RTAC (CH530)

TRANE

Object Naming Conventions

The communicated points for the Symbio[™] controllers are generally named according to their function. While many of the points are read-only, others include both read and write capability. The established naming convention helps to identify the capabilities of each point. For most points, the suffix identifies the capability according to the following definition. While there are some exceptions, the majority of the points have been defined according to these guidelines.

Date: 12/6/2024

Reference Document: BAS-SVP083*-EN

Suffix	Description
Status	Points with the Status suffix are defined as read-only. The status point reports the value being used by the controller.
Local	Points with the Local suffix are defined as read-only. The local point reports values associated with controller sensors, both wired and wireless. The local value may or may not be actively used by the controller, depending on the presence or absence of a communicated value (BAS). When both a local and communicated value exist, the communicated value is used.
Active	Points with the Active suffix are defined as read-only. Points designated as active are normally the result of the arbitration between a communicated value(BAS) and at least one value local to the equipment, such as a sensor or default setpoint. The active point reports the value being input to the controller.
Setpoint	Points with the Setpoint suffix are defined as either read-only or read/write. For BACnet®, the binary input, analog input and multi-state input points are all read-only. These setpoints report the value currently in use by the controller. The analog value, binary value and multi-state value points are all read/write. These points are provided for use by the building automation system (BAS). When used, these points are written internally to arbitration logic. This defines the interaction with hardwired points, editable software configuration points and the relinquish default value/state. Refer to the Appendix for additional information.
Input	Points with the Input suffix are defined as read-only. These points normally reflect the status of a sensor input, either hardwired or communicating wirelessly (Air- Fi®). However, the input point reflects the arbitrated result of the controller sensor input and a communicated value, if present. When both a controller sensor and communicated value exist, the controller will use and report the communicated value.
Arbitrator	Points with the "Arbitrator" suffix are to be used as read-only. The arbitrator prioritizes inputs from communicating points, hardwired points and stored defaults points. The priority array of the arbitration point displays each of the values provided, including the active status, indicating which of the input sources is being used. Refer to the Appendix for additional information.
BAS	Points with the BAS suffix are defined as read/write. These points are provided for use by the building automation system (BAS). When used, these points are written to arbitration logic. This defines the interaction with hardwired points, editable software configuration points and the relinquished default value/state. Refer to the Appendix for additional information.
Command	Points with the Command suffix are defined as read/write. These points are written to change the default behavior of the controller. Once written, these point values may be persisted.
Request	Points with the Request suffix are defined as read/write. These points are written to request a change the operating behavior of the controller.

RTAC (CH530)

Date: 12/6/2024 Reference Document: BAS-SVP083*-EN

Object Data Points and Diagnostic Data Points

The following tables are sorted as follows:

- Tables are listed by input/output type and sorted by object identifier. These tables provide the user with the unit's type for each object
- Tables are sorted by object name and provide a complete list of object names, types, values/ranges, and descriptions.

Note: Not all points are available to the user. The available data points are defined during self-configuration and are dependent on the type of equipment.

Date: 12/6/2024 Reference Document: BAS-SVP083*-EN

Object Identifier	Object Name	Description	Units	Configuration Dependency
1	Active Cool/Heat Setpoint Temperature	Active chiller water or hot water setpoint.	Temperature	
2	Active Current Limit Setpoint	Active capacity current limit setpoint.	Percent	
5	Actual Running Capacity	Level of capacity that the chiller is currently running at.	Percent	
6	Evaporator Refrigerant Pressure- Ckt1	Circuit 1 evaporator refrigerant pressure.	Pressure	
9	Evaporator Refrigerant Pressure- Ckt 2	Circuit 2 evaporator refrigerant pressure.	Pressure	
12	Evaporator Saturated Refrigerant Temperature- Ckt 1	Circuit 2 evaporator refrigerant temperature.	Temperature	
14	Evaporator Saturated Refrigerant Temperature- Ckt 2	Circuit 2 evaporator refrigerant temperature.	Temperature	
16	Condenser Refrigerant Pressure- Ckt 1	Circuit 1 condenser refrigerant pressure.	Pressure	
18	Condenser Refrigerant Pressure- Ckt 2	Circuit 2 condenser refrigerant pressure.	Pressure	
20	Condenser Saturated Refrigerant Temperature- Ckt 1	Circuit 1 condenser refrigerant temperature.	Temperature	
22	Condenser Saturated Refrigerant Temperature- Ckt 2	Circuit 2 condenser refrigerant temperature.	Temperature	
25	Local Atmospheric Pressure Local atmospheric pressure.		Pressure	
26	Starts- Compressor 1A	Number of starts for compressor 1A.		
27	Starts- Compressor 1B	Number of starts for compressor 1B.		
28	Starts- Compressor 2A	Number of starts for compressor 2A.		
29	Starts- Compressor 2B	Number of starts for compressor 2B.		
34	Run Time- Compressor 1A Total run time of compressor 1A 1A.		Time	
35	Run Time- Compressor 1B	Total run time of compressor 1B.	Time	
36	36 Run Time- Compressor 2A Total run time of co 2A.		Time	
42	Airflow Percentage- Circuit 1	Approximate airflow percentage of circuit 1.	Percent	
43	Airflow Percentage- Circuit 2	Approximate airflow percentage of circuit 2.	Percent	
44	Evaporator Entering Water Temp	Temperature of the water entering the evaporator.	Temperature	
45	Evaporator Leaving Water Temp	Temperature of the water leaving the evaporator.	Temperature	
48	High Side Oil Pressure- Compressor 1A	Pressure of the oil at the high side of compressor 1A.	Pressure	
49	High Side Oil Pressure- Compressor 1B	Pressure of the oil at the high side of compressor 1B.	Pressure	
50	High Side Oil Pressure- Compressor 2A	Pressure of the oil at the high side of compressor 2A.	Pressure	

Date: 12/6/2024 Reference Document: BAS-SVP083*-EN

Object Identifier	Object Name	Description	Units	Configuration Dependency
51	High Side Oil Pressure- Compressor 2B	Pressure of the oil at the high side of compressor 2B.	Pressure	
52	Oil Temp- Compressor 1A	Temperature of the oil in compressor 1A.	Temperature	
52	Oil Temp- Compressor 1B	Temperature of the oil in compressor 1B.	Temperature	
54	Oil Temp- Compressor 2A	Temperature of the oil in compressor 2A.	Temperature	
55	Oil Temp- Compressor 2B	Temperature of the oil in compressor 2B.	Temperature	
57	Outdoor Air Temperature	Outdoor air temperature.	Temperature	
59	Phase AB Voltage- Compressor 1A	Phase AB voltage, compressor 1A.	Voltage	
71	Line 1 Current (in Amps)- Compressor 1A	Line 1 Current (in Amps)- Compressor 1A	Current	
72	Line 2 Current (in Amps)- Compressor 1A	Line 2 Current (in Amps)- Compressor 1A	Current	
73	Line 3 Current (in Amps)- Compressor 1A	Line 3 Current (in Amps)- Compressor 1A	Current	
74	Line 1 Current (in Amps)- Compressor 1B	Line 1 Current (in Amps)- Compressor 1B	Current	
75	Line 2 Current (in Amps)- Compressor 1B	essor 1B Line 2 Current (in Amps)- Compressor 1B		
76	Line 3 Current (in Amps)- Compressor 1B	Line 3 Current (in Amps)- Compressor 1B	Current	
77	Line 1 Current (in Amps)- Compressor 2A	Line 1 Current (in Amps)- Compressor 2A	Current	
78	Line 2 Current (in Amps)- Compressor 2A	Line 2 Current (in Amps)- Compressor 2A	Current	
79	Line 3 Current (in Amps)- Compressor 2A	Line 3 Current (in Amps)- Compressor 2A	Current	
80	Line 1 Current (in Amps)- Compressor 2B	Line 1 Current (in Amps)- Compressor 2B	Current	
81	Line 2 Current (in Amps)- Compressor 2B	Line 2 Current (in Amps)- Compressor 2B	Current	
82	Line 3 Current (in Amps)- Compressor 2B	Line 3 Current (in Amps)- Compressor 2B	Current	
83	Line 1 Current (%RLA)- Compressor 1A	Line 1 Current (%RLA)- Compressor 1A	Percent	
84	Line 2 Current (%RLA)- Compressor 1A	Line 2 Current (%RLA)- Compressor 1A	Percent	
85	Line 3 Current (%RLA)- Compressor 1A	Line 3 Current (%RLA)- Compressor 1A	Percent	
86	Line 1 Current (%RLA)- Compressor 1B	Line 1 Current (%RLA)- Compressor 1B	Percent	
87	Line 2 Current (%RLA)- Compressor 1B	Line 2 Current (%RLA)- Compressor 1B	Percent	
88	Line 3 Current (%RLA)- Compressor 1B	Line 3 Current (%RLA)- Compressor 1B	Percent	
89	Line 1 Current (%RLA)- Compressor 2A	Line 1 Current (%RLA)- Compressor 2A	Percent	
90	Line 2 Current (%RLA)- Compressor 2A	Line 2 Current (%RLA)- Compressor 2A	Percent	
91	Line 3 Current (%RLA)- Compressor 2A	Line 3 Current (%RLA)- Compressor 2A	Percent	
92	Line 1 Current (%RLA)- Compressor 2B	Line 1 Current (%RLA)- Compressor 2B	Percent	
93	Line 2 Current (%RLA)- Compressor 2B	Line 2 Current (%RLA)- Compressor 2B	Percent	

Date: 12/6/2024 Reference Document: BAS-SVP083*-EN

Object Identifier	Object Name	Description	Units	Configuration Dependency
94	Line 3 Current (%RLA)- Compressor 2B	Line 3 Current (%RLA)- Compressor 2B	Percent	
95	Number of Circuits	Number of Circuits	None	
96	Number of Compressors, Ckt 1	Number of Compressors, Ckt 1	None	
97	Number of Compressors, Ckt 2	Number of Compressors, Ckt 2	None	
98	Chiller Design Capacity	Design Capacity of the Chiller	None	

Date: 12/6/2024 Reference Document: BAS-SVP083*-EN

Object Identifier	Object Name	Description	Dimensionality	Valid Range	Relinquish Default
1	Chilled Water Setpoint	Desired leaving water temperature if chiller is in cooling mode.	Temperature	0°F to 75°F (-17.8°C to 23.8°C)	44°F (6.7°C)
2	Current Limit Setpoint	Sets the maximum capacity that the chiller can use.	Percent	0% to 120%	100%

Date: 12/6/2024 Reference Document: BAS-SVP083*-EN

Object Identifier	Object Name	Description	Units	Configuration Dependency
1	Run Enabled	Indicates if the chiller is available to run or is currently running.	Inactive = Stop Active = Auto	
2	Local Setpoint Control	Indicates if the chiller is being controlled by local setpoints instead of BAS setpoints.	Inactive =Remote Control Active = Local Control	
3	Capacity Limited	Indicates if conditions may exist that prevent the chiller from reaching setpoint.	Inactive = Not Limited Active = Limited	
4	Chiller Running State	Indicates if the chiller is running or stopped.	Inactive = Off Active = On	
6	Maximum Capacity	Indicates if all available chiller capacity is being used.	Inactive = Off Active = On	
9	Compressor 1A Running	Indicates if compressor 1A is running.	Inactive = Off Active = Running	
10	Compressor 1B Running	Indicates if compressor 1B is running.	Inactive = Off Active = Running	
11	Compressor 2A Running	Indicates if compressor 2A is running.	Inactive = Off Active = Running	
12	Compressor 2B Running	Indicates if compressor 2B is running.	Inactive = Off Active = Running	
17	Evaporator Water Pump Request	Indicates a request from the chiller to turn on the evaporator water pump.	Inactive = Off Active = On	
22	Evaporator Water Flow Status	Indicates if water is flowing through the evaporator.	Inactive = No Flow Active = Flow	
23	Alarm Present	Indicates if an alarm is active.	Inactive = No Alarm Active = Alarm	
24	Shutdown Alarm Present	Indicates if a shutdown alarm is active.	Inactive = No Alarm Active = None	
25	Last Diagnostic	Indicates last diagnostic for the chiller.	Inactive = Off Active = On	

Date: 12/6/2024 Reference Document: BAS-SVP083*-EN

Object Identifier	Object Name	Description	Object States	Relinquish Default
1	Chiller Auto Stop Command	Allows the chiller to run if conditions for running are met.	True	Inactive = Stop Active = Auto
2	Remote Diagnostic Reset Command	Resets remotely diagnostics that can be reset.	False	Inactive = No Reset Request Active = Reset Request

Date: 12/6/2024 Reference Document: BAS-SVP083*-EN

Object Identifier	Object Name	Description	Object States	Configuration
1	Running Mode	Indicates the primary running mode of the chiller.	1 = Chiller Off 2 = Chiller in Start Mode 3 = Chiller in Run Mode 4 = Chiller in Pre-shutdown Mode 5 = Chiller in Service Mode	
2	Operating Mode	Indicates the primary operating mode of the chiller.	1 = HVAC_Cool 2 = HVAC_Heat 3 = HVAC_Ice (a) 4 = Not Used	
3	MP Communication Status	Do Not Use This Point	Do Not Use This Point	
4	Refrigerant Type	Refrigerant type.	1 = R-11 2 = R-12 3 = R-22 4 = R-123 5 = R-134A 6 = R407C 7 = R-410A 8 = R-113 9 = R-114 10 = R-500 11 = R-502 12 = R-404A 13 = R-513A	

Date: 12/6/2024 Reference Document: BAS-SVP083*-EN

Object Identifier	Object Name	Description	Object States	Configuration
5	Model Information	Indicates the model type of the chiller.	1 = RTA 2 = CVH 3 = CVG 4 = CVR 5 = CDH 6 = RTH 7 = CGW 8 = CGA 9 = CCA 10 = RTW 11 = RTX 12 = RTU 13 = CCU 14 = CXA 15 = CGC 16 = RAU	
6	Cooling Type	Cooling type of the condenser.	1 = Water Cooled 2 = Air Cooled	
7	Manufacturing Location	Location where chiller was manufactured.	1 = Field Applied 2 = La Crosse□ 3 = Pueblo 4 = Charmes 5 = Rushville 6 = Macon 7 = Waco 8 = Lexington 9 = Forsyth 10 = Clarksville 11 = Ft. Smith 12 = Penang 13 = Colchester 14 = Curitiba 15 = Taicang 16 = Taiwan 17 = Epinal 18 = Golbey	

Date: 12/6/2024 Reference Document: BAS-SVP083*-EN

Object Identifier Object Name		Description	Object States	Relinquish Default
1	Chiller Mode Command	Mode of operation of the chiller.	1 = Cool	1 = HVAC _Cool 2 = HVAC_Heat 3 = HVAC_Ice (a) 4 = Not Used