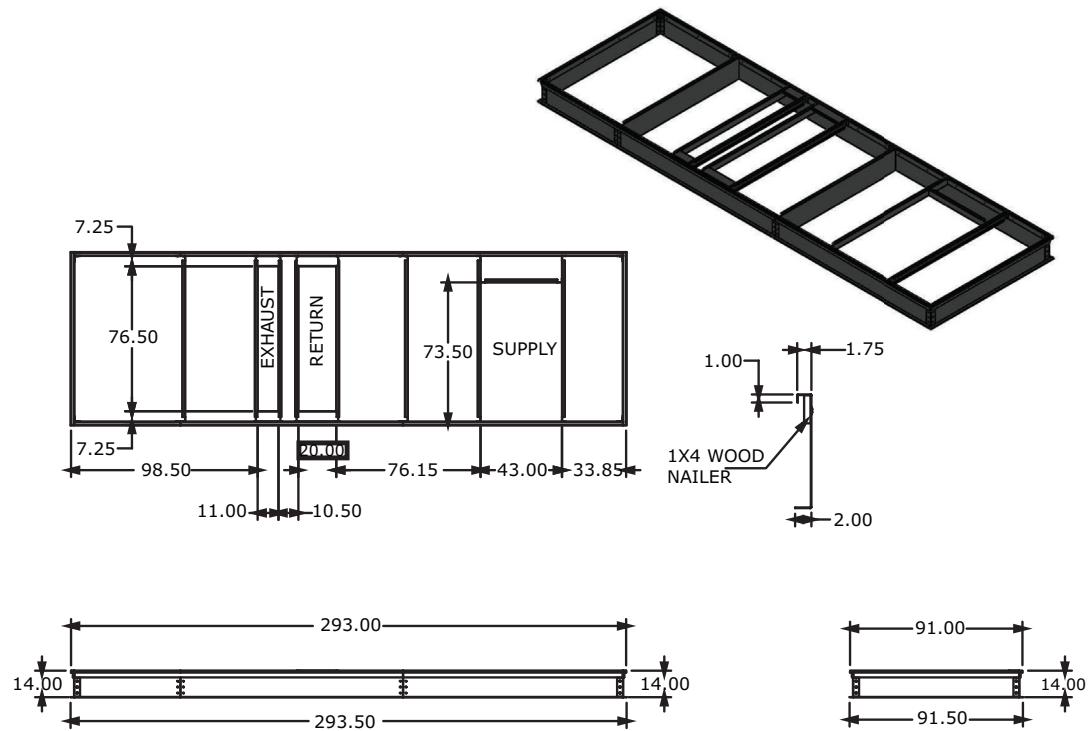

Note: Minimum of 72-inches (182.9 cm) clearance is required above the condenser fans.

Figure 45. Unit to unit clearance, in. (cm)



Curb Dimensions

Figure 46. Unit curb data for OANG cabinet with no powered exhaust or ERV, in. (cm)


Figure 47. Unit curb data for OANG cabinet with powered exhaust but no ERV, in. (cm)

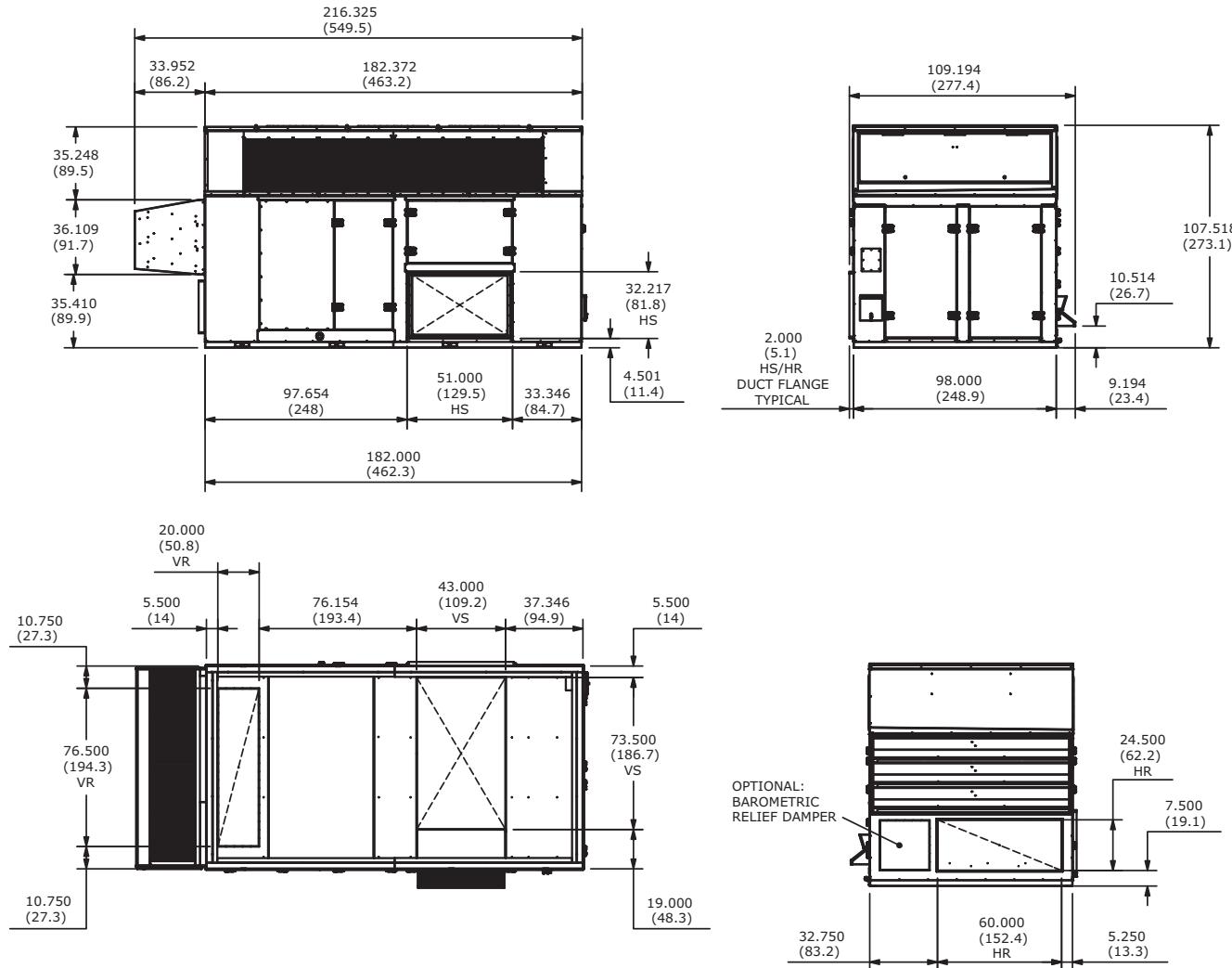
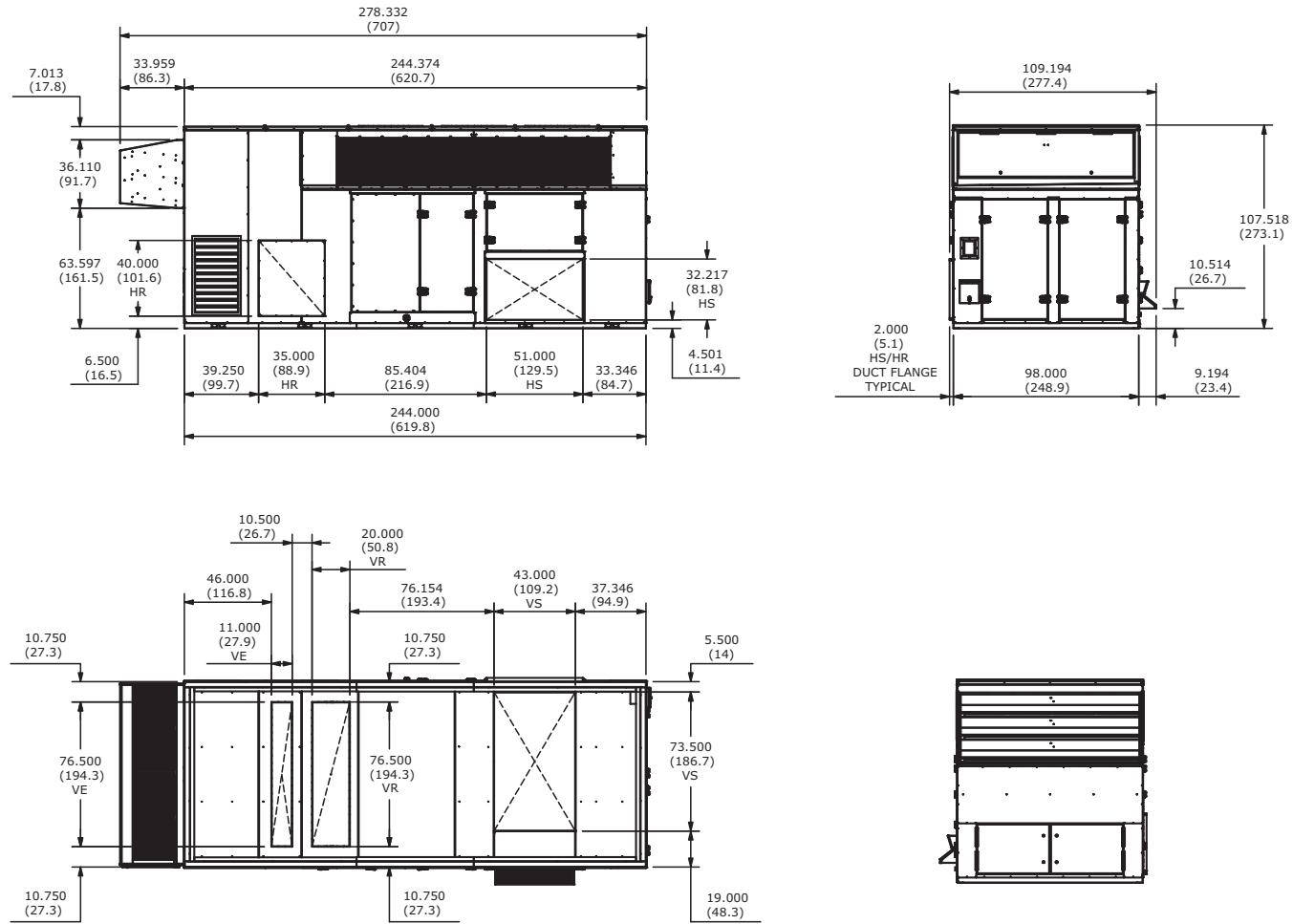

Unit Clearances, Curb Dimensions, and Dimensional Data

Figure 48. Unit curb data for OANG cabinet with ERV, in. (cm)

Dimensional Data

Figure 49. Unit dimensional data for OANG unit with no powered exhaust or ERV, in. (cm)

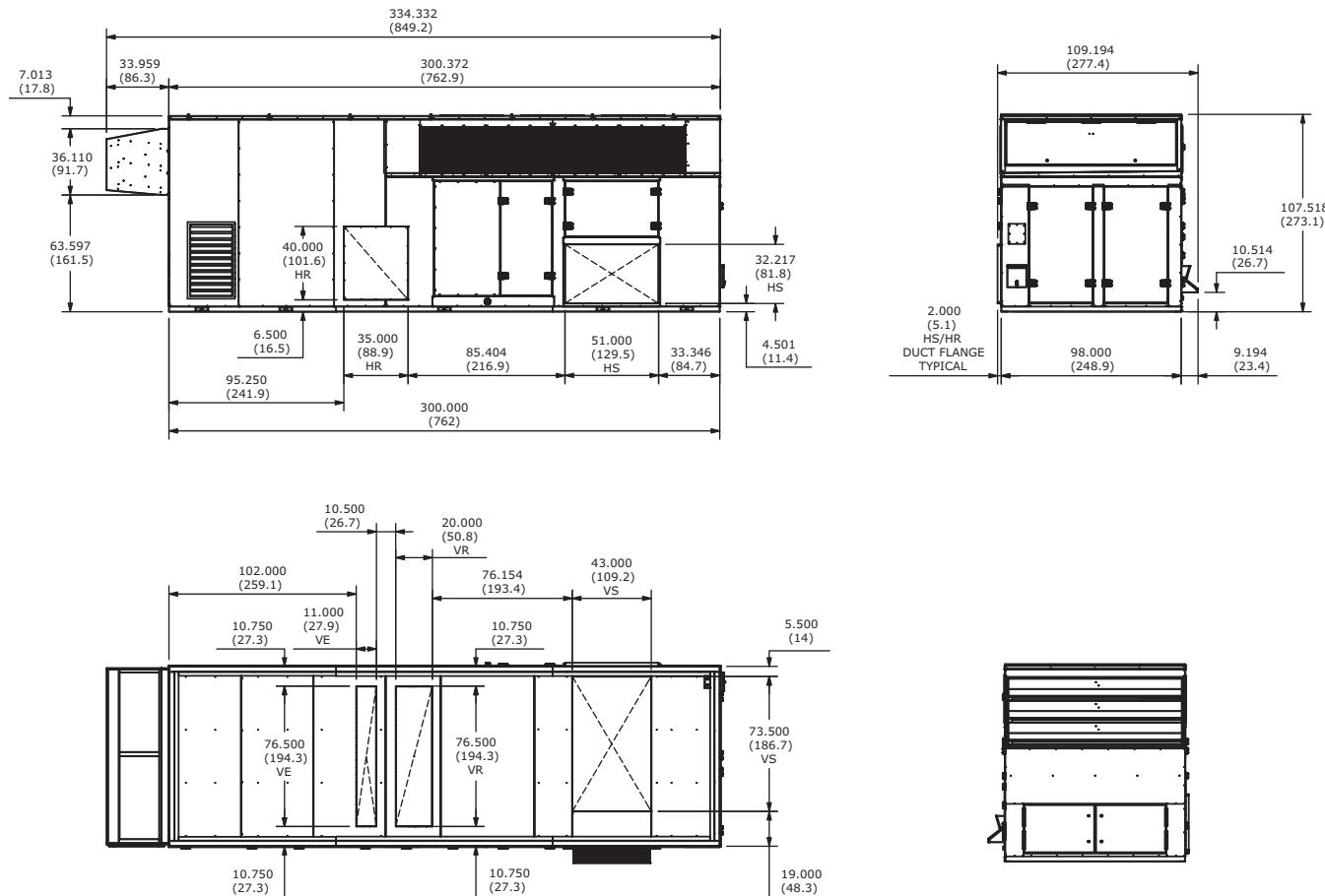


Notes:

- Units with no cooling will have the same dimensions, less the condensing section.
- Units with chilled water cooling will have the same dimensions, less the condensing section, and with an 18-inches (45.7 cm) deep pipe cabinet added.
- See project-specific unit submittals.

Unit Clearances, Curb Dimensions, and Dimensional Data

Figure 50. Unit dimensional data for OANG cabinet with powered exhaust but no ERV, in. (cm)



Notes:

- Vertical Dedicated Exhaust (VDE) is a selectable configuration and is not standard.
- Units with no cooling will have the same dimensions, less the condensing section.
- Units with chilled water cooling will have the same dimensions, less the condensing section, and with an 18-inches (45.7 cm) deep pipe cabinet added.
- See project-specific unit submittals.

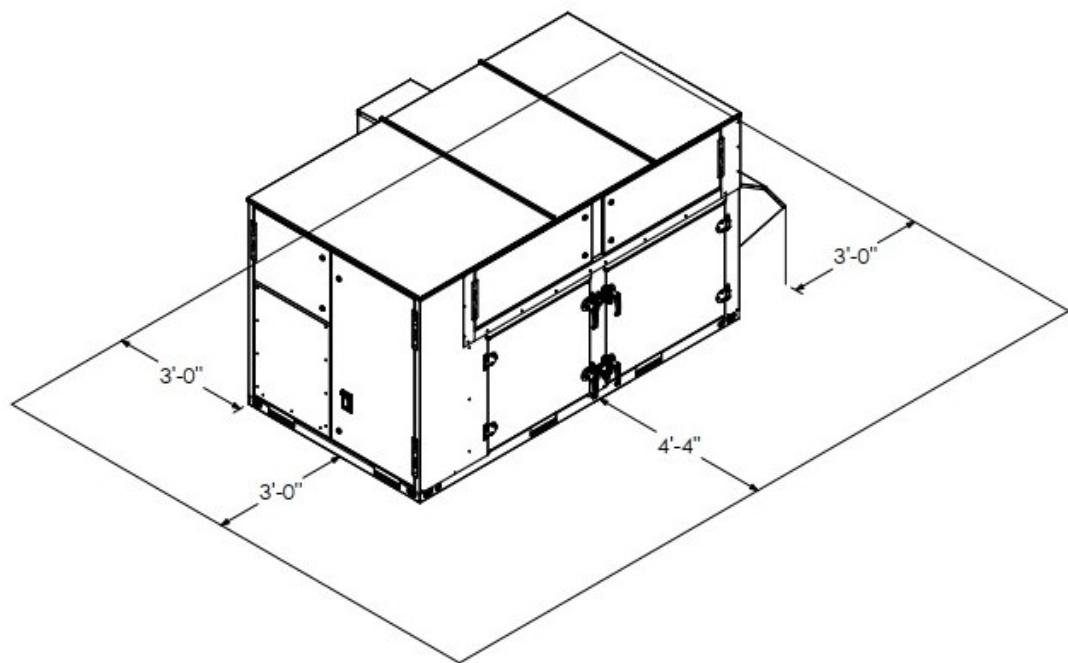
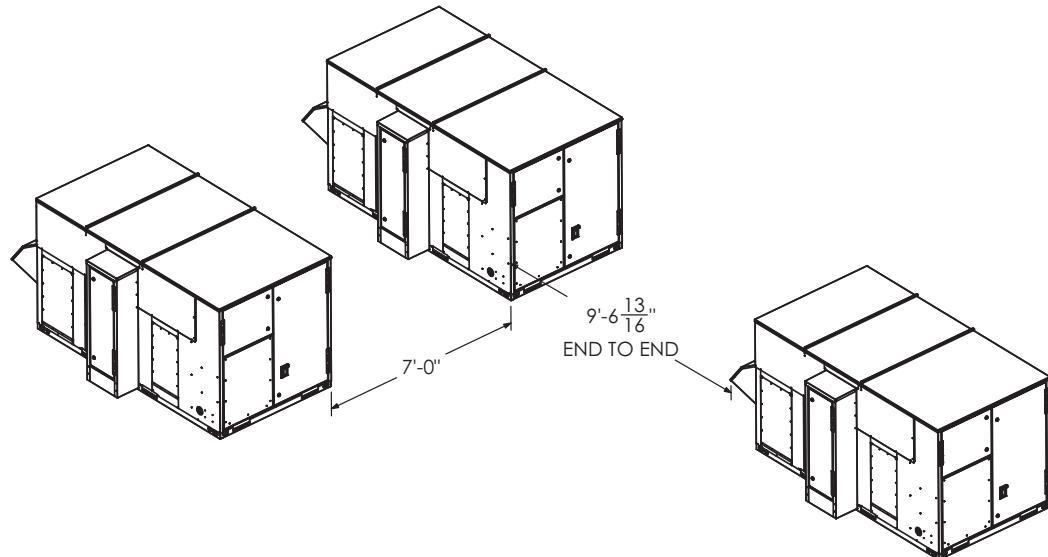
Unit Clearances, Curb Dimensions, and Dimensional Data

Figure 51. Unit dimensional data for OANG cabinet with ERV, in. (cm)

Notes:

- Vertical Dedicated Exhaust (VDE) is a selectable configuration and is not standard.
- Units with no cooling will have the same dimensions, less the condensing section.
- Units with chilled water cooling will have the same dimensions, less the condensing section, and with an 18-inches (45.7 cm) deep pipe cabinet added.
- See project-specific unit submittals.

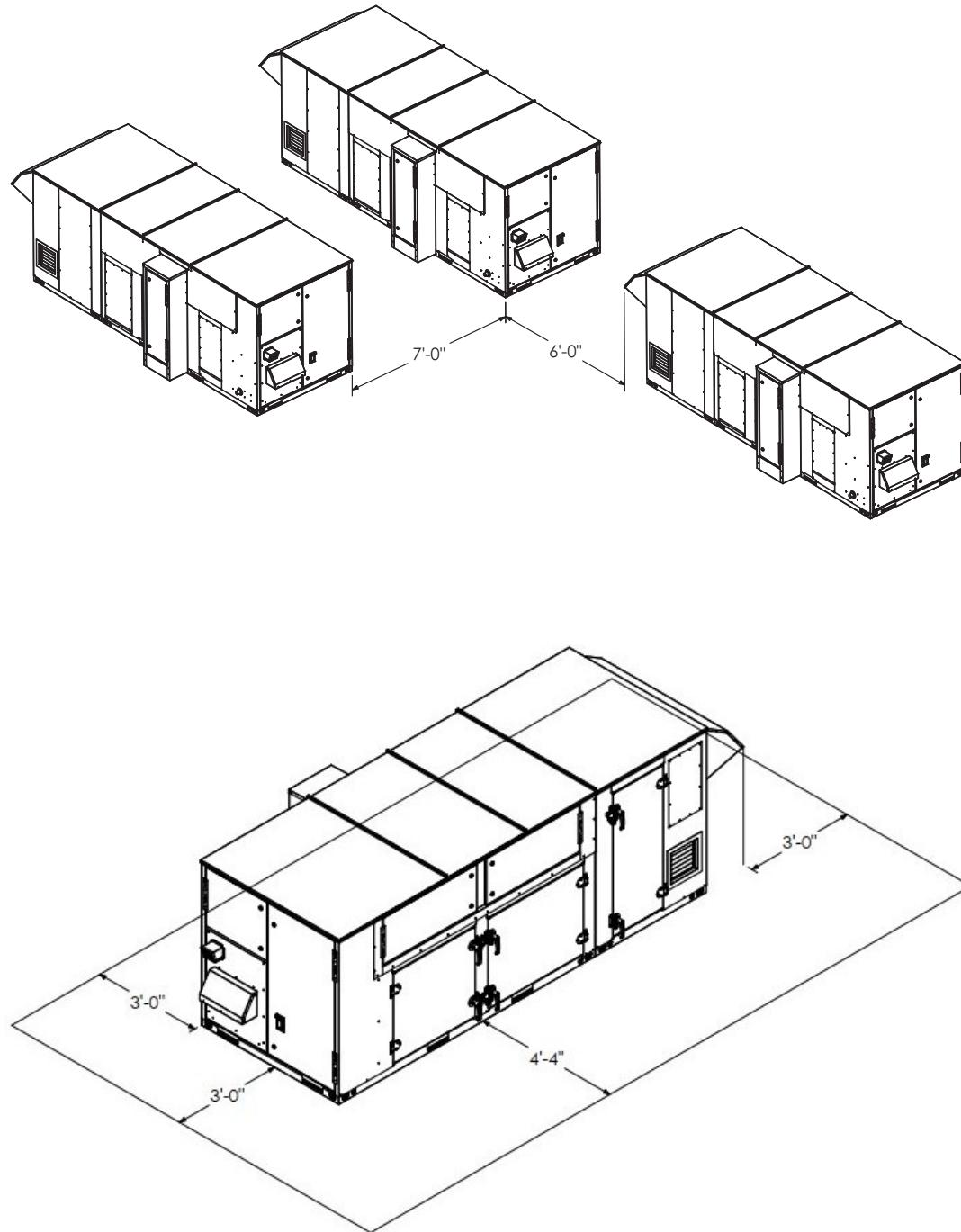
Unit Clearances, Curb Dimensions, and Dimensional Data



Outdoor WSHP Units

OABE Units

Unit Clearances

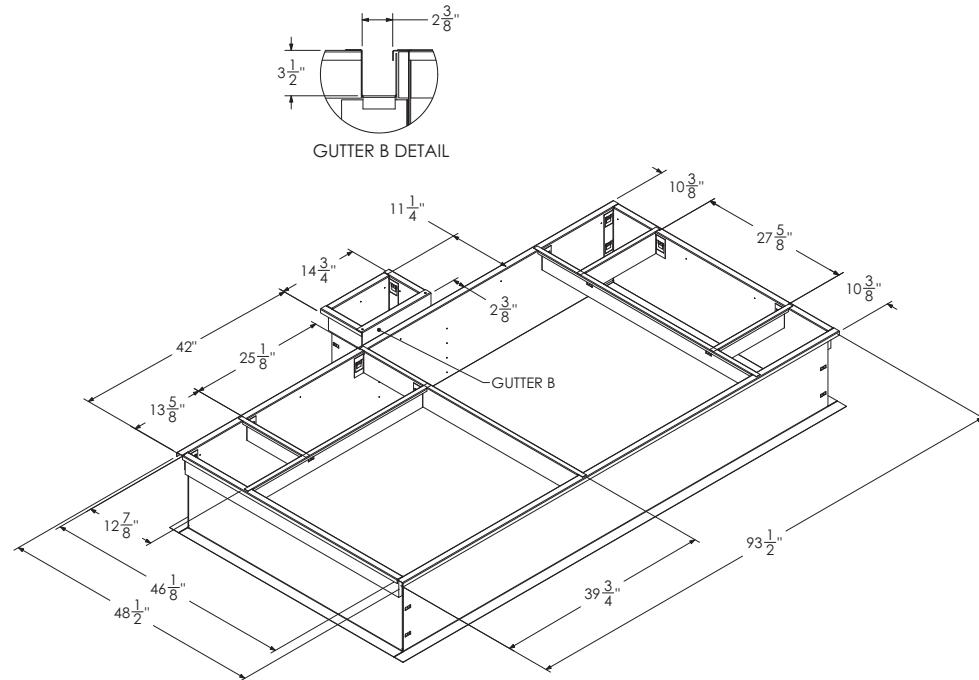
Note: Minimum clearance above the unit is 72-inches.


Figure 52. Typical installation clearances for OABE unit

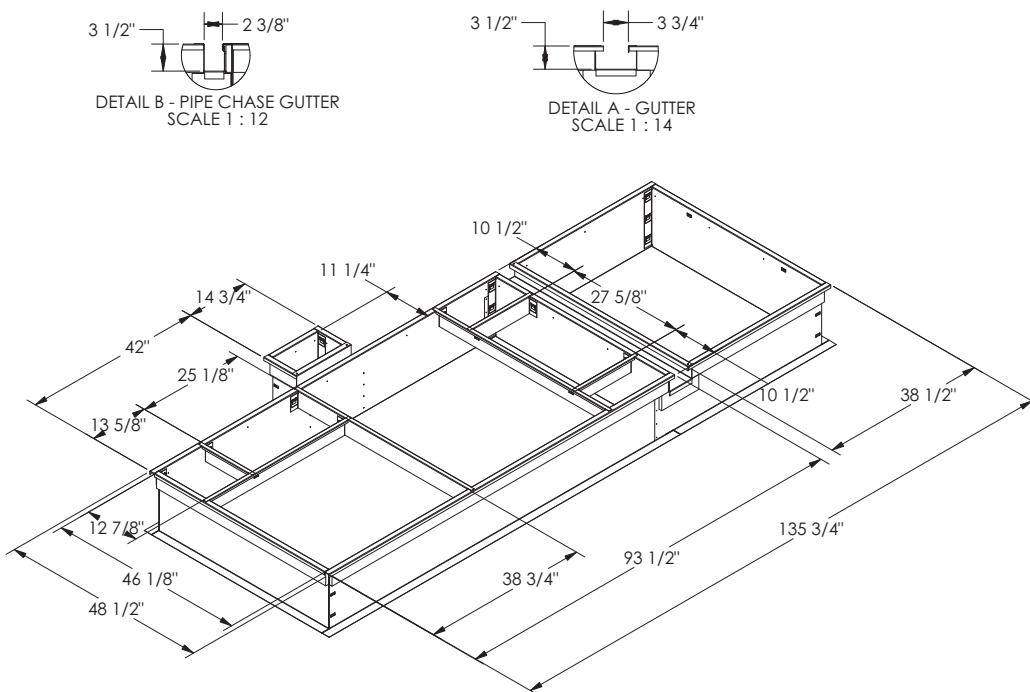
Note: Minimum clearance above the unit is 72-inches.

Unit Clearances, Curb Dimensions, and Dimensional Data

Figure 53. Typical installation clearances for OABE unit with auxiliary cabinet



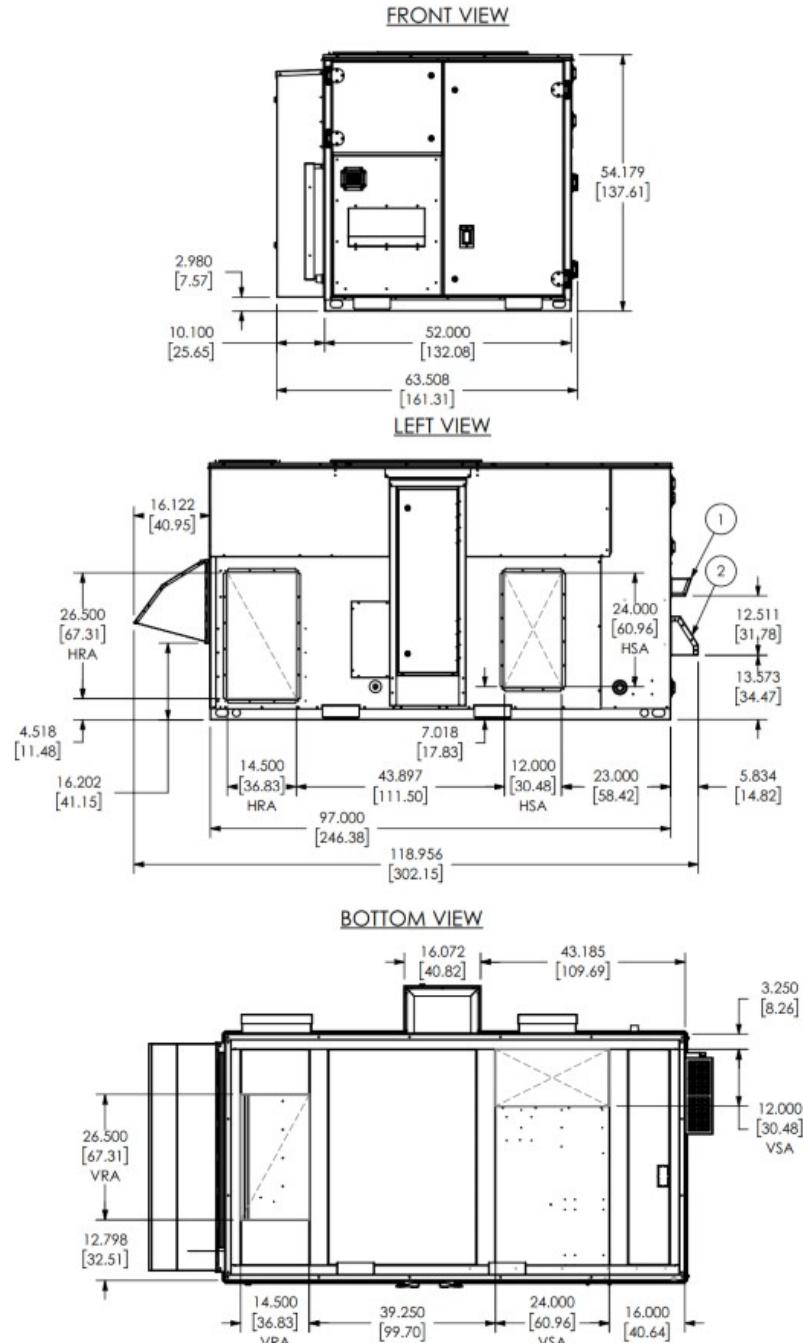
Note: Certain options require auxiliary cabinet. See project-specific unit submittals.


Unit Clearances, Curb Dimensions, and Dimensional Data

Curb Dimensions

Figure 54. Unit curb data for OABE 3 to 9 tons

Figure 55. Unit curb data for OABE 3 to 9 tons with auxiliary cabinet

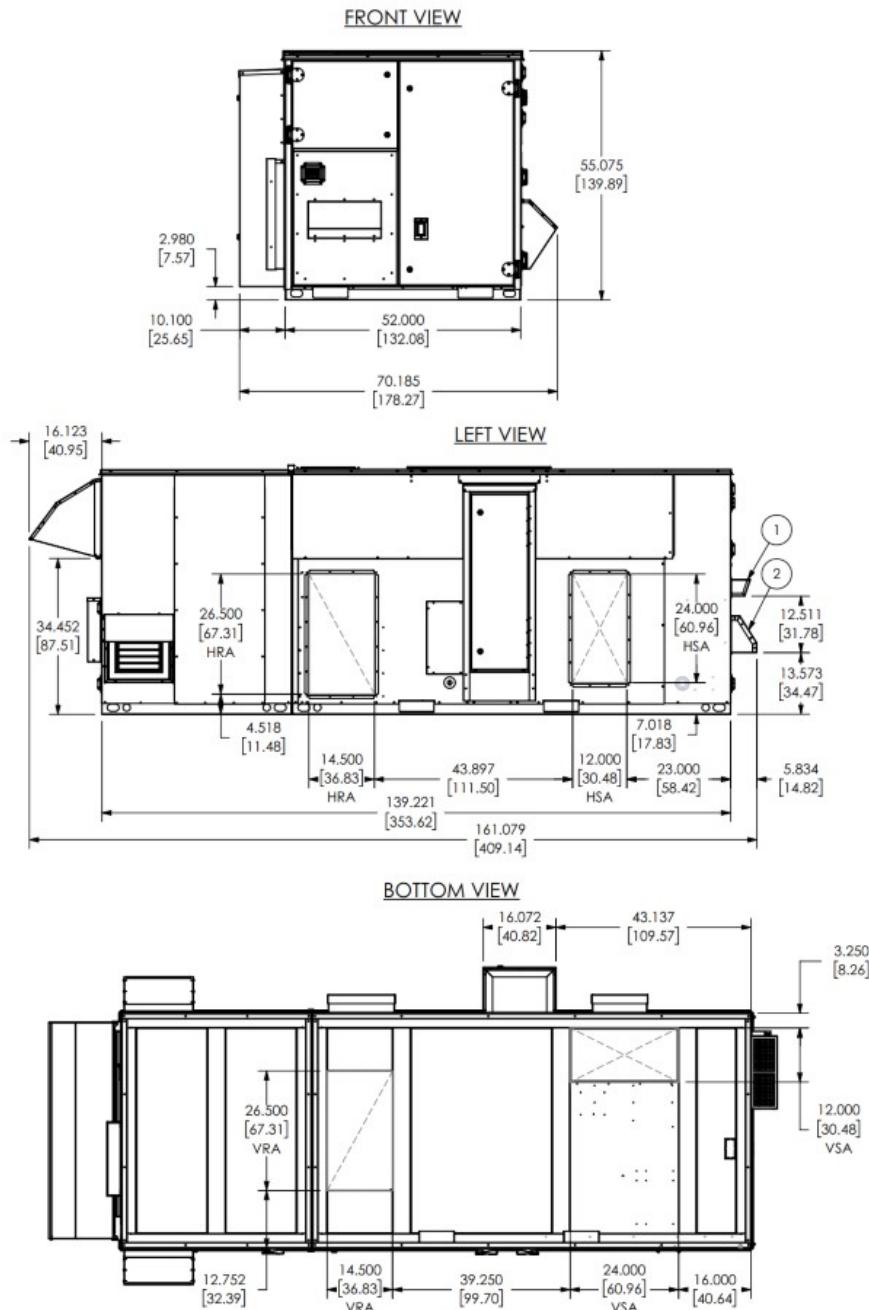


Note: Certain options require auxiliary cabinet. See project-specific unit submittals.

Unit Clearances, Curb Dimensions, and Dimensional Data

Dimensional Data

Figure 56. Unit dimensional data for OABE 3 to 9 tons (dual dimensions, in. [cm])



CONFIGURATION SPECIFIC NOTES:

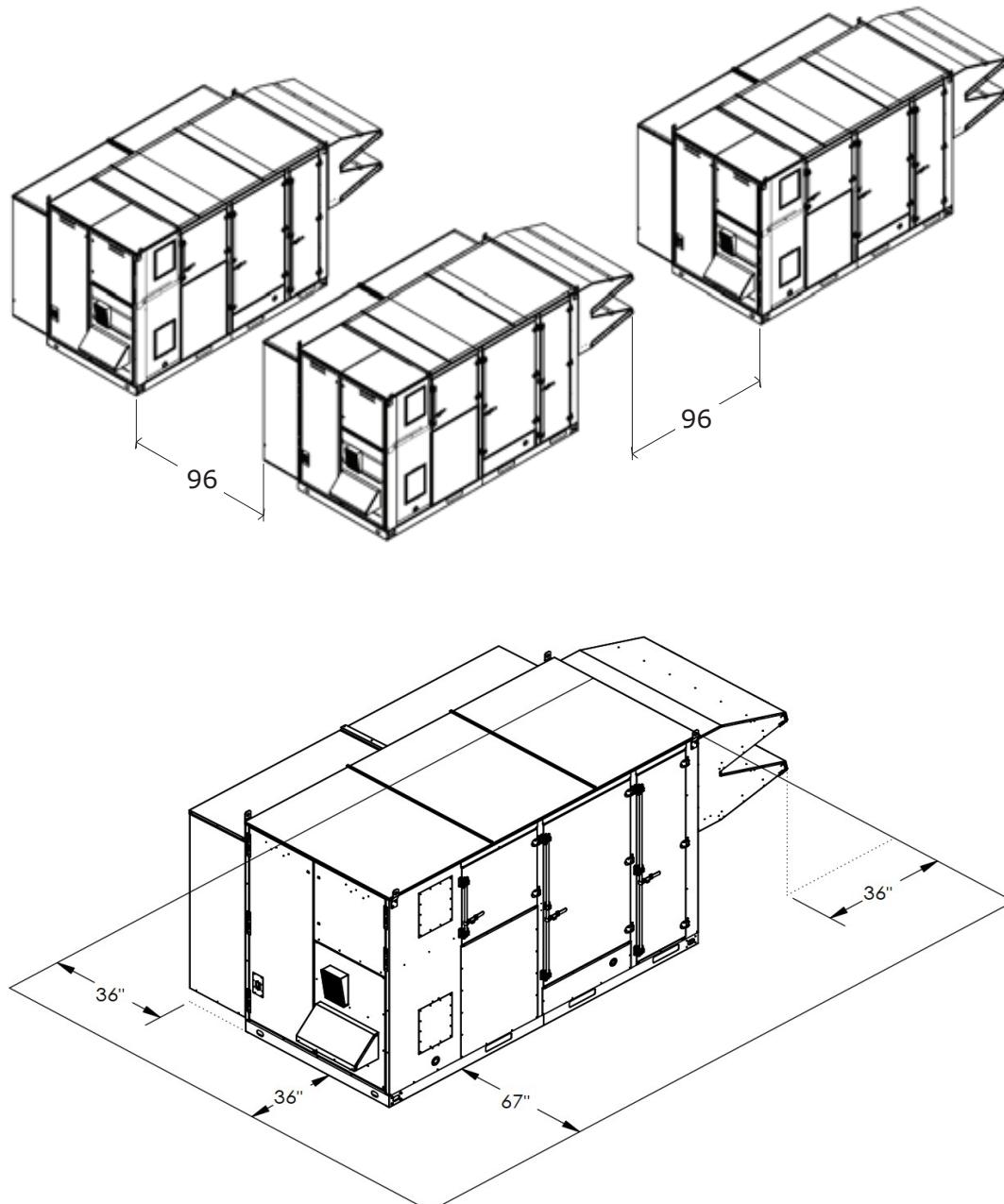
1. FLUE HOOD: INCLUDED WITH GAS HEAT
2. COMBUSTION AIR INTAKE: INCLUDED WITH GAS HEAT

Unit Clearances, Curb Dimensions, and Dimensional Data

Figure 57. Unit dimensional data for OABE 3 to 9 tons with auxiliary cabinet (dual dimensions, in. [cm])

CONFIGURATION SPECIFIC NOTES:

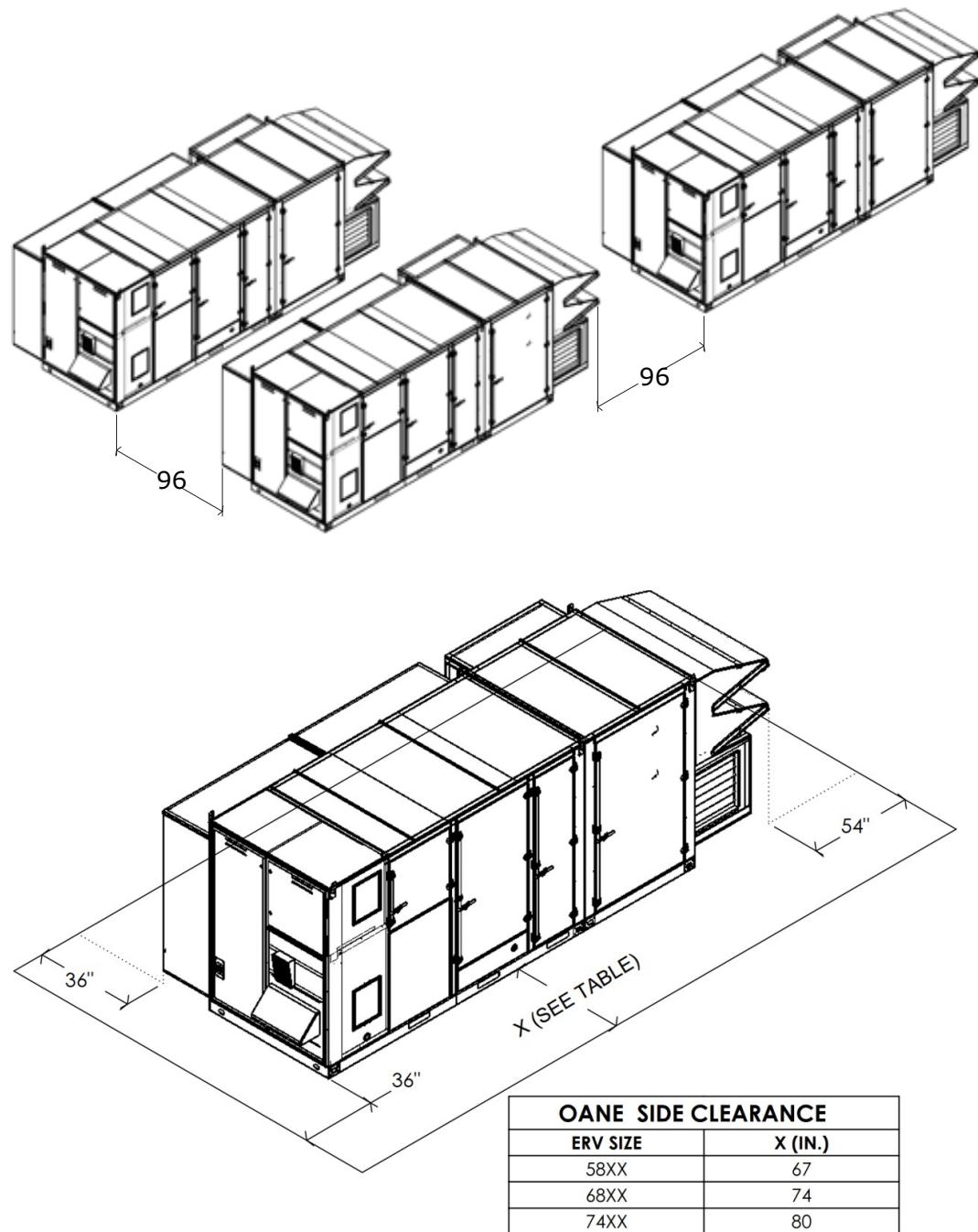
1. FLUE HOOD: INCLUDED WITH GAS HEAT
2. COMBUSTION AIR INTAKE: INCLUDED WITH GAS HEAT


Note: Certain options require auxiliary cabinet. See project-specific unit submittals.

OANE Units

Unit Clearances

Note: Minimum clearance above the unit is 72-inches.


Figure 58. Typical installation clearances for OANE unit (in.)

Unit Clearances, Curb Dimensions, and Dimensional Data

Note: Minimum clearance above the unit is 72-inches.

Figure 59. Typical installation clearances for OANE unit with auxiliary cabinet (in.)

Note: Certain options require auxiliary cabinet. Refer to project-specific unit submittals.

Curb Dimensions

Figure 60. Unit curb data for OANE 30 to 60 tons (in.)

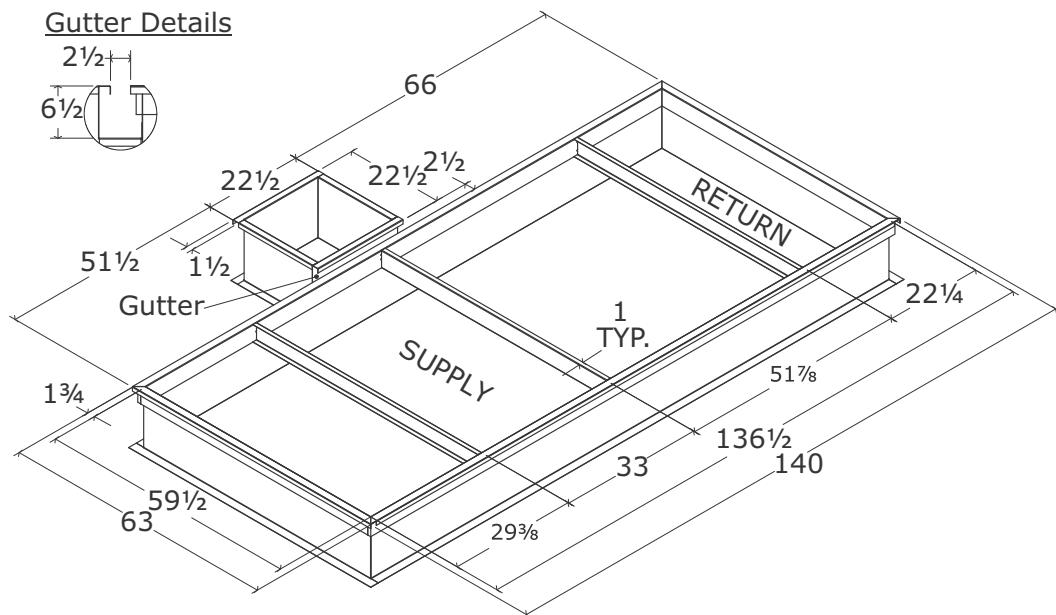
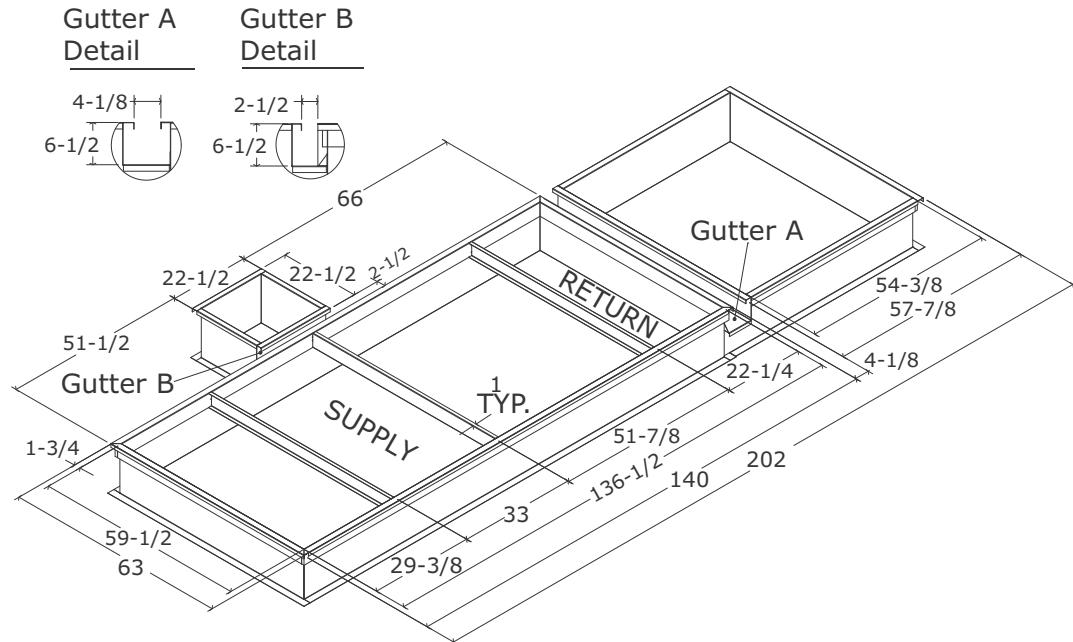
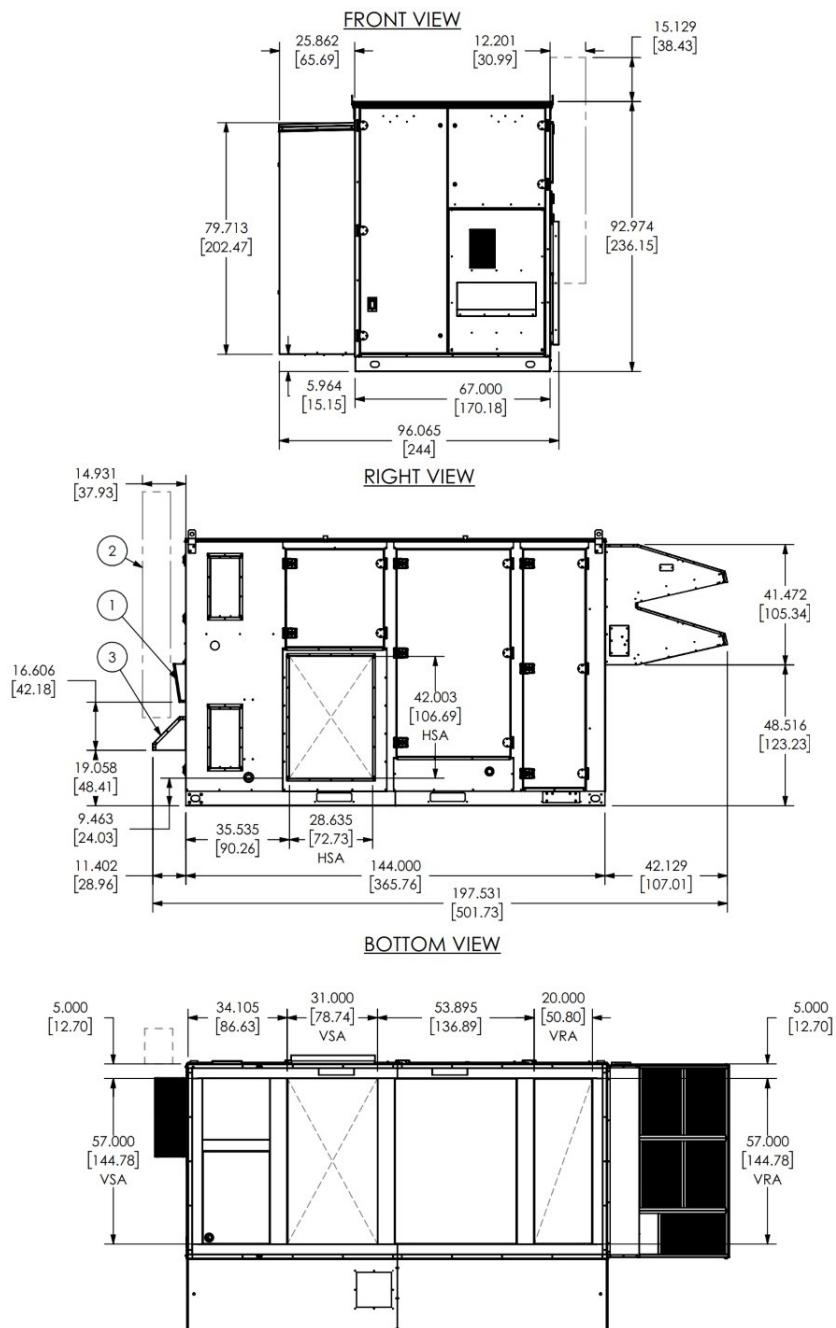



Figure 61. Unit curb data for OANE 30 to 60 tons with auxiliary cabinet (in.)

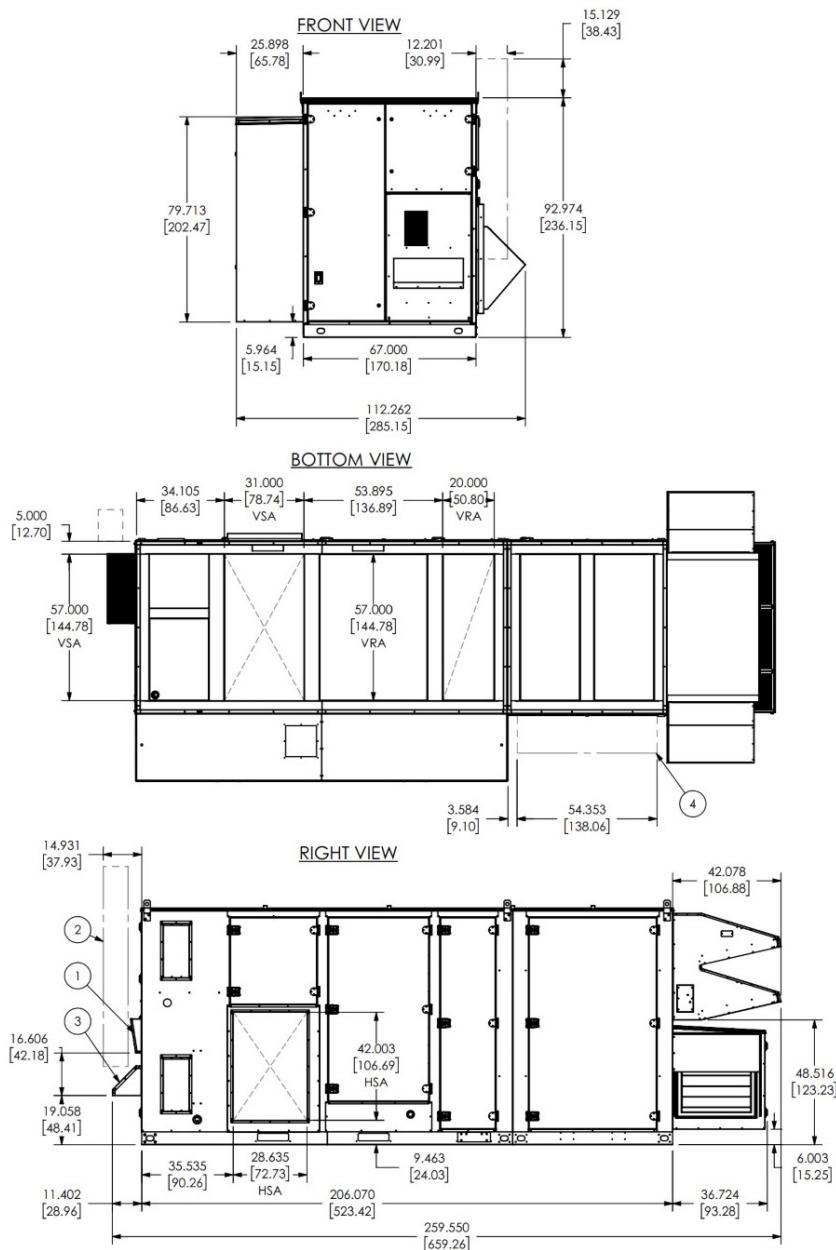


Note: Certain options require auxiliary cabinet. See project-specific unit submittals.

Unit Clearances, Curb Dimensions, and Dimensional Data

Dimensional Data

Figure 62. Unit dimensional data for OANE 30 to 60 tons (dual dimensions, in. [cm])



CONFIGURATION SPECIFIC NOTES:

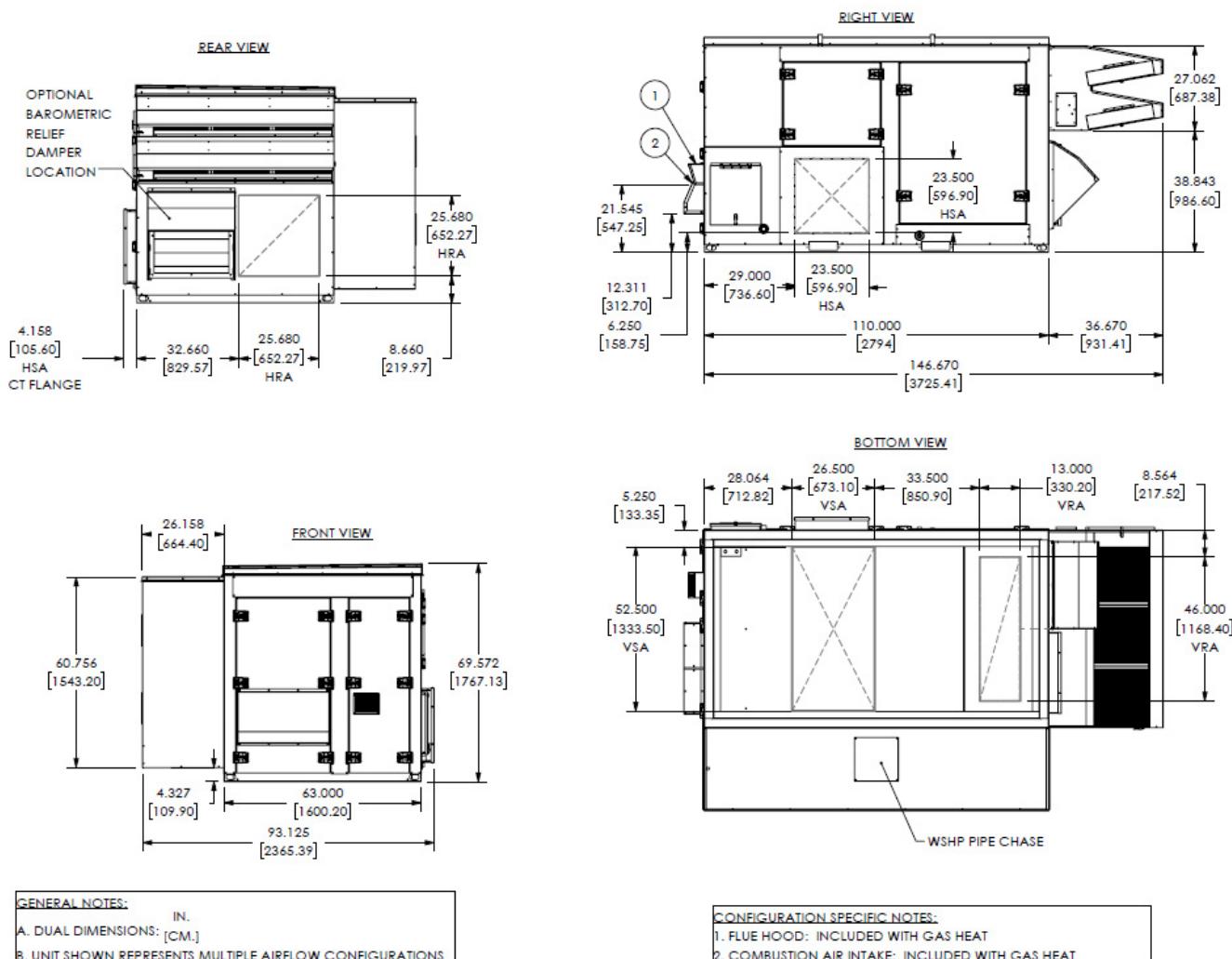
1. FLUE HOOD: INCLUDED WITH 300-500MBH GAS HEAT
2. FLUE EXTENSION: INCLUDED WITH 600-1000MBH GAS HEAT
3. COMBUSTION AIR INTAKE: INCLUDED WITH GAS HEAT

Unit Clearances, Curb Dimensions, and Dimensional Data

Figure 63. Unit dimensional data for OANE 30 to 60 tons with auxiliary cabinet (dual dimensions, in. [cm])

CONFIGURATION SPECIFIC NOTES:

1. FLUE HOOD: INCLUDED WITH 300-500MBH GAS HEAT
2. FLUE EXTENSION: INCLUDED WITH 600-1000MBH GAS HEAT
3. COMBUSTION AIR INTAKE: INCLUDED WITH GAS HEAT
4. ERV EXTENSION: ENERGY RECOVERY 68-74XX


Note: Certain options require auxiliary cabinet. See project-specific unit submittals.

Unit Clearances, Curb Dimensions, and Dimensional Data

OADG Units

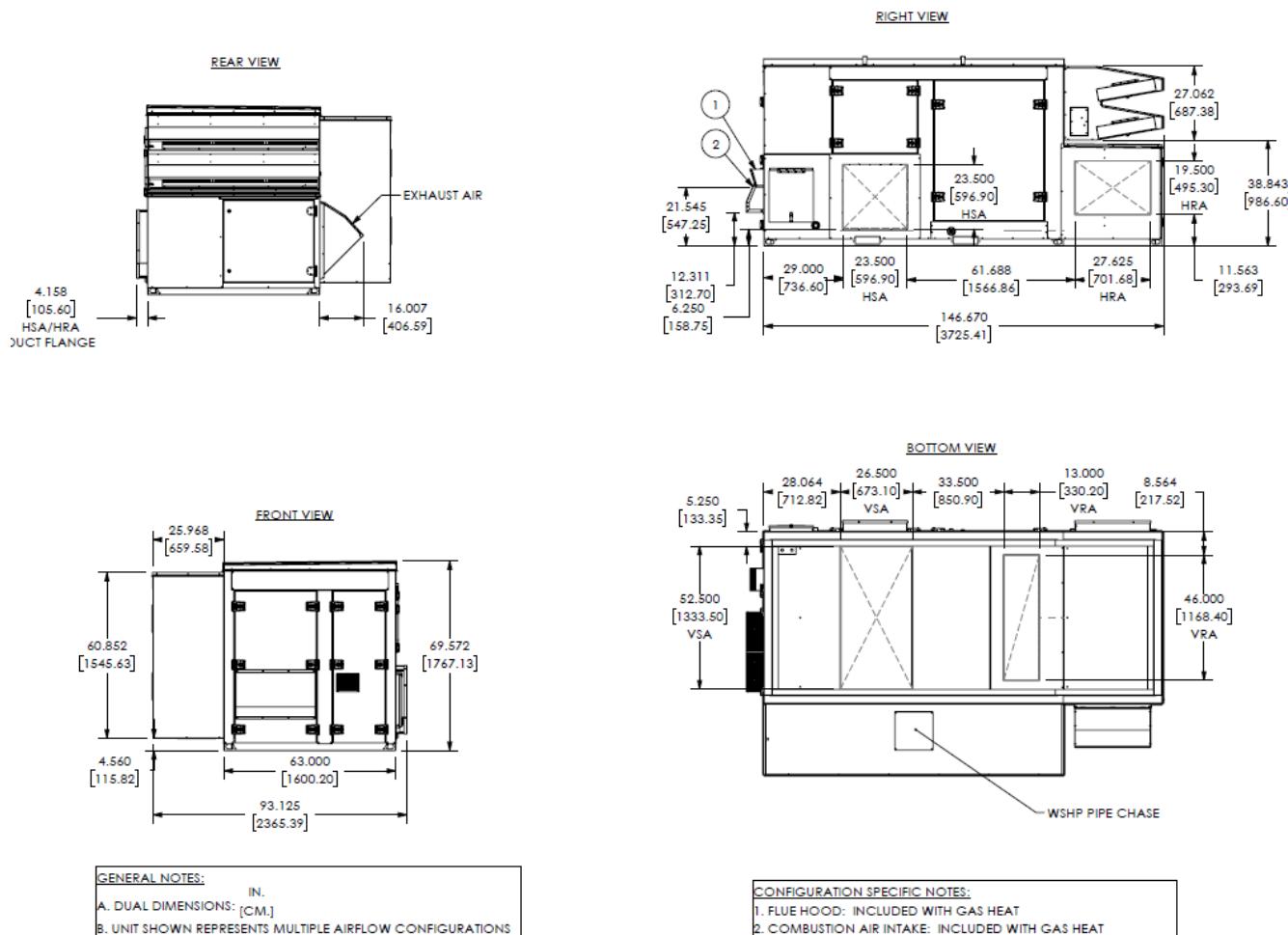

Dimensional Data

Figure 64. Unit dimensional data for OADG outdoor WSHP, in. (cm)

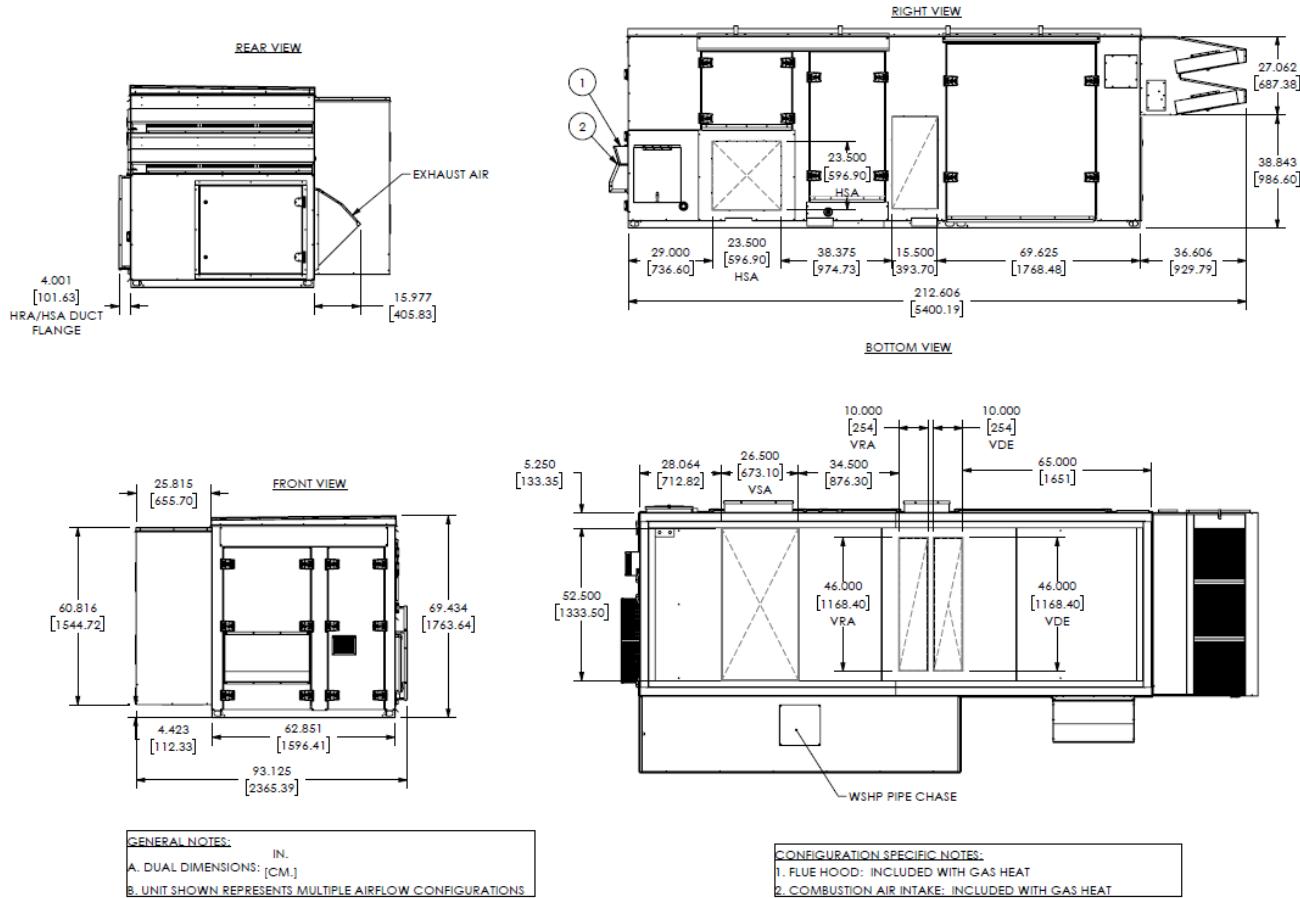
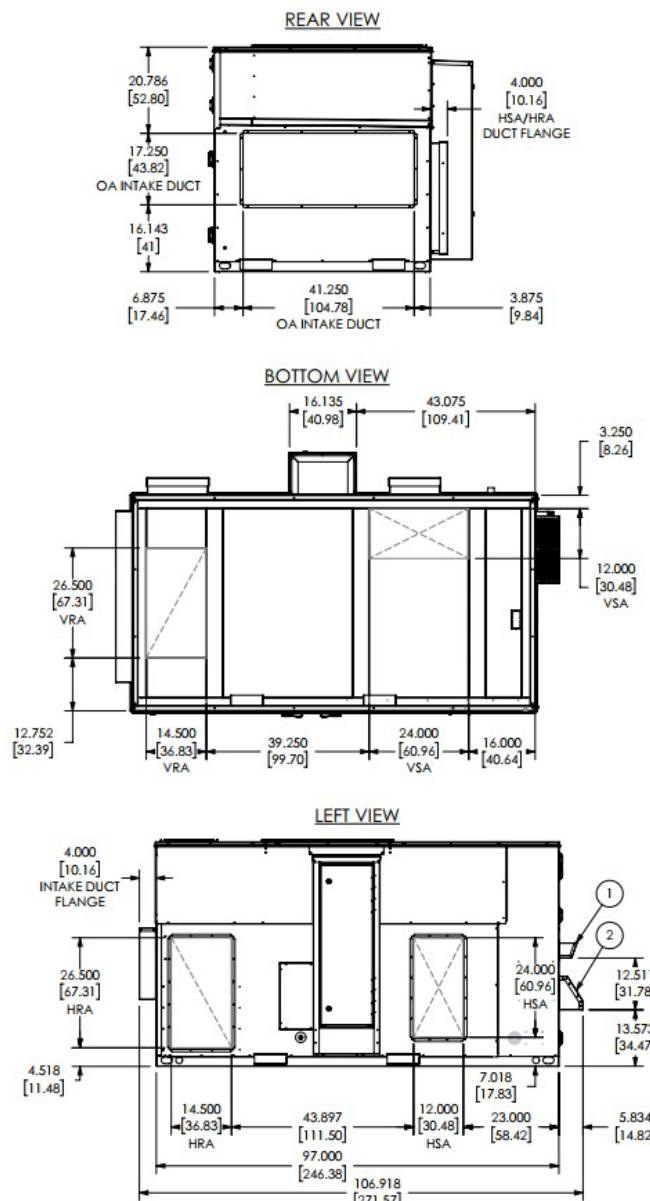

Unit Clearances, Curb Dimensions, and Dimensional Data

Figure 65. Unit dimensional data for OADG outdoor WSHP with Power Exhaust, in. (cm)

Unit Clearances, Curb Dimensions, and Dimensional Data

Figure 66. Unit dimensional data for OADG outdoor WSHP with Power Exhaust, in. (cm)

Note: Vertical Dedicated Exhaust (VDE) is a selectable configuration and is not standard. See unit specific submittal.

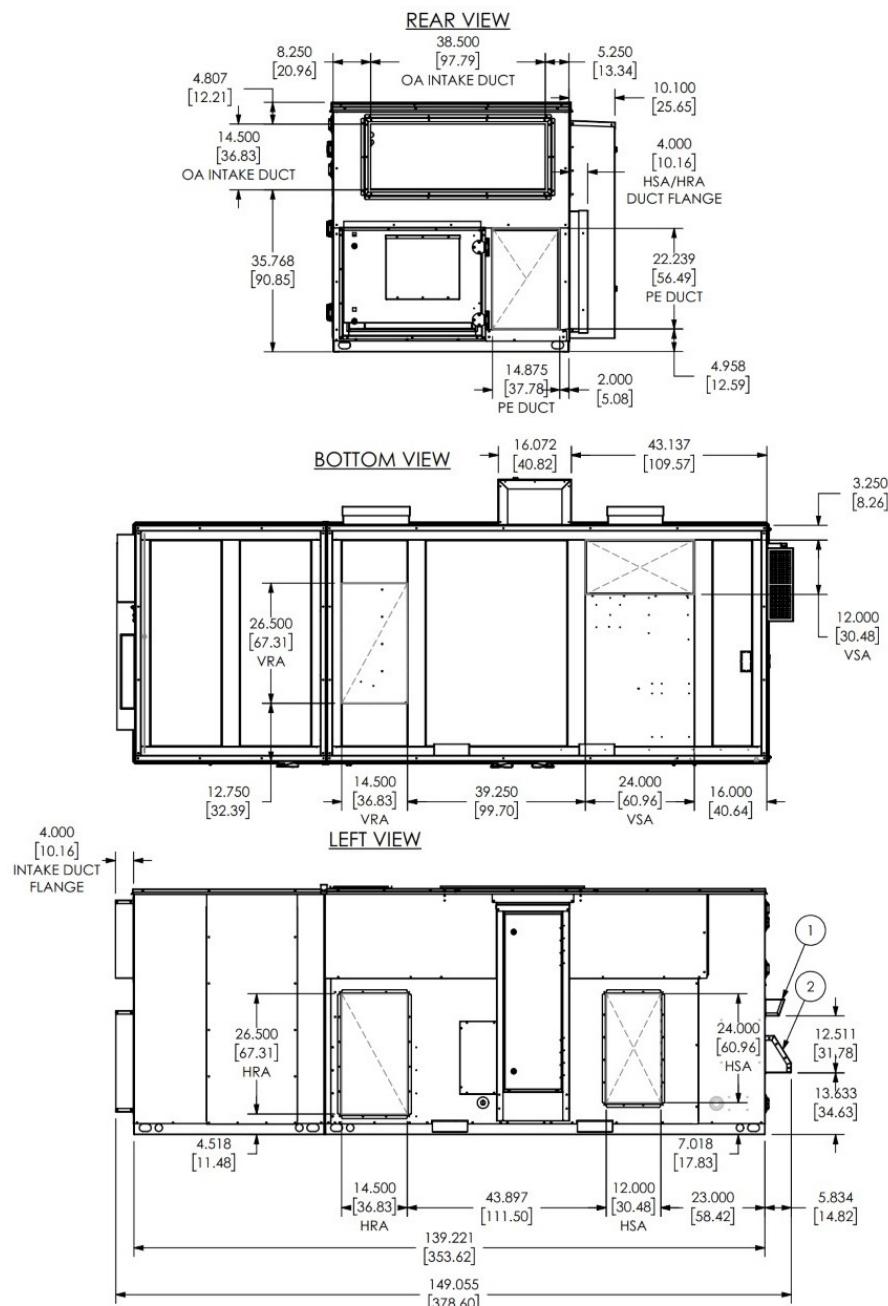

Indoor Water Source Heat Pump (WSHP) Units

OABF Units

Note: Indoor units have the same clearances as outdoor units. Refer to (outdoor OABE unit clearances).

Dimensional Data

Figure 67. Unit dimensional data for indoor OABF WSHP with horizontal supply and no return (dual dimensions, in. [cm])



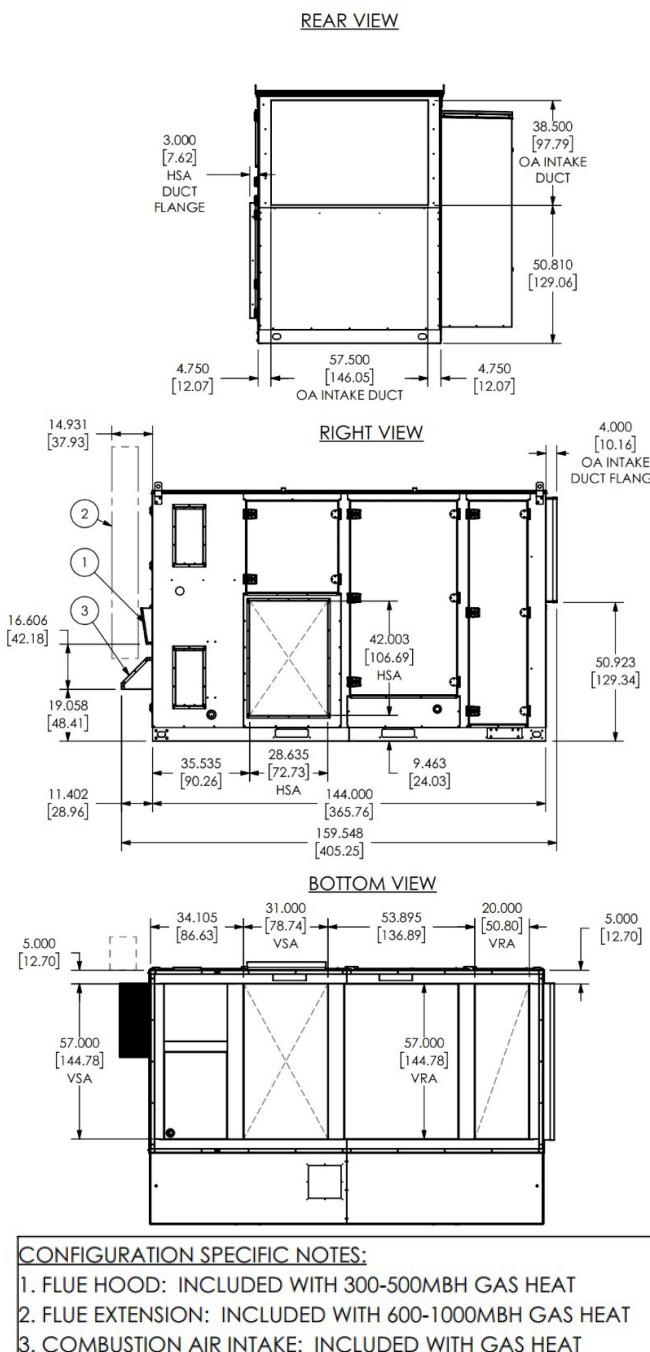
CONFIGURATION SPECIFIC NOTES:

1. FLUE HOOD: INCLUDED WITH GAS HEAT
2. COMBUSTION AIR INTAKE: INCLUDED WITH GAS HEAT

Unit Clearances, Curb Dimensions, and Dimensional Data

Figure 68. Unit dimensional data for indoor OABF WSHP and ERV or exhaust fan (dual dimensions, in. [cm])

CONFIGURATION SPECIFIC NOTES:


1. FLUE HOOD: INCLUDED WITH GAS HEAT
2. COMBUSTION AIR INTAKE: INCLUDED WITH GAS HEAT

OANF Units

Note: Indoor units have the same clearances as outdoor units. See (outdoor OANE unit clearances).

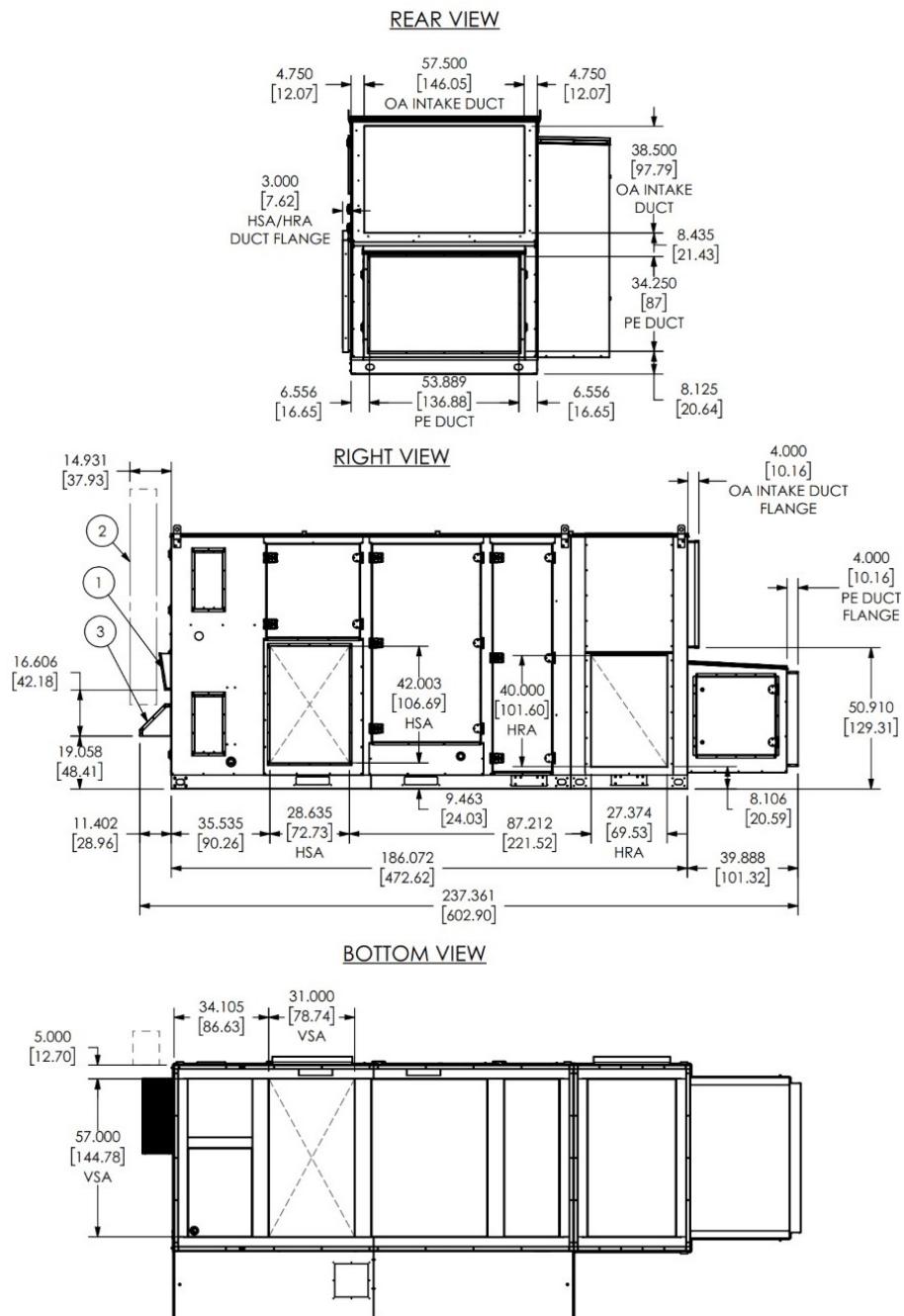

Dimensional Data

Figure 69. Unit dimensional data for indoor OANF WSHP with horizontal supply and vertical/no return (dual dimensions, in. [cm])

Unit Clearances, Curb Dimensions, and Dimensional Data

Figure 70. Unit dimensional data for indoor OANF WSHP with horizontal supply/return (no ERV) (dual dimensions, in. [cm])



CONFIGURATION SPECIFIC NOTES:

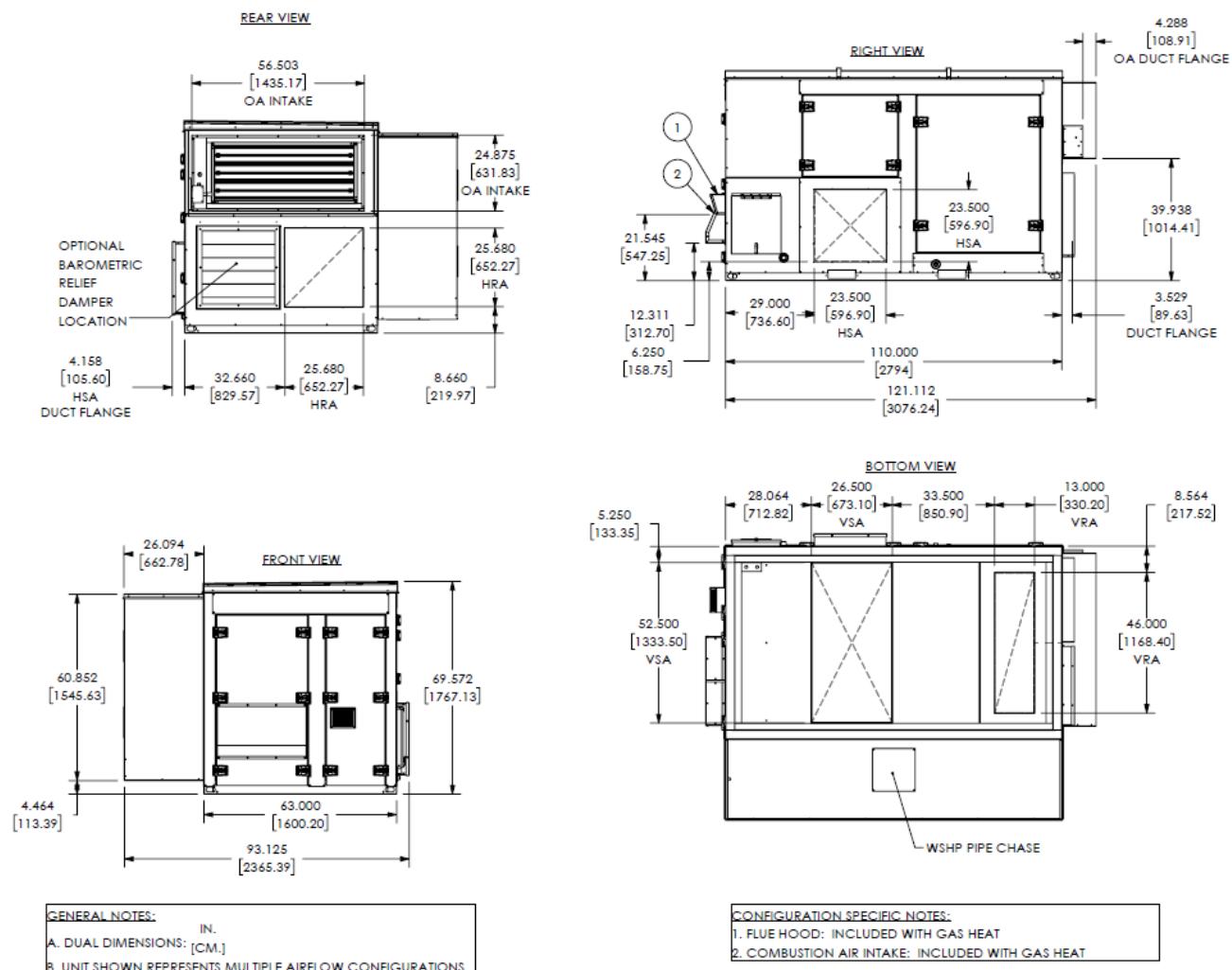
1. FLUE HOOD: INCLUDED WITH 300-500MBH GAS HEAT
2. FLUE EXTENSION: INCLUDED WITH 600-1000MBH GAS HEAT
3. COMBUSTION AIR INTAKE: INCLUDED WITH GAS HEAT

Unit Clearances, Curb Dimensions, and Dimensional Data

Figure 71. Unit dimensional data for indoor OANF WSHP with horizontal supply/return and ERV (dual dimensions, in. [cm])

CONFIGURATION SPECIFIC NOTES:

1. FLUE HOOD: INCLUDED WITH 300-500MBH GAS HEAT
2. FLUE EXTENSION: INCLUDED WITH 600-1000MBH GAS HEAT
3. COMBUSTION AIR INTAKE: INCLUDED WITH GAS HEAT
4. ERV EXTENSION: ENERGY RECOVERY 68-74XX


Note: Vertical Dedicated Exhaust (VDE) is a selectable configuration and is not standard. See unit specific submittal.

Unit Clearances, Curb Dimensions, and Dimensional Data

OADG Units

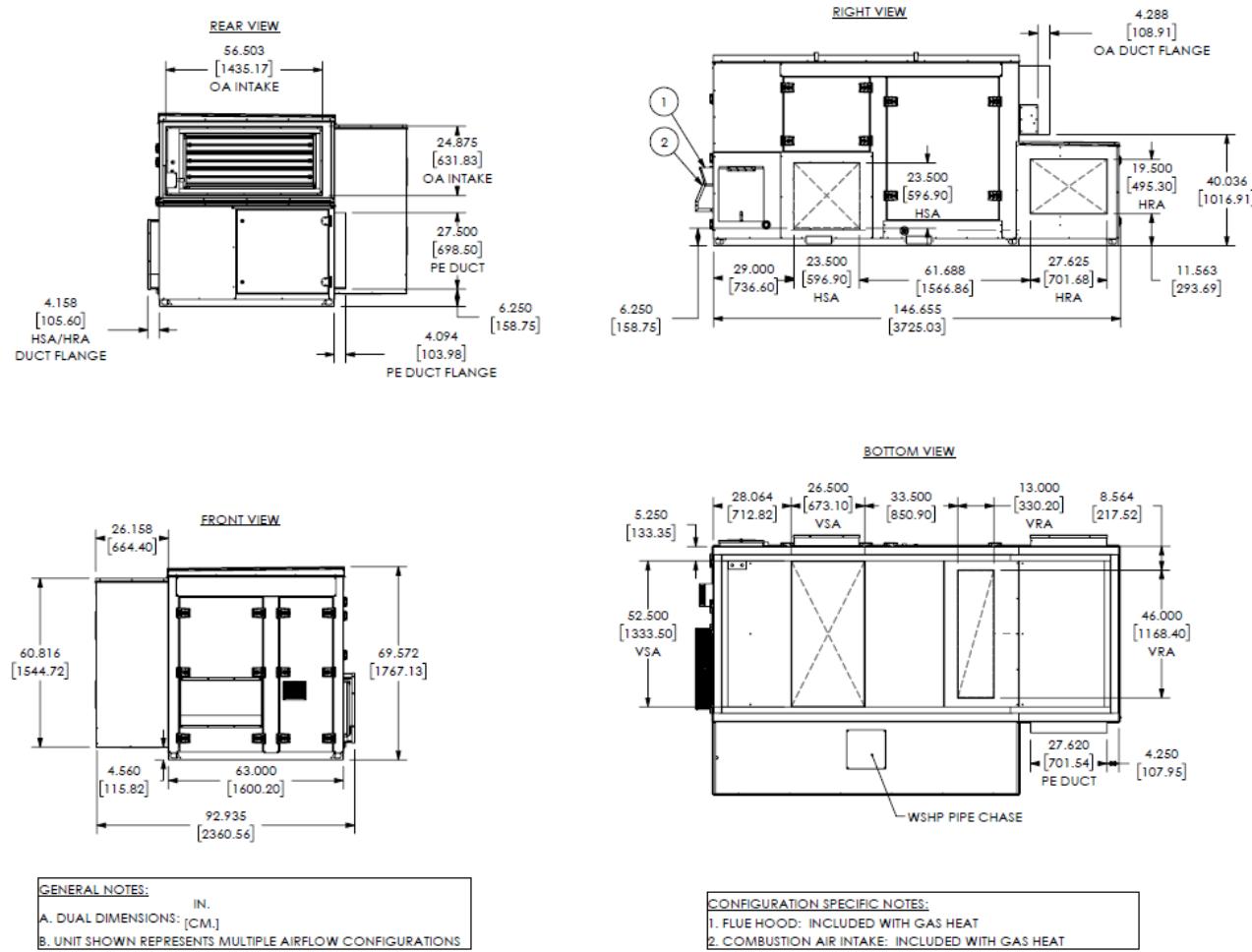

Dimensional Data

Figure 72. Unit dimensional data for OADG indoor WSHP, in. (cm)

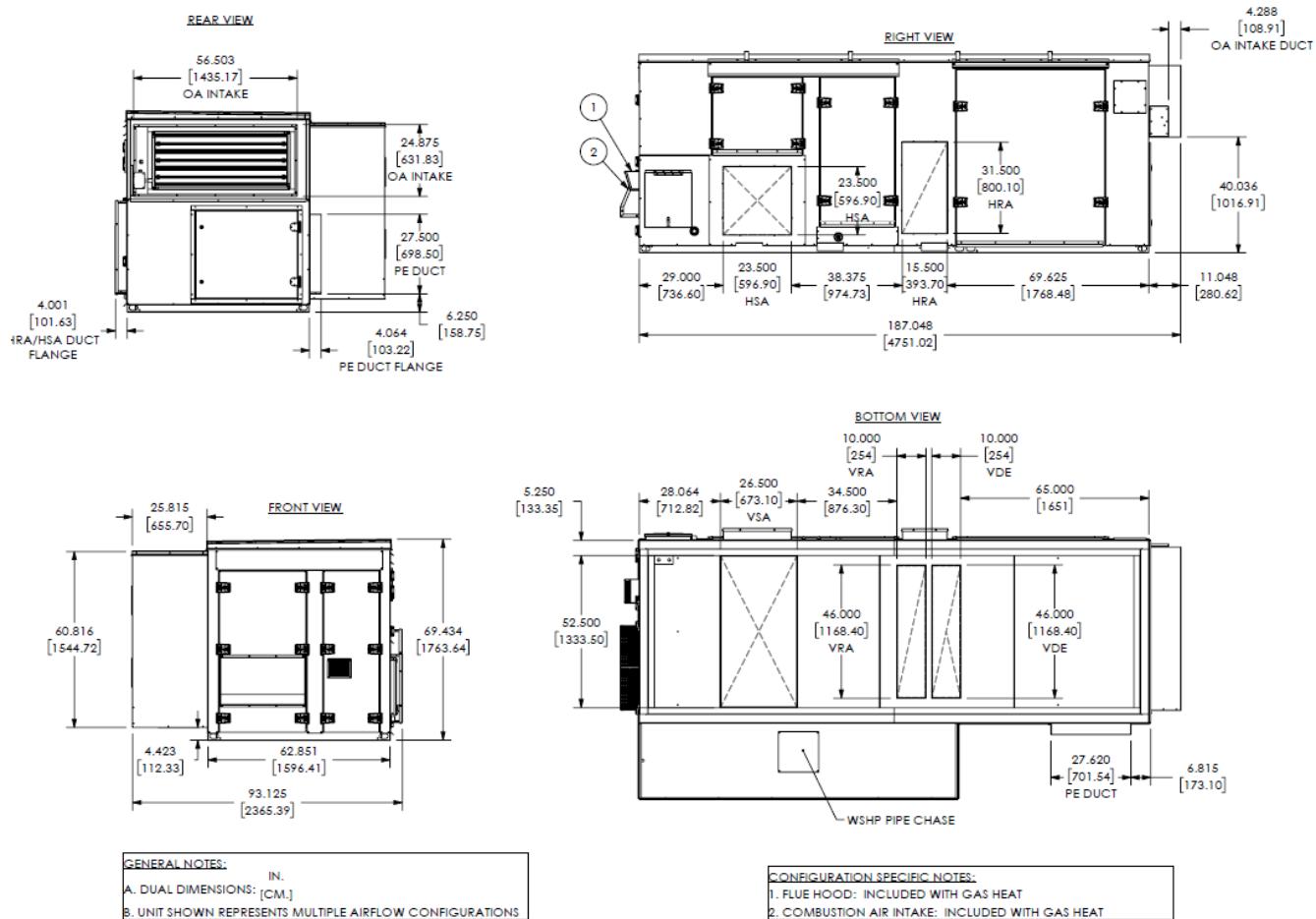
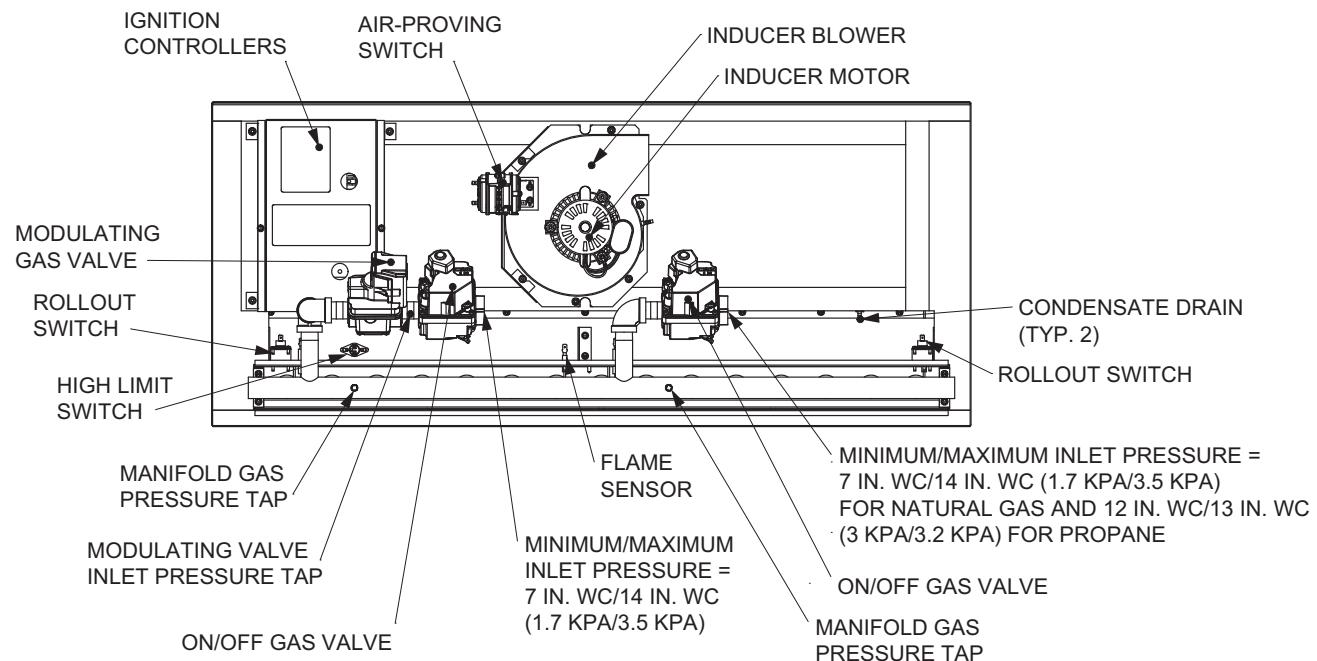

Unit Clearances, Curb Dimensions, and Dimensional Data

Figure 73. Unit dimensional data for OADG indoor WSHP with Power Exhaust, in. (cm)

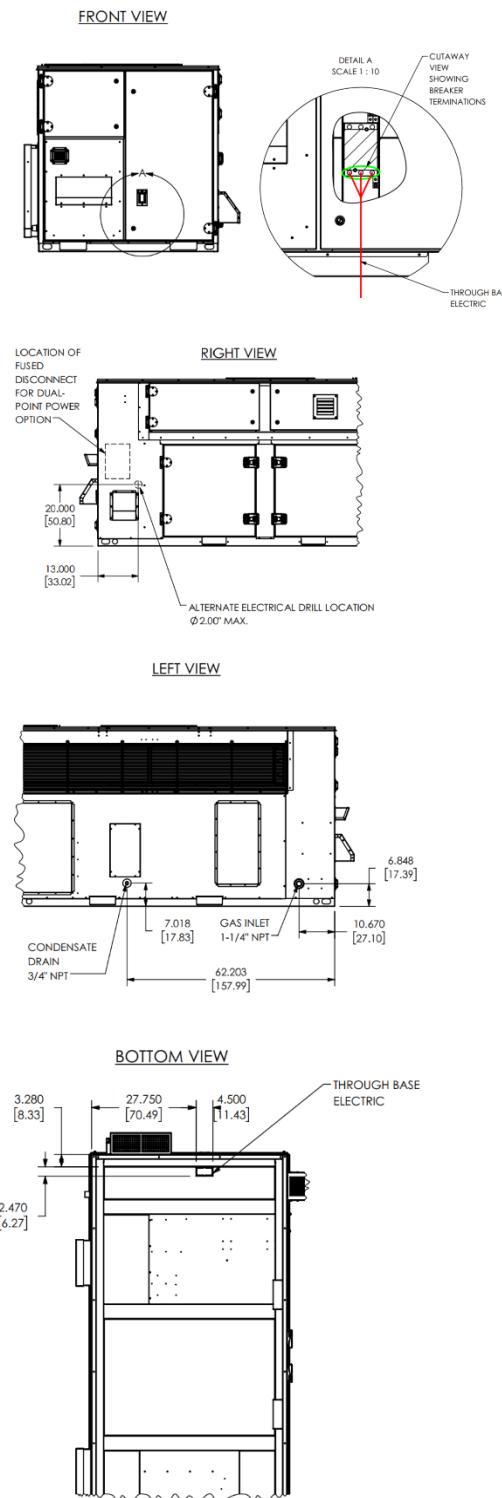
Unit Clearances, Curb Dimensions, and Dimensional Data

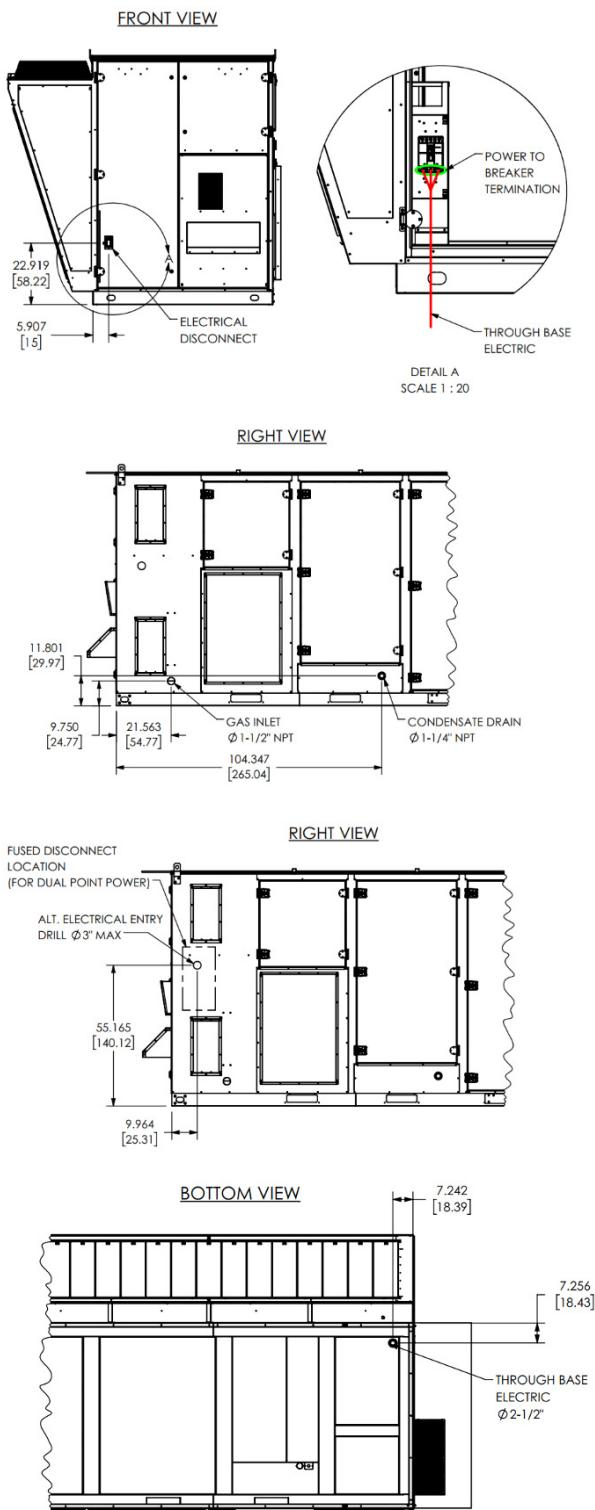
Figure 74. Unit dimensional data for OADG indoor WSHP with ERV, in. (cm)



Note: Vertical Dedicated Exhaust (VDE) is a selectable configuration and is not standard. See unit specific submittal.

Indirect Gas-fired Furnace Heater


Figure 75. Indirect gas-fired furnace heater and power



Utility Connections

Figure 76. OAB utility connections, in. (cm)

Figure 77. OAND utility connections, in. (cm)

Utility Connections

Figure 78. OADG utility connections, in. (cm)

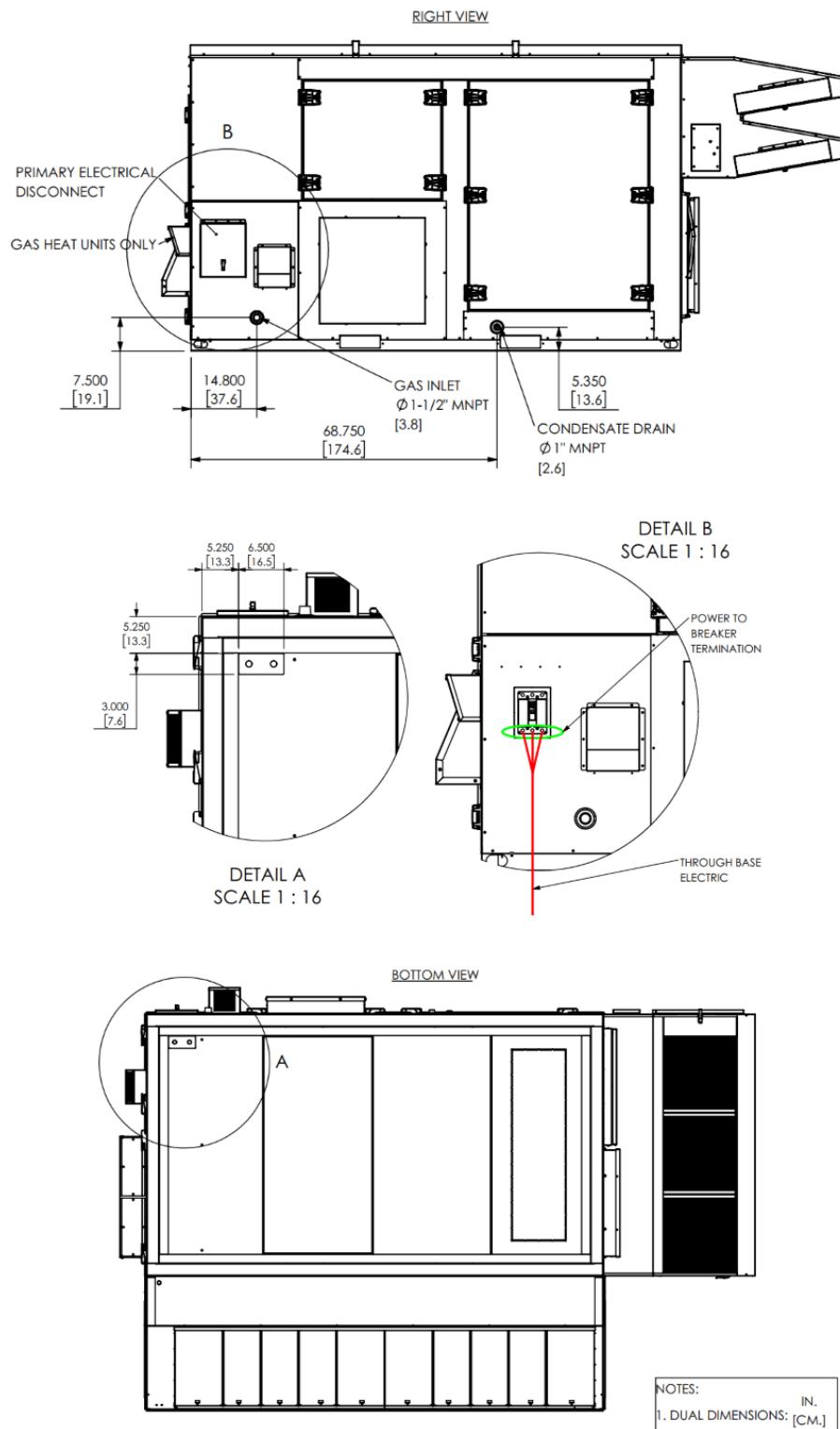
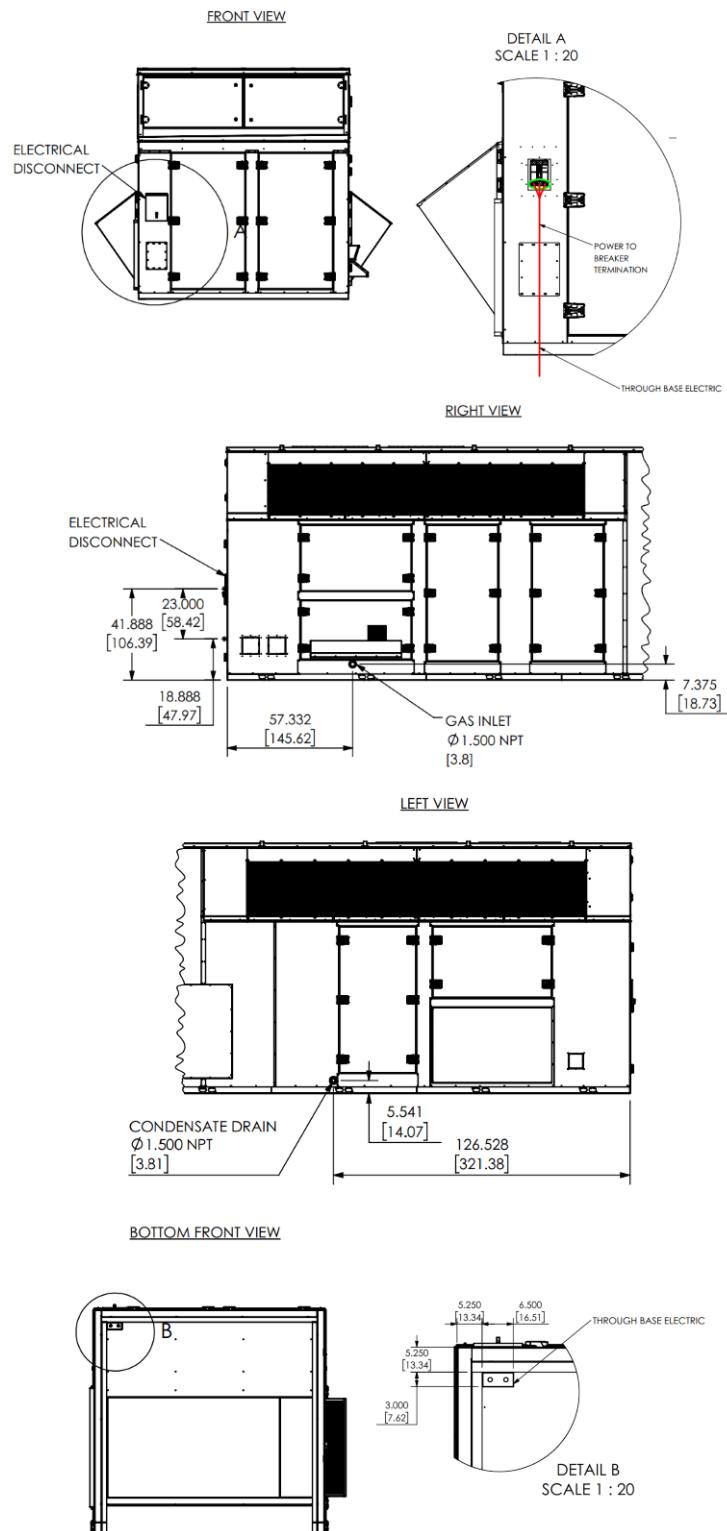



Figure 79. OANG utility connections, in. (cm)

Unit Weight and Rigging

Unit Weight

Table 13. Typical unit weights^(a) (without powered exhaust, without ERV)

Model Number	Weight (lb)		Center-of-Gravity (in.)		Corner Weight (% of total weight)			
	Min	Max	Length	Width	Corner A	Corner B	Corner C	Corner D
OAB*036	1295	1806	46.1	24.1	28%	26%	27%	20%
OAB*048	1295	1806	46.6	23.9	30%	24%	28%	18%
OAB*060	1295	1806	45.9	23.9	29%	25%	28%	18%
OAB*072	1295	1806	47.5	23.8	31%	24%	27%	18%
OAB*084	1295	1806	46.5	24.0	29%	25%	28%	19%
OAB*096	1295	1806	46.7	24.1	31%	22%	30%	17%
OAB*108	1295	1806	46.2	24.0	27%	27%	25%	21%
OADG010	2319	3985	54.0	41.1	20%	15%	36%	29%
OADG012	2319	3985	54.1	41.3	23%	11%	39%	26%
OADG015	2319	3985	53.3	41.1	19%	16%	36%	29%
OADG017	2319	3985	53.4	41.0	21%	14%	37%	28%
OADG020	2319	3985	54.2	41.7	19%	15%	36%	30%
OADG025	2319	3985	53.4	41.0	21%	14%	37%	28%
OADG030	2319	3985	53.4	41.0	21%	14%	37%	28%
OAN*360	5207	7900	69.4	41.4	19%	19%	32%	29%
OAN*420	5207	7900	71.9	42.1	20%	18%	32%	30%
OAN*480	5207	7900	70.4	41.3	20%	18%	33%	29%
OAN*540	5207	7900	71.1	40.8	20%	19%	32%	29%
OAN*600	5207	7900	68.6	41.8	18%	20%	32%	30%
OAN*648	5207	7900	67.4	41.4	17%	21%	32%	30%
OAN*720	5207	7900	67.4	41.4	17%	21%	32%	30%
OANG040	6560	9618	87.2	50.1	24%	26%	26%	24%
OANG045	6560	9618	87.2	50.1	24%	26%	26%	24%
OANG050	6560	9618	91.4	50.2	24%	26%	26%	24%
OANG055	6560	9618	91.4	50.2	24%	26%	26%	24%
OANG060	6560	9618	96.0	50.5	24%	26%	26%	24%
OANG070	6560	9618	87.2	50.1	24%	26%	26%	24%
OANG080	6560	9618	95.6	50.7	24%	26%	26%	24%

(a) Minimum and maximum weights vary widely due to the highly configurable nature of the product.

Table 14. Typical unit weights^(a) (with powered exhaust, without ERV)

Model Number	Weight (lb)		Center-of-Gravity (in.)		Corner Weight (% of total weight)			
	Min	Max	Length	Width	Corner A	Corner B	Corner C	Corner D
OAB*036	1648	2422	68.8	24.8	36%	17%	34%	14%
OAB*048	1648	2422	63.6	24.1	32%	22%	32%	14%
OAB*060	1648	2422	65.5	24.3	29%	24%	29%	18%
OAB*072	1648	2423	65.2	24.2	29%	25%	29%	18%
OAB*084	1648	2422	63	24	22%	32%	23%	23%
OAB*096	1648	2424	65.5	24.3	29%	24%	29%	18%
OAB*108	1648	2422	66.9	24.6	29%	24%	28%	19%
OADG010	3080	4807	66	38.3	22%	18%	37%	23%
OADG012	3080	4807	62.5	40.2	23%	13%	44%	20%
OADG015	3080	4807	59.5	40.2	22%	15%	45%	19%
OADG017	3080	4807	60.5	39.9	22%	15%	44%	19%
OADG020	3080	4807	60.1	39.8	21%	16%	43%	21%
OADG025	3080	4807	60.1	39.8	21%	16%	43%	21%
OADG030	3080	4807	60.1	39.8	21%	16%	43%	21%
OAN*360	6099	8474	71.9	39.5	19%	22%	28%	31%
OAN*420	6099	8474	74.5	41	17%	22%	26%	35%
OAN*480	6099	8474	74.5	41	17%	22%	26%	35%
OAN*540	6099	8474	73.4	41.5	18%	20%	29%	33%
OAN*600	6099	8474	77	41.2	18%	21%	26%	36%
OAN*648	6099	8474	75.2	41.4	15%	23%	24%	37%
OAN*720	6099	8474	75.2	41.4	15%	23%	24%	37%
OANG040	7667	11394	106.8	49.9	25%	27%	28%	20%
OANG045	7667	11394	106.8	49.9	25%	27%	28%	20%
OANG050	7667	11394	106.8	49.9	25%	27%	28%	20%
OANG055	7667	11394	115.9	49.9	25%	27%	28%	20%
OANG060	7667	11394	115.9	49.9	25%	27%	28%	20%
OANG070	7667	11394	120.5	50	25%	27%	28%	20%
OANG080	7667	11394	125	50.5	25%	27%	28%	20%

(a) Minimum and maximum weights vary widely due to the highly configurable nature of the product.

Unit Weight and Rigging

Table 15. Typical unit weights^(a) (with powered exhaust, with ERV)

Model Number	Weight (lb)		Center-of-Gravity (in.)		Corner Weight (% of total weight)			
	Min	Max	Length	Width	Corner A	Corner B	Corner C	Corner D
OAB*036	1780	2596	68.1	24.3	31%	22%	29%	18%
OAB*048	1780	2596	68.9	24	31%	23%	27%	19%
OAB*060	1780	2596	67	24.1	28%	25%	26%	20%
OAB*072	1780	2597	67	24.4	25%	28%	24%	23%
OAB*084	1780	2596	68.3	24.4	28%	26%	25%	22%
OAB*096	1780	2598	67.3	24.2	30%	24%	28%	19%
OAB*108	1780	2596	68.1	24	28%	26%	25%	21%
OADG010	3515	5344	78.8	38.3	20%	19%	36%	24%
OADG012	3515	5344	78.4	38.3	20%	19%	36%	25%
OADG015	3515	5344	78	38.5	22%	17%	38%	23%
OADG017	3515	5344	77.3	38.7	21%	18%	38%	23%
OADG020	3515	5344	78.8	39.3	18%	20%	36%	27%
OADG025	3515	5344	78.8	39.3	18%	20%	36%	27%
OADG030	3515	5344	78.8	39.3	18%	20%	36%	27%
OAN*360	7160	9281	101.1	41	18%	21%	30%	32%
OAN*420	7160	9281	101.1	41	18%	21%	30%	32%
OAN*480	7160	9281	103.2	40	19%	22%	28%	31%
OAN*540	7160	9281	105	41.5	18%	20%	29%	33%
OAN*600	7160	9281	100	41	19%	20%	31%	30%
OAN*648	7160	9281	100.9	41.2	16%	22%	29%	33%
OAN*720	7160	9281	100.9	41.2	16%	22%	29%	33%
OANG040	8876	13070	143.4	49.2	24%	25%	30%	21%
OANG045	8876	13070	143.4	49.2	24%	25%	30%	21%
OANG050	8876	13070	143.4	49.2	24%	25%	30%	21%
OANG055	8876	13070	146.2	49.3	24%	25%	30%	21%
OANG060	8876	13070	146.2	49.3	24%	25%	30%	21%
OANG070	8876	13070	149.4	49.4	24%	25%	30%	21%
OANG080	8876	13070	151.8	49.5	24%	25%	30%	21%

(a) Minimum and maximum weights vary widely due to the highly configurable nature of the product.

Rigging

For rigging details, refer to the unit specific submittal. Additional information provided in the *Horizon Outdoor Air Unit R-454B Refrigerant V13 Controls Installation, Operation, and Maintenance* (OAU-SVX009*-EN) manual for your specific product.

Mechanical Specifications

Horizon Outdoor Air Mechanical Specifications

General

- The supply and return openings shall be available as vertical or horizontal airflow.
- Performance shall be rated in accordance with AHRI 920 (I-P) - 2020. Applicable units are AHRI Certified and can be found in the AHRI Directory at www.ahridirectory.org.
- All units shall be factory assembled, internally wired, fully charged with R-454B, and 100 percent run tested to check cooling operation, fan and blower rotation, and control sequence before leaving the factory.
- Wiring internal to the unit shall be colored and numbered for simplified identification.
- Units shall be ETL listed and labeled, classified in accordance with UL 60335-2-40/CSA C22.2 No.60335-2-40:22 and ANSI Z83.3/CSA 2.6.

Casing

- Unit casing shall be constructed of zinc-coated, heavy gauge, galvanized steel.
- Exterior surfaces shall be cleaned, phosphatized, and finished with a weather-resistant baked enamel finish. Unit surface shall be tested 672 hours in a salt spray test in compliance with ASTM B117.
- Unit shall have a 2-inch thick Antimicrobial Insulation with an R-value of 13.
- All insulation edges shall be either captured or sealed.
- The unit base pan shall have no penetrations within the perimeter of the curb other than the raised downflow supply/return openings to provide an added water integrity precaution, if the condensate drain backs up.
- The top cover shall be one piece construction or, where seams exist, it shall be double-hemmed and gasket-sealed.
- The ribbed top adds extra strength and enhances water removal from unit top.

Drain Pan

- The drain pan is a single-walled assembly made of Type 304 stainless steel. It is sloped in two planes and is fully drainable.
- The coils are mounted above the drain pan to allow easy inspection and cleaning of the drain pan.

Refrigeration and Dehumidification Systems

Standard Scroll Compressors

- Standard scroll compressors are direct-drive, hermetic, scroll type compressors with centrifugal type oil pumps.
- Motor shall be suction gas-cooled and shall have a voltage utilization range of plus or minus 10 percent of unit nameplate voltage.
- Internal overloads shall be provided with the scroll compressors.
- Each compressor has a crankcase heater to minimize the amount of liquid refrigerant present in the oil sump during off cycles.

Digital Scroll Compressors

- Digital scroll compressors are direct-drive, hermetic compressors with centrifugal type oil pumps.
- Motor shall be suction gas-cooled and shall have a voltage utilization range of plus or minus 10 percent of unit nameplate voltage.
- Internal overloads shall be provided with the scroll compressors.
- Crankcase heaters shall be included.

Mechanical Specifications

- Compressor shall be able to fully modulate from 20 percent to 100 percent.

Evaporator and Condenser Coils

See [Figure 80, p. 98.](#)

- Internally finned copper tubes mechanically bonded to a configured aluminum plate fin shall be standard.
- Coils shall be leak tested at the factory to confirm the pressure integrity.
- The evaporator coil and condenser coil shall be leak tested to 500 psig and pressure tested to 500 psig.
- The condenser coil shall have a fin design with slight gaps for ease of cleaning.
- Evaporator coil will have four or six interlaced rows for superior sensible and latent cooling.
- Heat shrink tubing standard on Distributor coils for enhanced longevity and reliability of coils.

Figure 80. Evaporator and reheat coil

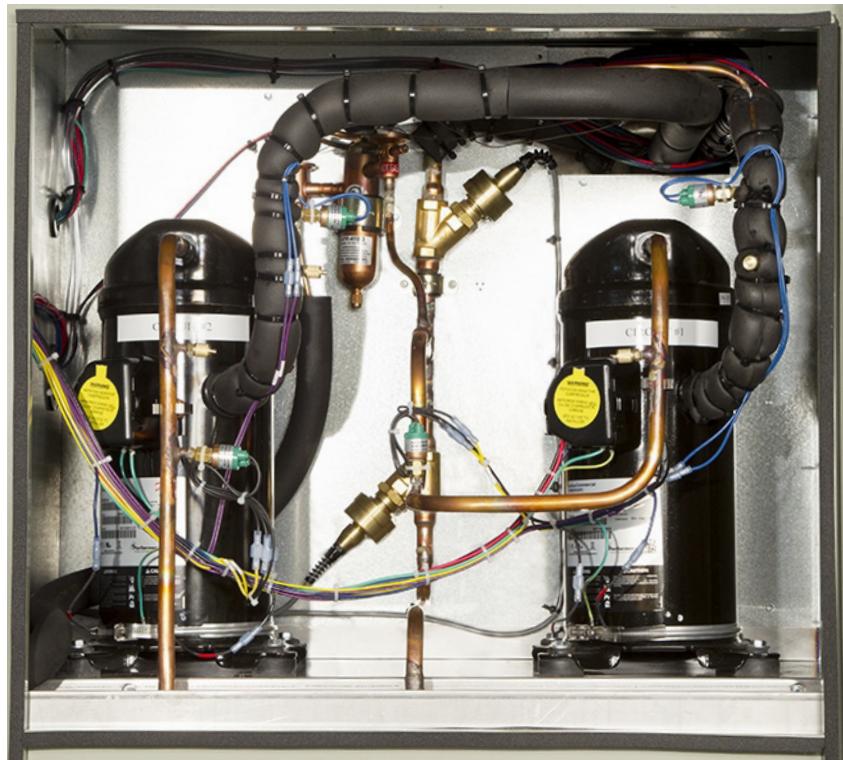
Chilled Water Coils

- The chilled water coil is AHRI performance certified and shall bear the AHRI symbol.
- Tubes are to be mechanically expanded into fins (secondary surface) for maximum heat transfer and shall be 6 rows.
- Materials are to be 1/2-inch diameter x (0.020) wall thickness.
- Secondary surface (fins) shall be of the plate-fin design using aluminum with die-formed collars.
- Fin design is waffle in a staggered tube pattern to meet performance requirements. Collars will hold fin spacing at specified density, and cover the entire tube surface. Fins are to be free of oils and oxidation.
- The coil shall have MPT connections constructed of copper.

- The optional Cooney Freeze Block is designed to allow ice to form within the tubes, without restriction, by discharging a small amount of water into the drain pan.
- Each expansion header has a factory installed Cooney Freeze Block Valve that is both pressure and thermally activated.
- The valve will open when outside air below 35°F comes in contact with the header or return end of the coil, or when the internal pressure of the coil exceeds 300 psi.
- The valve will automatically reset and allow the coil to resume normal operation, when the pressure decreases, or when the temperature increases.

Condenser—Water Cooled (Copper/Steel or 90/10 CuNi Condenser Tubes)

- The condenser coils utilize a coaxial **tube in tube** design.
- Water flows through the inner tube while refrigerant flows in the annulus between the inner and outer tubes.
- The coils have a convoluted multi-lead inner tube which has increased heat transfer surface area per unit length yet still permits full flow of both water and refrigerant around its entire periphery for improved performance.
- Turbulence imparted by the convolutions to both the water and refrigerant flows further enhances the thermal performance, while inhibiting the accumulation of deposits on the surfaces.


Refrigerant Capacity Control

- Units with standard scroll compressors shall be equipped with Refrigerant Capacity Control (RCC) on the lead circuit to confirm proper modulation of cooling.
- The RCC uses mechanical means to monitor and inject hot gas into the suction side of the compressor, unloading the compressor in part load conditions.
- The RCC is factory-set at 114 psig, which will maintain evaporator coil temperature at 38°F.
- Units with eFlex™ variable speed scroll compressors are matched with a specially designed variable frequency drive that allows a modulating ratio of up to 4:1. This allows for unmatched control of leaving air temperatures to meet space loads.
- The eFlex compressors also include brushless permanent magnet motors designed to operate at higher efficiency resulting in significant part load energy savings. This makes units with eFlex technology the most efficient products in their class at part load.
- Units with digital scroll type compressors shall have direct-drive, hermetic compressors with centrifugal type oil pumps.
- Motor shall be suction gas-cooled and shall have a voltage utilization range of plus or minus 10 percent of unit nameplate voltage.
- Internal overloads shall be provided with the scroll compressors.
- Crankcase heaters shall be included. Compressor shall be able to fully modulate from 20 percent to 100 percent.

Mechanical Specifications

Figure 81. Refrigerant capacity control

Total Energy Wheel (Composite)

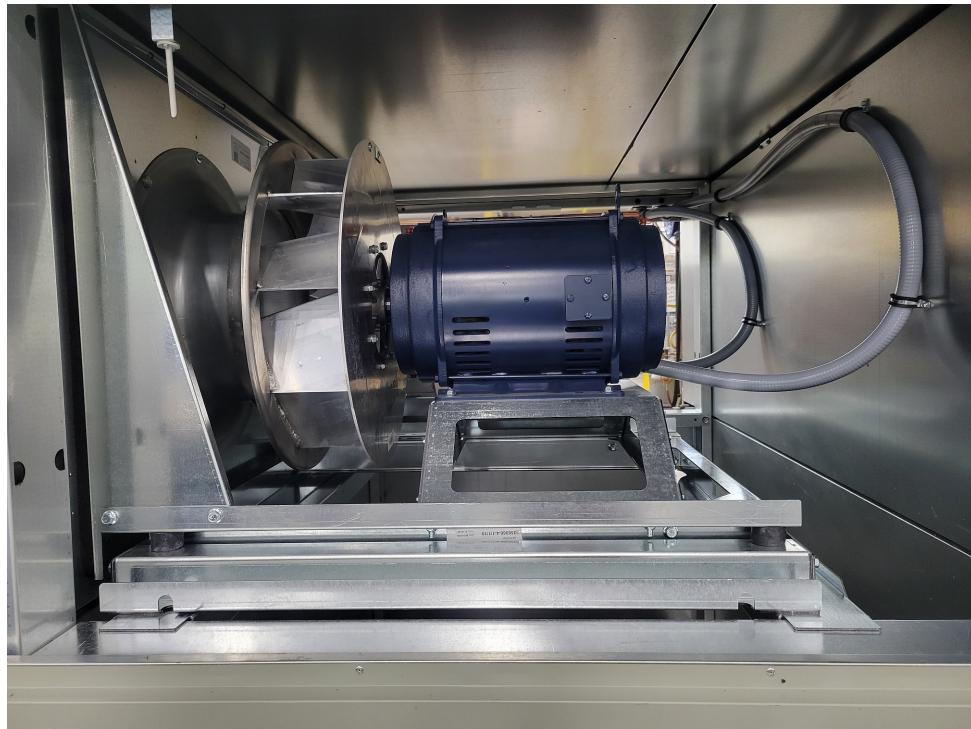
- The rotating wheel heat exchanger is composed of a rotating cylinder in an insulated cassette frame complete with seals, drive motor, and drive belt.
- The total-energy recovery wheel is coated with silica gel desiccant permanently bonded by a patented and proprietary process without the use of binders or adhesives, which may degrade desiccant performance.
- The substrate is a lightweight polymer and will not degrade nor require additional coatings for application in marine or coastal environments.
- Coated segments are washable with detergent or alkaline coil cleaner and water.
- Desiccant will not dissolve nor deliquesce in the presence of water or high humidity.
- As the wheel rotates between the ventilation and exhaust air streams it picks up sensible and latent heat energy and releases it into the colder air stream. The driving force behind the exchange is the difference in temperatures between the opposing air streams which is also called the thermal gradient.
- Bypass dampers will be provided on both the outside and exhaust air paths.

Total Energy Wheel (Aluminum)

- The rotor media shall be lightweight and be made of aluminum. The rotor media shall be coated to prohibit corrosion; etched or oxidized surfaces are not acceptable.
- All surfaces must be coated with a non-migrating adsorbent layer of desiccant prior to being formed into the honeycomb media structure to confirm that all surfaces are coated and that adequate latent capacity is provided.
- The desiccant must be designed for the adsorption of water vapor.

- The media shall be cleanable with low temperature steam, hot water or light detergent without degrading the latent recovery.
- Bypass dampers will be provided on both the outside and exhaust air paths.

Figure 82. Total-energy wheel module


Supply and Exhaust Fan and Motors

- Fan motor shall be direct drive type with factory installed Variable Frequency Drive (unless no controls option is selected, VFD to be provided by others).
- All motors shall be thermally protected. All indoor fan motors meet the U.S. Energy Policy Act of 2005 (EPACT).
- All fans shall be mounted on rubber vibration isolators, to reduce the transmission of noise. See [Figure 83, p. 102](#).

Mechanical Specifications

Figure 83. Indoor fan and motor

Condenser Fan and Motors

- The outdoor fan shall be direct-drive, statically and dynamically balanced, draw-through in the vertical discharge position.
- The fan motor shall be permanently lubricated and shall have built-in thermal overload protection.

Dampers – Low Leak

The outside air damper has a unit-controlled actuator with parallel-blades. The blade construction is a 14-gage galvanized steel, roll-formed airfoil-type.

Electrical and Controls

Controls


- Unit is completely factory-wired with necessary controls and contactor pressure lugs for power wiring.
- Units will provide an external location for mounting fused disconnect device.
- Micro-processor controls are provided for all 24-volt control functions.
- The resident control algorithms will make all heating, cooling and/or ventilating decisions in response to electronic signals from sensors measuring outdoor temperature and humidity. The control algorithm maintains accurate temperature control, minimizes drift from setpoint, and provides better building comfort.
- A centralized micro-processor (RTRM) will provide anti-short cycle timing for a higher level of machine protection.
- Terminals are provided for a field installed dry contact or switch closure to put the unit in the Occupied or Unoccupied modes.

Options

Electric Heating Option

- Primary heat is supplied using Electric Resistance heaters. Heaters shall meet the requirements of the National Electrical Code and shall be listed by Underwriters Laboratories for zero clearance to combustible surfaces and for use with heat pumps and air conditioning equipment.
- Heating elements shall be open coil, 80 percent nickel, 20 percent chromium, Grade A resistance wire.
- Type C alloys containing iron or other alloys are not acceptable.
- Coils shall be machine crimped into stainless steel terminals extending at least 1-inch into the air stream and all terminal hardware shall be stainless steel.
- Coils shall be supported by ceramic bushings staked into supporting brackets.
- Brackets are not to be spaced more than 4-1/2-inch apart.
- Heater frames and terminal boxes shall be corrosion resistant steel. Unless otherwise indicated, the terminal box shall be NEMA 1 construction and shall be provided with a hinged, latching cover.
- Open coil heaters shall be furnished with an airflow switch, disconnecting contactors, fuses (if over 48 amps), control circuit transformer (with primary fusing on Class I circuits as required), built-in, snap acting, door interlock disconnect switch, and a disk type, load-carrying manual reset thermal cutouts, factory wired in series with heater stages for secondary protection.
- Heat limiters or other fusible overtemperature devices are not acceptable.
- For modulating heaters, control will be SCR type. For staged heaters, 5kW capacity will be 2 stage and all heaters above 5kW will be 4 stage. Unit shall be suitable for use with Electric Resistance Heat.

Figure 84. ER Heater

Indirect Gas-Fired Heating Option

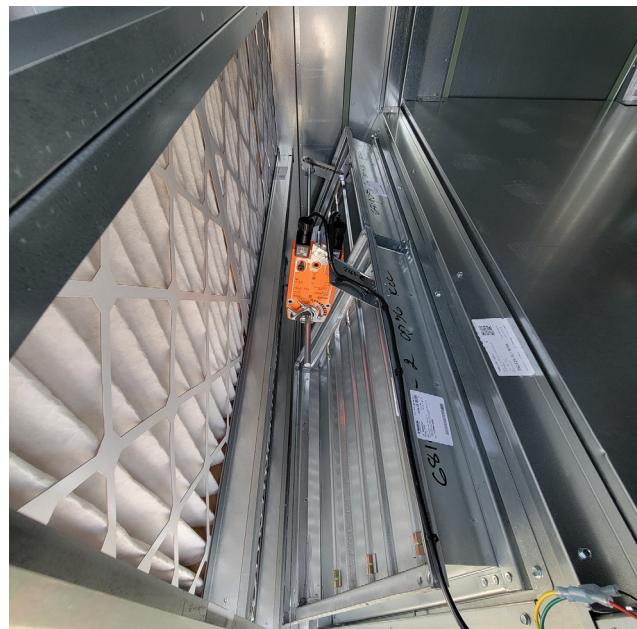
- Primary heat is supplied using indirect fired gas heating.
- The heating section shall have a progressive tubular heat exchanger design capable of draining internal condensate using stainless steel burners and Type 439 stainless steel tubes.
- External flue to be constructed of type 304 stainless steel.

Mechanical Specifications

- An induced draft combustion blower shall be used to pull the combustion products through the firing tubes. The heater shall use a direct spark ignition (DS) system.
- On initial call for heat, the combustion blower shall purge the heat exchanger for 20 seconds before ignition.
- After three unsuccessful ignition attempts, the entire heating system shall be locked out until manually reset at the unit.
- Units shall be comply with the California requirement for low NO_x emissions. Unit shall be suitable for use with natural gas or liquid propane (LP) gas.

Hydronic Heat Option

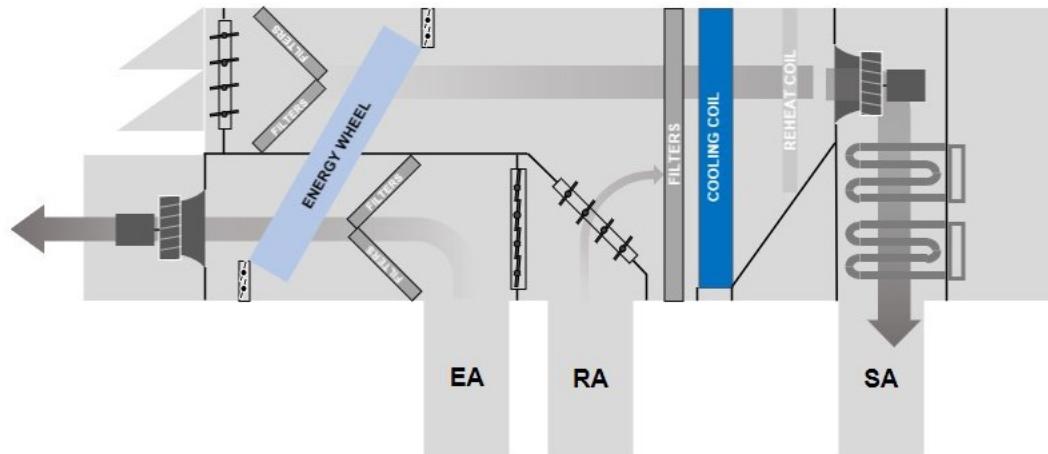
- A factory installed one, two, or three row hydronic heating coil will be provided downstream of the fan in the primary heat position.
- The unit controller provides a modulating output to control a field provided water valve and accepts a low temperature limit input signal.
- A factory installed freezestat is standard and measures temperatures leaving the coil to detect freezing conditions.
- Openings in the unit side panels for piping must also be field constructed.


Hot Gas Reheat

This option shall consist of a modulating hot-gas reheat coil located on the leaving air side of the evaporator coil pre-piped and circuited with a low pressure switch. For detailed unit control and operational modes, refer to the Sequence of Operations in the *Horizon Outdoor Air Unit R-454B Refrigerant V13 Controls Installation, Operation, and Maintenance* (OAU-SVX009*-EN) for your specific product.

Return Air

- Air returns vertically through the unit base or horizontally through the cabinet.
- Dampers are low-leak. Each damper has a unit-controlled actuator. See [Figure 85, p. 104](#).
- Inputs are provided for unoccupied economizer control, based upon a comparison of the outside air stream to a dry bulb reference point.


Figure 85. Return air damper

Split Return/Exhaust

- Units equipped with dual air paths for the return and exhaust will have an additional function of the exhaust fan operation.
- During all operating conditions, the exhaust fan controls to a pressure differential across the damper between the two air paths to always have air leakage from the return into the exhaust. This confirms the exhaust air stream does not leak into the return air stream.
- If preferred, the damper between the two air paths can be set to a minimum position to allow a certain amount of return air to be exhausted during normal operation.
- During Economizer Mode, the damper between the two paths will open fully, the return air damper will close fully, and all of the air will be exhausted out of the unit.

Figure 86. Split return/exhaust air paths

Corrosive Environment Options

- Corrosive environment options include stainless steel interior walls with pre-painted exterior walls, stainless steel coil casing and eco-coated coils.
- Coil coating to be applied uniformly to all coils surface areas, ensuring complete coil encapsulation with no material bridging between fins.

Filters

- Adjustable 6-inch filter rack with options for 2-inch MERV-8, 2-inch MERV-13, and 4-inch MERV-14 installed just upstream of the evaporator coil.
- In addition, 2-inch aluminum mesh mist eliminators are located in the intake hood for OADG, OAN, and OANG; a bird screen is provided for OAB. Other options include 120 V UVC downstream of the evaporator coil.

Filter Status Switch

- This option indicates when filters require cleaning or replacement. Based on ordered options, each unit can be equipped with up to three filter status switches.
- The filter status switch triggers an information-only diagnostic message on the human interface and will allow continued unit operation.

Mechanical Specifications

Non-Fused Disconnect Switch

- A 3-pole, molded case, disconnect switch with provisions for through-the-base electrical connections shall be installed.
- The disconnect switch will be installed in the unit in a water tight enclosure.
- Wiring will be provided from the switch to the unit high voltage terminal block.
- The switch will be UL/CSA agency recognized. The disconnect switch will be sized per NEC and UL guidelines but will not be used in place of unit overcurrent protection.

Convenience Outlet

- A powered 120 volt, 15 amp, 2 plug convenience outlet shall be factory installed.
- A service receivable disconnect shall be installed.
- The convenience outlet is powered from the line side of the disconnect or circuit breaker, and therefore will not be affected by the position of the disconnect or circuit breaker.

Figure 87. Convenience outlet

Roof Mounting Curb

- The roof mounting curb is fabricated of 14-gage galvanized steel with a nominal 2-inch x 2-inch nailer setup.
- The curb ships knocked down with a curb gasket. Curb height options are 14 or 24-inches.

Sound Attenuation Package

- The unit will be equipped with a compressor blanket to reduce sound and increase performance.
- When a unit is selected with the Sound Attenuation Package, it will also be equipped with head pressure control to allow the condenser fans to run as slow as possible while maintaining the performance of the unit.

Hail Guards

- Hail guards shall be installed on the outside of the condenser coil.
- The guards shall consist of perforated metal, of the same gauge and color as the unit itself.
- Airflow through the hail guards shall not be restricted due to location or size of the perforations.
- Guards shall be removable to accommodate coil cleaning.

Figure 88. Condenser hail guards

Supply/Exhaust Piezo Fan Rings

- Airflow monitoring measuring fan suction and cone pressure differential to calculate fan airflow.
- Airflow measurement will be accomplished through the use of piezo ring/tap technology installed in the supply/exhaust fan wheel area.

Outdoor Air Monitoring

The outdoor air monitoring system is a high quality programmable dual-output airflow/temperature measurement and control system with options for analog airflow, temperature, and alarm.

Supply/Return Smoke Detector

- Smoke detectors shall be factory provided photoelectric smoke detectors mounted in the supply/return air section.
- The detector will be wired for continuous power whenever the unit is energized. Upon detection of smoke, the detector will shutdown all unit operations.
- Local codes may dictate the location of detectors.

Appendix

Horizon™ OAU Filter Guide

Table 16. OAB units

Evaporator				
Thickness	MERV	Qty	Height	Width
2 in.	8, 13	2	20	24
4 in.	14	2	20	24
Auxiliary Module				
Return Air				
Thickness	MERV	Qty	Height	Width
2 in.	8	4	20	24
Outside Air ^(a)				
Thickness	MERV	Qty	Height	Width
2 in.	8	4	20	24

(a) No filters will be provided on the outside air path of the auxiliary module if electric preheat is provided.

Table 17. OAND, OANE, OANF Rev 5 units

Evaporator				
Thickness	MERV	Qty	Height	Width
2 in.	8, 13	9	24	20
4 in.	14	9	24	20
Auxiliary Module (58XX ERV)				
Return Air				
Thickness	MERV	Qty	Height	Width
2 in.	8	6	18	20
Outside Air ^(a)				
Thickness	MERV	Qty	Height	Width
2 in.	8	6	18	20
Auxiliary Module (68XX / 74XX ERV)				
Return Air				
Thickness	MERV	Qty	Height	Width
2 in.	8	8	25	20
Outside Air ^(a)				
Thickness	MERV	Qty	Height	Width
2 in.	8	8	25	20
Inlet				
Thickness	Material	Qty	Height	Width
2 in.	Aluminum Mesh	10	16	25

(a) No filters will be provided on the outside air path of the auxiliary module if electric preheat is provided.

Table 18. OADG units

Evaporator				
Thickness, in. (cm)	MERV	Qty	Height, in. (cm)	Width, in. (cm)
2 (5.1)	8, 13	6	24 (63.5)	18 (45.7)
4 (10.2)	14	6	24 (63.5)	18 (45.7)
ERV Module				
Return Air				
Thickness, in. (cm)	MERV	Qty	Height, in. (cm)	Width, in. (cm)
2 (5.1)	8	6	20 (50.8)	20 (50.8)
Outside Air^(a)				
Thickness, in. (cm)	MERV	Qty	Height, in. (cm)	Width, in. (cm)
2 (5.1)	8	6	20 (50.8)	20 (50.8)
Inlet Hood				
Thickness, in. (cm)	Material	Qty	Height, in. (cm)	Width, in. (cm)
2 (5.1)	Aluminum Mesh	6	20 (50.8)	20 (50.8)

(a) No filters will be provided on the outside air path of the ERV section if electric preheat is provided.

Table 19. OANG Rev 6 units

Evaporator (40 to 50 ton - 4 and 6 row coils; 55 to 80 ton - 6 row coils)				
Thickness, in. (cm)	MERV	Qty	Height, in. (cm)	Width, in. (cm)
2 (5.1)	8, 13	15	20 (50.8)	18 (45.7)
4 (10.2)	14	15	20 (50.8)	18 (45.7)
Evaporator (55 to 80 ton - 4 row coils)				
Thickness, in. (cm)	MERV	Qty	Height, in. (cm)	Width, in. (cm)
2 (5.1)	8, 13	12	20 (50.8)	25 (63.5)
4 (10.2)	14	12	20 (50.8)	25 (63.5)
ERV Module				
Return Air				
Thickness, in. (cm)	MERV	Qty	Height, in. (cm)	Width, in. (cm)
2 (5.1)	8	15	24 (61.0)	18 (45.7)
Outside Air^(a)				
Thickness, in. (cm)	MERV	Qty	Height, in. (cm)	Width, in. (cm)
2 (5.1)	8	15	24 (61.0)	18 (45.7)
Inlet Hood				
Thickness, in. (cm)	Material	Qty	Height, in. (cm)	Width, in. (cm)
2 (5.1)	Aluminum Mesh	12	24 (61.0)	24 (61.0)

(a) No filters will be provided on the outside air path of the ERV section if electric preheat is provided.

Trane - by Trane Technologies (NYSE: TT), a global climate innovator - creates comfortable, energy efficient indoor environments for commercial and residential applications. For more information, please visit trane.com or tranetechnologies.com.

Trane has a policy of continuous product and product data improvement and reserves the right to change design and specifications without notice. We are committed to using environmentally conscious print practices.