

Installation, Operation, and Maintenance

Ascend[™] Air-Cooled Chiller Model ACR Series C

150 to 550 Nominal Tons

573253740003

A SAFETY WARNING

Only qualified personnel should install and service the equipment. The installation, starting up, and servicing of heating, ventilating, and air-conditioning equipment can be hazardous and requires specific knowledge and training. Improperly installed, adjusted or altered equipment by an unqualified person could result in death or serious injury. When working on the equipment, observe all precautions in the literature and on the tags, stickers, and labels that are attached to the equipment.

Introduction

Read this manual thoroughly before operating or servicing this unit.

Warnings, Cautions, and Notices

Safety advisories appear throughout this manual as required. Your personal safety and the proper operation of this machine depend upon the strict observance of these precautions.

The three types of advisories are defined as follows:

Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

Indicates a potentially hazardous situation which, if not avoided, could result in minor or moderate injury. It could also be used to alert against unsafe practices.

Indicates a situation that could result in equipment or property-damage only accidents.

Important Environmental Concerns

Scientific research has shown that certain man-made chemicals can affect the earth's naturally occurring stratospheric ozone layer when released to the atmosphere. In particular, several of the identified chemicals that may affect the ozone layer are refrigerants that contain Chlorine, Fluorine and Carbon (CFCs) and those containing Hydrogen, Chlorine, Fluorine and Carbon (HCFCs). Not all refrigerants containing these compounds have the same potential impact to the environment. Trane advocates the responsible handling of all refrigerants.

Important Responsible Refrigerant Practices

Trane believes that responsible refrigerant practices are important to the environment, our customers, and the air conditioning industry. All technicians who handle refrigerants must be certified according to local rules. For the USA, the Federal Clean Air Act (Section 608) sets forth the requirements for handling, reclaiming, recovering and recycling of certain refrigerants and the equipment that is used in these service procedures. In addition, some states or municipalities may have additional requirements that must also be adhered to for responsible management of refrigerants. Know the applicable laws and follow them.

A WARNING

Proper Field Wiring and Grounding Required!

Failure to follow code could result in death or serious injury.

All field wiring MUST be performed by qualified personnel. Improperly installed and grounded field wiring poses FIRE and ELECTROCUTION hazards. To avoid these hazards, you MUST follow requirements for field wiring installation and grounding as described in NEC and your local/state/national electrical codes.

A WARNING

Personal Protective Equipment (PPE) Required!

Failure to wear proper PPE for the job being undertaken could result in death or serious injury. Technicians, in order to protect themselves from potential electrical, mechanical, and chemical hazards, MUST follow precautions in this manual and on the tags, stickers, and labels, as well as the instructions below:

- Before installing/servicing this unit, technicians MUST put on all PPE required for the work being undertaken (Examples; cut resistant gloves/ sleeves, butyl gloves, safety glasses, hard hat/ bump cap, fall protection, electrical PPE and arc flash clothing). ALWAYS refer to appropriate Safety Data Sheets (SDS) and OSHA guidelines for proper PPE.
- When working with or around hazardous chemicals, ALWAYS refer to the appropriate SDS and OSHA/GHS (Global Harmonized System of Classification and Labelling of Chemicals) guidelines for information on allowable personal exposure levels, proper respiratory protection and handling instructions.
- If there is a risk of energized electrical contact, arc, or flash, technicians MUST put on all PPE in accordance with OSHA, NFPA 70E, or other country-specific requirements for arc flash protection, PRIOR to servicing the unit. NEVER PERFORM ANY SWITCHING, DISCONNECTING, OR VOLTAGE TESTING WITHOUT PROPER ELECTRICAL PPE AND ARC FLASH CLOTHING. ENSURE ELECTRICAL METERS AND EQUIPMENT ARE PROPERLY RATED FOR INTENDED VOLTAGE.

©2025 Trane AC-SVX003C-EN

A WARNING

Follow EHS Policies!

Failure to follow instructions below could result in death or serious injury.

- All Trane personnel must follow the company's Environmental, Health and Safety (EHS) policies when performing work such as hot work, electrical, fall protection, lockout/tagout, refrigerant handling, etc. Where local regulations are more stringent than these policies, those regulations supersede these policies.
- Non-Trane personnel should always follow local regulations.

A WARNING

Refrigerant under High Pressure!

Failure to follow instructions below could result in an explosion which could result in death or serious injury or equipment damage.

System contains refrigerant under high pressure. Recover refrigerant to relieve pressure before opening the system. See unit nameplate for refrigerant type. Do not use non-approved refrigerants, refrigerant substitutes, or refrigerant additives.

WARNING

Electrical Shock Hazard!

Failure to follow instructions below could result in death or serious injury.

Properly connect the system's oversized protective earthing (grounding) terminal(s).

Factory Warranty Information

Compliance with the following is required to preserve the factory warranty:

All Unit Installations

Start-up MUST be performed by Trane, or an authorized agent of Trane, to VALIDATE this WARRANTY. Contractor must provide a two-week start-up notification to Trane (or an agent).

Copyright

This document and the information in it are the property of Trane, and may not be used or reproduced in whole or in part without written permission. Trane reserves the right to revise this publication at any time, and to make changes to its content without obligation to notify any person of such revision or change.

Trademarks

All trademarks referenced in this document are the trademarks of their respective owners.

Factory Training

Factory training is available through Trane University[™] to help you learn more about the operation and maintenance of your equipment. To learn about available training opportunities, contact Trane University[™].

Online: www.trane.com/traneuniversity Email: traneuniversity@trane.com

Product Safety Information

This appliance is not intended for use by persons (including children) with reduced physical, sensory or mental capabilities, or lack of experience and knowledge, unless they have been given supervision or instruction concerning use of the appliance by a person responsible for their safety. Children should be supervised to ensure that they do not play with the appliance.

Maximum altitude of use 3000 meters.

This appliance incorporates an earth connection for functional purposes only.

Revision History

Updated elastomeric isolator image to include isolator installation orientation in Installation Mechanical chapter.

Table of Contents

M 1 1 M 1 C C C	D () (D D II () ()
Model Number Information	Refrigerant Pressure Relief Valves 52
Nameplates7	Evaporator Piping
Unit Nameplate	Evaporator Piping Components
Model Number Coding System7	Pump Package
Compressor Nameplate	Freeze Protection58
Model Number Descriptions	Low Evaporator Refrigerant Cutout, Glycol Requirements59
Compressor Information	Installation Electrical 62
	General Recommendations 62
General Information	Units with Nitrogen Charge Option 62
Unit Length	Installer-Supplied Components 62
Accessory/Option Information	Power Supply Wiring
General Data11	Adaptive Frequency Drive Capacitor
Pre-Installation	Discharge
Unit Inspection	Service Power Connection
Exterior Inspection	Heater Power Supply 66
Inspection for Concealed Damage 16	Chilled Water Pump Control 67
Repair	Evaporator Pump Package
Storage Requirements	Evaporator Flow Measurement 68
Installation Requirements	Programmable Relays
Dimensions and Weights	Relay Assignments Using Tracer® TU 69
Weights	Low Voltage Wiring
Service Clearance	Emergency Stop 69
Unit Dimensions	External Auto/Stop
Unit Sizes 150 to 330 Tons	External Circuit Lockout – Circuit #1 and #270
Unit Sizes 375 to 550 Tons	Ice Building Option
Installation Mechanical35	External Chilled Water Setpoint
Location Requirements	(ECWS) Option
Sound Considerations	External Demand Limit Setpoint (EDLS) Option71
Foundation	EDLS and ECWS Analog Input Signal
	Wiring
Lifting and Moving Instructions	Chilled Water Reset (CWR) 72
Isolation and Sound Emission	Building Automation Systems
Elastomeric Isolators	BACnet [®] Building Automation Control Network
Mounting Locations, Weights,	Modbus® Automation Control
Isolators	Network
Compressor Mounting Bolt Removal 52	LonTalk [®] Building Automation
Drainage	Systems

Operating Principles74	Normal Shutdown to Stopped or Run
Refrigeration Circuits	Inhibit
Refrigeration Cycle	Immediate Shutdown to Stopped or Run Inhibit
Refrigerant	Ice Making (Running to Ice Making to
Compressor and Oil System	Running)9 ²
Condenser and Fans	Ice Making (Stopped to Ice to Ice
	Making Complete)92
Evaporator	Maintenance 93
Free-Cooling Operating Modes	Recommended Maintenance93
Combined Mechanical and Free-	Weekly 93
Cooling Mode	Monthly90
Free-Cooling Only Mode 75	Annual 93
Controls76	Refrigerant and Oil Charge Management94
Overview	Lubrication System 94
Symbio™ 80076	Oil Sump Level Check
AdaptiView™ Display	Condenser Coil Cleaning 95
Noise Reduction Mode	Coil Cleaning Interval
Tracer [®] TU	Cleaning Air Side of Coils
Integrated Rapid Restart77	
	Cleaning the Evaporator
Pre-Start78	Pump Package
Start-Up and Shutdown79	Free-Cooling Coil
Unit Start-Up	Free-Cooling Fluid Management
Temporary Shutdown and Restart 79	Reinstallation of Compressor Mounting
Extended Shutdown Procedure	Bolts97
Seasonal Unit Start-Up Procedure 80	Servicing Chiller Roof
System Restart after an Extended	•
Shutdown 80	Diagnostics
Sequence of Operation 81	General Diagnostics Information 98
Software Operation Overview 81	AFD Diagnostics 98
Power Up Diagram 82	Starter Diagnostics
Power Up to Starting	Main Processor Diagnostics103
Stopped to Starting	Communication Diagnostics
Load 85	Unit Wiring116
Lag Circuit Running — Increasing	
Load	Log and Check Sheets
Satisfied Setpoint with Operational Pumpdown87	Ascend™ Model ACR Series C Installation
Full Load to Minimum Load	Completion Check Sheet and Request for
	Trane Service

Table of Contents

Model Number Information Nameplates

Unit nameplates are applied to the exterior of the control panel. A compressor nameplate is located on each compressor. When the unit arrives, compare all nameplate data with ordering, submittal, and shipping information.

Unit Nameplate

The unit nameplate provides the following information:

- Model
- Serial number
- · Electrical requirements
- Operating charges (refrigerant and oil)
- · Design pressures
- Installation, operation and maintenance and service data literature
- · Drawing numbers for unit wiring diagrams

Model Number Coding System

Model numbers are composed of numbers and letters that represent features of the equipment.

Each position, or group of positions, in the model number is used to represent a feature. Unit model number digits are selected and assigned in accordance with the definitions as listed in Model Number Descriptions chapter.

Compressor Nameplate

The compressor nameplate provides the following information:

- Compressor model number
- · Compressor serial number
- Compressor electrical characteristics
- Utilization range
- Recommended refrigerant

See Model Number Descriptions chapter for compressor model and serial number descriptions.

Model Number Descriptions

Unit Model Number

Digit 1, 2, 3 — Unit Model

ACR = Air-Cooled Screw Chiller

Digit 4 - Series

C = Series C

Digit 5, 6, 7 - Nominal Tonnage

150 = 150 Tons 165 = 165 Tons

180 = 180 Tons 200 = 200 Tons

225 = 225 Tons

250 = 250 Tons

275 = 275 Tons 300 = 300 Tons

330 = 330 Tons

375 = 375 Tons **380** = 380 Tons

440 = 440 Tons

450 = 450 Tons **500** = 500 Tons

550 = 550 Tons

Digit 8 — Compressor Type

4 = Mixed screw types

5 = GP4 — Screw with Variable Volume Ratio

Digit 9- Unit Voltage

A = 200/60/3

B = 230/60/3

C = 380/60/3

D = 400/60/3

E = 460/60/3

F = 575/60/3

Digit 10 — Manufacturing Location

U = Trane Commercial Systems, Pueblo, CO USA

G = Trane Commercial Systems, Grand Rapics, MI USA

Digits 11, 12 - Design Sequence

** = Factory assigned

Digit 13 - Unit Sound Package

R = InvisiSound™ Standard with Noise Reduction Request

Q = InvisiSound™ Superior with Noise Reduction Request

E = InvisiSound™ Ultimate

Digit 14 — Agency Listing

C = No Agency Listing

E = ETL Listed/Certified to CSA/Conforms to UL

Digit 15 - Pressure Vessel Code

U = ASME Pressure Vessel Code

C = CRN or Canadian Equivalent Pressure Vessel

Digit 16 — Factory Charge

E = Refrigerant Charge R-513A

F = Nitrogen Charge, R-513A Field Supplied

Digit 17 — Auxiliary Items

X = No Auxiliary Items

Digit 18 — Evaporator Application

N = Standard Cooling

P = Low Temp Process Cooling

C = Ice Making

Digit 19, 20 — Evaporator Type

C1 = CHIL 1-pass

C2 = CHIL 2-pass

C3 = CHIL 3-pass

Digit 21 — Water Connection

X = Grooved Pipe

A = Grooved Pipe + Flange

Digit 22 - Flow Switch

C = Flow Switch Set Point 15 cm/sec

D = Flow Switch Set Point 25 cm/sec

F = Flow Switch Set Point 35 cm/sec

H = Flow Switch Set Point 45 cm/sec

L = Flow Switch Set Point 60 cm/sec

Digit 23 — Insulation

N = Factory Insulation — All Cold Parts 0.75"

H = Evaporator-only Insulation for High Humidity/

Low Evap Temp 1.25"

Digit 24 — Unit Application

X = Standard Ambient

L = I ow Ambient

E = Extreme Low Ambient

H = High Ambient

W = Wide Ambient

Digit 25 - Condenser Length

A = 4V Condenser Coil Modules

B = 5V Condenser Coil Modules

C = 6V Condenser Coil Modules D = 7V Condenser Coil Modules

E = 8V Condenser Coil Modules

F = 9V Condenser Coil Modules H = 11V Condenser Coil Modules

Digit 26 — Condenser Fin Options

M = Aluminum Microchannel

C = Coated Microchannel

P = Premium Coated Microchannel

Digit 27 - Fan Type

E = EC Condenser Fan Motors

Digit 28 — Compressor Starter

V = Variable Frequency Drive (1 compressor/

Digit 29 — Incoming Unit Power Line Connection

1 = Single Point Power

2 = Dual Point Unit Power Connection

3 = Single Point Power including 115V

Digit 30 — Power Line Connection Type

T = Terminal Block

C = Circuit Breaker

H = Circuit Breaker with High Fault Rated Control

Digit 31 — Short Circuit Current Rating

A = Default Short Circuit Amp Rating

B = High Short Circuit Amp Rating

Digit 32 - Electrical Accessories

N = 20A 115V Convenience Outlet

Digit 33 — Remote Communication Option

X = None

L = LonTalk® Interface

B = BACnet® TP Interface

M = Modbus® Interface

P = BACnet® Interface (IP)

Digit 34 — Hard Wire Communication

X = None

A = Hard Wired Bundle - All

B = Remote Leaving Water Temp Setpoint

C = Remote Leaving Temp and Demand Limit Setpoints

D = Unit Status Programmable Relay

E = Programmable Relay and Leaving Water and Demand Limit Setpoint

F = Percent Capacity

G = Percent Capacity and Leaving Water and

Demand Limit Setpoint

H = Percent Capacity and Programmable Relay

Digit 35 — Smart Flow Control

X = None

F = Flow Measurement Factory Installed

Digit 36 — Structural Options

A = Standard Unit Structure

Digit 37 — Appearance Accessories

X = No Appearance Options

A = Architectural Louvered Panels

Digit 38 — Unit Isolation

X = None

1 = Elastomeric Isolators

Digit 39 — Shipping Package

X = None

A = Containerization

T = Shipping Tarp Covering Full Unit

B = Containerization and Tarp

Digit 40 — Pump Package

X = None

5 = 50 HP Single Pump High Pressure with Single VFD

6 = 60 HP Single Pump High Pressure with Single VFD

7 = 75 HP Single Pump High Pressure with Single VFD

Digit 41 — Heat Recovery

X = None

Digit 42 - Free-Cooling

X = None

T = Total Direct Free-Cooling

J = Total Direct Free Cooling + 1V Free-Cooling

Coils

H = Total Direct Free Cooling + 2V Free-Cooling

Coils

Digit 43 — Special

0 = None

S = Special

F = Ship to Final Finisher

Digit 44 — Line Voltage Harmonic Mitigation

X = DC Reactors (~30% TDD)

L = 5% TDD (IEEE519 Compliant)

Digit 45 — Wireless Connectivity

A = Wi-Fi

B = LTE Modem

C = Air-Fi®

D = Wi-Fi and LTE Modem

E = Wi-Fi and Air-Fi®

F = LTE Modem and Air-Fi®

G = Wi-Fi, LTE Modem, and Air-Fi®

Model Number Descriptions

Compressor Information

CHHS MODEL NUMBER (GP4)

Digit 1, 2, 3, 4 — Compressor Type

CHHS = Positive displacement, helical rotary (twin screw) hermetic compressor

Digit 5 — Frame Size

R = R Frame: 70 - 100 tons **S** = S Frame: 112 - 165 tons

Digit 6 - Motor Length

B = 145 mm **C** = 170 mm **E** = 165 mm **F** = 190 mm

Digit 7— Motor Winding Characteristics

* = Factory assigned

Digit 8 — Volume Ratio

E = Variable Volume Ratio

Digit 9— Economizer

1 = No Economizer Port

Digits 10, 11 — Design Sequence

** = Factory assigned

CHHW MODEL NUMBER (GP2, GP2.5)

Digit 1, 2, 3, 4 — Compressor Family

CHHW = Positive displacement, helical rotary.

hermetic compressor

Digit 5 — Economizer Port Detail

0 = No Economizer Port

Digit 6 — Frame Size

N = N Frame

Digit 7— Compressor Capacity

6 = GP2.5 Larger capacity (major)

Digit 8 — Motor Voltage

D = 380/60/3

H = 575/60/3

K = 460 /60/3 (N6 only) **J** = 460 /50/3 (N6 only)

Digit 9- Internal Relief

K = 450 psid

Digits 10, 11 — Design Sequence

** = Factory assigned

Digit 12 — Capacity Limit

N = Standard capacity

Digits 13, 14, 15 — Motor kW Rating

112 = N6 50 Hz **134** = N6 60 Hz

Digit 16 — Capacity Limit

A = High Volume Ratio

SERIAL NUMBER

Digit 1, 2 — Year

YY = Last two digits of year of manufacture

Digit 3, 4 - Week

WW = Week of build, from 00 to 52

Digit 5 — Day

1 = Monday

2 = Tuesday

3 = Wednesday

4 = Thursday

5 = Friday6 = Saturday

7 = Sunday

Digit 6, 7, 8 — Coded Time Stamp

TTT = Used to ensure uniqueness of serial number

Digit 9 — Assembly Line

Assembly line compressor was built on. Varies with facility

Digit 10 - Build Location

A = Monterrey

General Information Unit Length

For unit sizes 330 tons and smaller, units are EXTENDED length if either of the following are selected:

- Voltage: 200, 230, 380, 400, or 575V (model number digit 9 = A, B, C, D, or F).
- Harmonic Filtration Option: Filter circuit (model number digit 44 = L).

Accessory/Option Information

Verify accessories and loose parts shipped with the unit against the shipping list. Included will be water vessel drain

plugs, electrical diagrams, and service literature, which are placed inside the control panel for shipment.

Optional elastomeric isolators (model number digit 38 = 1) are shipped in the following locations:

- 150 to 330 ton units: Mounted on diagonal supports on the end of the unit opposite control panel
- Units larger than 330 tons: On the horizontal support frame of the chiller

General Data

Table 1. General data - 150 to 330 ton units

Unit Size (tons)		150	16	65	18	В0	20	00	22	25	25	50	27	75	30	00	33	30
Compressor Model		CHHSR	CHF	ISR	CHI	HSR	CH	HSR	CHF	ISS	CHF	ISS	СН	HSS	СН	HSS	СН	ISS
Quantity	#	2	2	2	2	2	2	2	2	!	2	2	2	2	:	2	2	2
Evaporator		•											•		•		•	
Water Storage	gal	17.5	18	.7	21	1.9	23	.9	26	.6	28	.7	33	3.0	3	6	37	.9
Water Storage	L	66.1	70	.9	82	2.8	90	.5	100	0.6	108	3.8	12	5.0	13	6.1	143	3.3
Max. Water Temperature	°F	120	12	20	12	20	12	20	12	20	12	20	12	20	12	20	12	20
Max. Water Temperature	°C	48.9	48	.9	48	3.9	48	.9	48	.9	48	.9	48	3.9	48	3.9	48	.9
Min. Water Pressure	psig	0	C)	(0	()	C)	C)	(0	()	()
Willi. Water Pressure	kPa	0	C)	(0	()	C)	C)	(0	()	C)
Max. Water Pressure	psig	150	15	50	15	50	15	50	15	60	15	50	15	50	15	50	15	50
iviax. vvalei miessure	kPa	1034.2	103	4.2	103	34.2	103	4.2	103	4.2	103	4.2	103	34.2	103	34.2	103	4.2
					21	Pass a	rangen	nent										
Evap Water Connection Size(a)	in	5	5	5	(6	(3	6	;	6	3		В		3	8	3
Lvap vvater confidention size	mm	125	12	25	15	50	15	50	15	0	15	50	20	00	20	00	20	00
Minimum Flow(b)	gpm	171	18	37	20	02	22	28	26	51	28	88	3	18	3	54	37	78
William Tiow(*)	l/s	10.8	11	.8	12	2.7	14	.4	16	.5	18	.2	20).1	22	2.3	23	.8
Maximum Flow(b)	gpm	626	68	34	74	42	83	35	95	57	10	55	11	65	12	99	13	86
IVIAXIIIIIII I IOW	l/s	39.5	43	.1	46	8.8	52	2.7	60	.4	66	.5	73	3.5	81	1.9	87	.4
					3	Pass ar	rangen	nent										
Evap Water Connection Size(a)	in	4	4	ŀ	ţ	5	ţ	5	5	i	5	5	(6	(3	6	6
Evap vvater connection cize.	mm	100	10	00	12	25	12	25	12	25	12	25	15	50	15	50	15	50
Minimum Flow ^(b)	gpm	114	12	24	13	35	15	52	17	'4	19	92	2	12	23	36	25	52
William Tiow (*)	l/s	7.2	7.	8	8	.5	9	.6	11	.0	12	.1	13	3.4	14	1.9	15	.9
Maximum Flow ^(b)	gpm	417	45	56	49	95	55	57	63	8	70)3	77	77	86	36	92	24
iviaximum r iow.	l/s	26.3	28	.8	31	1.2	35	5.1	40	.2	44	.3	49	9.0	54	1.6	58	.3
Condenser																		
Length - Model Number Digit 25(c)		А	Α	В	Α	В	В	С	В	С	В	С	С	D	D	Е	Е	F
Quantity of Coil Modules		8	8	10	8	10	10	12	10	12	10	12	12	14	14	16	16	18
Quantity of Fans		8	8	10	8	10	10	12	10	12	10	12	12	14	14	16	16	18
Fan Diameter	in									37.5								
Fan Diameter	mm									953								

General Information

Table 1. General data - 150 to 330 ton units (continued)

	150	16	35	18	30	20	00	22	25	2	50	2	75	30	00	33	30
in		•		•					78								
mm									1987								
in									49								
mm									1252								
									276								
°F (°C)							3	32 to 10	5 (0 to	40.6)							
°F (°C)							0	to 105 (-17.7 to	0 40.6)							
°F (°C)							-20	to 105	(-28.9	to 40.6)						
°F (°C)								32 to 1	25 (0 to	52)							
°F (°C)							0	to 125	(-17.7	to 52)							
								R	-513A								
#									2								
%	20	18	18	17	17	15	15	20	20	18	18	16	16	15	15	14	14
lb	170	165	195	176	205	197	225	204	231	194	220	229	254	240	263	248	270
kg	77	75	89	80	93	89	102	92	105	88	100	104	115	109	119	112	122
								Oll	L00386	;							
gal	2.7	2.7	2.7	2.7	2.7	2.7	2.7	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
L	10.2	10.2	10.2	10.2	10.2	10.2	10.2	13.2	13.2	13.2	13.2	13.2	13.2	13.2	13.2	13.2	13.2
				•									•				
								Hiç	gh Side)							
psig									350								
lba/min									29.5								
									2								
								3/	8 NPT								
								5/	8 MFL								
								Lo	w Side)							
psig									200								
lba/min									28.9								
									2								
								7/8	UNF-2	A							
								3/4	NPTF								
	mm in mm "F(°C) "F(°C) "F(°C) "B(°C) "B(°C) "F(°C) "B(°C)	in mm in min m	in mm	in mm in mm "F(°C) "F(°	in mm in mm "F (°C) "F (°C) "F (°C) "F (°C) "F (°C) "F (°C) "T (°C) "F (°C) "T	in mm in mm "F (°C) "F	in mm in mm "F (°C) "F	in mm in mm "F (°C)	in mm in min in min in min in min in i	in	in mm	In	This bound	mm	mm	in	The color of the

Table 2. General data - 375 to 550 ton units

Unit Size (tons)		37	75	38	30	44	10	4	50	50	00	55	50
Circuit ^(a)		1	2	1	2	1	2	1	2	1	2	1	2
Compressor Model	Comp A	CHHSS											
	Comp B	N6	N/A	N6	N/A	N6	N/A	N6	N/A	N6	N6	N6	N6
Evaporator													•
Water Storage	gal	36	6.3	36	6.3	39).5	39	9.5	45	5.0	49	9.3
Water Storage	L	13	7.3	13	7.3	149	9.6	14	9.6	17	0.3	180	6.8

⁽a) Inlet and outlet sizing changes with options. Free cooling pipe sizes override evaporator sizes and pumps sizes override all options.
(b) Minimum and maximum flow rates apply to constant-flow chilled water systems running at AHRI conditions, without freeze inhibitors added to the water loop.
(c) Condenser length defined by model number digit 25: A = 4V; B = 5V; C = 6V; D = 7V; E = 8V; F = 9V.

Table 2. General data - 375 to 550 ton units (continued)

Unit Size (tons)		37	75	38	80	44	10	4	50	50	00	5	50
Circuit ^(a)		1	2	1	2	1	2	1	2	1	2	1	2
May Water Temperature	°F	12	20	12	20	12	.0	1:	20	12	20	12	20
Max. Water Temperature	°C	48	3.9	48	3.9	48	.9	48	3.9	48	3.9	48	3.9
	psig	()	(0	C)		0	()	()
Min. Water Pressure	kPa	()	(0	C)		0	()	()
	psig	15	50	1	50	15	60	1	50	15	50	15	50
Max. Water Pressure	kPa	103	4.2	103	34.2	103	4.2	103	34.2	103	4.2	103	34.2
				1 Pas	ss Arrange	ement		ı		ı		ı	
From Motor Connection Circ(h)	in	3	3	8	8	8	}		8	120 48.9 0 0 150 1034.2 8 200 523 33.0 2303 145.3 8 200 260 16.4 1146 72.3 H 12 1 12 1		8	3
Evap Water Connection Size ^(b)	mm	20	00	20	00	20	0	2	00	10		20	00
Minimum Flow(c)	gpm	39	98	39	98	39	18	4	50	52	23	59	91
Millimum Flow	I/s	25	5.1	25	5.1	25	.1	28	3.4	33	5.0	37	7.3
Maximum Flau(s)	gpm	17	50	17	'50	17	50	19	981	23	03	26	03
Maximum Flow ^(c)	l/s	110	0.4	11	0.4	110).4	12	5.0	14	5.3	16	4.2
				2 Pas	ss Arrange	ement		•		•		•	
Evap Water Connection Size(b)	in	8	3	8	8	8	3		8	8	3	8	3
Evap water Connection Size®	mm	20	00	20	00	20	0	2	00	20	00	20	00
Minimum Flour(c)	gpm	19	98	19	98	19	18	2	24	26	60	29	94
Minimum Flow ^(c)	I/s	12	2.5	I	L	12	.5	1	4	16	5.4	18	3.5
Maximum Flau(s)	gpm	87	71	87	71	87	'1	9	86	11-	46	12	:95
Maximum Flow ^(c)	l/s	55	5.0	55	5.0	55	.0	62	2.2	72	1.3	81	1.7
Condenser						,							
Length - Model Number Digit 25(d)		F	=	ŀ	1	F	:	1	Н	H	1	ŀ	1
Quantity of Coil Modules		12	6	14	8	12	6	14	8	12	10	12	10
Quantity of Fans	#	12	6	14	8	12	6	14	8	12	10	12	10
Fan Diameter	in						37	7.5					
ran Diameter	mm						9:	53					
Coil Length	in						78	.22					
Coll Length	mm						19	87					
Coil Height	in						49	.31					
Coll Height	mm						12	252					
Fins/Ft							2	76					
Ambient Temperature Range													
Standard Ambient	°F (°C)					3	2 to 105	(0 to 40.6	i)				
Low Ambient	°F (°C)					01	to 105 (-1	7.7 to 40	.6)				
Extreme Low Ambient	°F (°C)					-20	to 105 (-	28.9 to 40	0.6)				
High Ambient	°F (°C)						32 to 125	5 (0 to 52)					
Wide Ambient	°F (°C)					0	to 125 (-	17.7 to 52	2)				
General Unit													
Refrigerant							R-5	13A					
Refrigerant Ckts	#						:	2					
Minimum Load	%	1	5	1	5	1	5	1	15	1	0	1	0
Refrigerant Charge/ckt	lb	366	177	405	215	366	177	405	215	411	365	411	365
Reingerant Charge/ckt	kg	166	80	184	98	166	80	184	98	186	166	186	166

General Information

Table 2. General data - 375 to 550 ton units (continued)

Unit Size (tons)		37	75	38	30	44	10	4	50	50	00	5	50
Circuit ^(a)		1	2	1	2	1	2	1	2	1	2	1	2
Oil							OIL0	0386				•	
Oil Charge/ckt	gal	4.8	3.5	4.8	3.5	4.8	3.5	4.8	3.5	4.8	4.8	4.8	4.8
Oil Ollarge/CKI	L	18.2	13.2	18.2	13.2	18.2	13.2	18.2	13.2	18.2	18.2	18.2	18.2
Relief Valves				•	•							•	
							High	Side					
Relief setting	psig						3	50					
Rated Capacity	lba/min						29	9.5					
Quanity per unit							2	2					
Factory connection							3/8	NPT					
Field Connection							5/8	MFL					
							Low	Side					
Relief setting	psig						20	00					
Rated Capacity	lba/min						28	3.9					
Quanity per unit								2					
Factory connection							7/8 UI	NF-2A					
Field Connection							3/4 N	NPTF					

⁽a) Circuit applicable where two values given per tonnage.

⁽b) Inlet and outlet sizing changes with options. Free cooling pipe sizes override evaporator sizes and pumps sizes override all options.

⁽c) Minimum and maximum flow rates apply to constant-flow chilled water systems running at AHRI conditions, without freeze inhibitors added to the water loop.

⁽d) Condenser length defined by model number digit 25: F = 9V; H = 11V.

General data - free cooling specific data Table 3.

Description	Units												Values	s												
Condenser Length - Model Number Digit 25(a)			В			ပ				D							Е						F			I
Free-Cooling Model Number Digit 42 ^(b)		T	٦	I	T	ſ	Н	T		7		I		_			7		I			_		٦		—
Customer Water	. <u>⊑</u>						9												8							∞
Connection Size(c)	mm						152												200						7	203
Quantity of Free-Cooling Coils (Extended)		9 (10)	11 (12)	13 (14)	11 (12)	13 (14)	15 (16)	13 (14)	.)	15 (16)		17 (18)		15 (16)	2)		17 (18)		19 (20))	17 (18)		19 (20)		20
Quantity of Free-Cooling- only fans		N/A	2	4	N/A	2	4	N/A		2		4		N/A	∢		8		4			¥ X		7		Ą
Lico C	.⊑												72.49													
	шш												1841													
بطمين لل انح ()	.⊑												40													
	шш												1016													
Fins/Ft													192													
Rows													3													
Free Cooling Customer	gal	123 (129)	145 (151)	173 (179)	145 (151)	173 (179)	212 (218)	173 (179)	0 0	212 (218)		234 (240)		212 (218)	8)		234 (240)		276 (282)	. (234 (240)		276 (282)	.,	232
(Extended Length)	_	467 (489)	550 (572)	656 (679)	550 (572)	(679)	801 (823)	(629)	8 8)	801 (823)		883 (906)		801 (823)	3)		883 (906)		1043 (1063)	9.3	~ <u>e</u>	883 (906)		1043 (1063)		878
Pump Package																										
Pump Package Option - Model Number Digit 40(d)									2	2 9	. 2	9	2	2 6	7	2	9	2	9 2	7	2	9	2 2	9	7	
Pump HP									20 (60 75	2 20	09	75 5	20 60	75	20	. 09	75 5	20 60	75	20	09	75 50	09	75	
Customer Water	in				₹ Z				9	8	9	8		9	8	9	8		9	8	9	8	9	8		¥ X
Connection Size(c)	mm								150	200	150	200		150	200	150	200		150	200	150	200	150	200	0	
Additional Water Storage	gal								117 1	148 151	117	148	151 1	117 148	8 151	117	148 1	151 1	117 148	151	117	148 1	151 117	148	151	
in Pump System L	_								443 56	0	572 443	560	572 4	443 560	0 572	443	260	572 4	443 560	572	443	260 5	572 443	560	572	

Condenser length defined by model number digit 25: B = 5V; C = 6V; D = 7V; E = 8V; F = 9V; H = 11V.

Direct Free-Cooling defined by model number digit 42: T = TDFC; J = DFC1; H = DFC2.

Inlet and outlet sizing changes with options. Free cooling pipe sizes override evaporator sizes and pumps sizes override all options. Pump Package defined by model number digit 40: 5 = SV50, 6 = SV60, 7 = SV75.

G G G B

Pre-Installation Unit Inspection

To protect against loss due to damage incurred in transit, perform inspection immediately upon receipt of the unit.

Exterior Inspection

If the job site inspection reveals damage or material shortages, file a claim with the carrier immediately. Specify the type and extent of the damage on the bill of lading before signing. Notify the appropriate sales representative.

Important: Do not proceed with installation of a damaged unit without sales representative's approval.

- Visually inspect the complete exterior for signs of shipping damages to unit or packing material.
- Verify that the nameplate data matches the sales order and bill of lading.
- Verify that the unit is properly equipped and there are no material shortages.

Note: Corrosion due to dirt, road grim, road salt, and other contaminates picked up during shipping is not the responsibility of the carrier.

Inspection for Concealed Damage

Visually inspect the components for concealed damage as soon as possible after delivery and before it is stored.

If concealed damage is discovered:

- Notify the carrier's terminal of the damage immediately by phone and by mail.
- · Concealed damage must be reported within 15 days.
- Request an immediate, joint inspection of the damage with the carrier and consignee.
- · Stop unpacking the unit.
- Do not remove damaged material from receiving location
- Take photos of the damage, if possible.
- The owner must provide reasonable evidence that the damage did not occur after delivery.

Repair

Notify the appropriate sales representative before arranging unit installation or repair.

Important: Do not repair unit until the damage has been inspected by the carrier's representative.

Storage Requirements

Extended storage of outdoor unit prior to installation requires these precautionary measures:

- · Store the outdoor unit in a secure area.
- For units that have been charged with refrigerant, verify the following valves are closed on each circuit:
 - Suction service valve (butterfly valve)
 - Liquid line angle valve or EXV (EXV is driven closed whenever circuit is powered)
 - Oil line shutoff valves to brazed plate heat exchangers

Note: Units with factory refrigerant charge (model number digit 16 = E) are shipped with suction, liquid and oil line shutoff valves closed, isolating most of refrigerant charge in the evaporator. If unit goes directly into long term storage, it is recommended that these valve positions be confirmed.

 For units with nitrogen charge option (model number digit 16 = F), units are shipped with valves open. If unit goes directly into storage prior to refrigerant charge, confirm all service valves are open.

 At least every three months (quarterly), check the pressure in the refrigerant circuits to verify that the refrigerant charge is intact. If it is not, contact a qualified service organization and the appropriate Trane sales office.

Installation Requirements

Туре	Trane Supplied Trane Installed	Trane Supplied Field Installed	Field Supplied Field Installed
Foundation			Meet foundation requirements
Rigging			Safety chains Clevis connectors Lifting beam Spreader bar
Disassembly/Reassembly (as required)	Trane, or an agent of Trane specifically authorized to perform start-up of Trane® products (contact your local Trane office for pricing)		
Isolation		Elastomeric isolators (optional)	Elastomeric isolators (optional)
Electrical	Circuit breakers (optional) Unit Mounted Starter		Circuit breakers (optional) Electrical connections to unit mounted starter Wiring sizes per submittal and NEC Terminal lugs Ground connection(s) Ground type specified (Center Ground-Y or not) BAS wiring (optional) Control voltage wiring Chilled water pump contactor and wiring Option relays and wiring
Water piping	Flow switch		Taps for thermometers and gauges Thermometers Water flow pressure gauges Isolation and balancing valves in water piping Vents and drain Waterside pressure relief valves Water strainer
Insulation	Insulation		Insulation
Water Piping Connection Components	Grooved pipe	Flange kit (optional)	
Other Materials	R-513A refrigerant Dry nitrogen (optional)		
Installation Completion Check Sheet and Request for Trane Service Ascend™ Model ACR Series C (AC-ADF005*-EN) See Log and Check Sheet chapter			
Chiller Start-up Commissioning	Trane, or an agent of Trane specifically authorized to perform start-up of Trane® products		
Trane specifically authorized to perform start-up of Trane® products			

Weights

Table 4. Weights — 150 to 330 ton units

Unit		Free			Standar	d Length			Extended	l Length ^(d)	
Size	Condenser Length ^(a)	Cooling	Pump Option (c)	Ship	ping	Oper	ating	Ship	ping	Oper	ating
(tons)		Option ^(b)		lb	kg	lb	kg	lb	kg	lb	kg
150	4V	N/A	N/A	12000	5450	12200	5540	14200	6450	14400	6540
	4V	N/A	N/A	12100	5490	12300	5580	14300	6490	14500	6580
	5V	N/A	N/A	13100	5950	13200	5990	15200	6900	15400	6990
165	5V	TDFC	N/A	16000	7260	17200	7810	18600	8440	20000	9080
	5V	DFC1	N/A	17300	7830	19100	8670	20000	9040	21800	9880
	5V	DFC2	N/A	18100	8190	20000	9030	20800	9400	22600	10240
	4V	N/A	N/A	12200	5540	12400	5630	14600	6630	14800	6720
	5V	N/A	N/A	13400	6080	13500	6130	15500	7040	15700	7130
180	5V	TDFC	N/A	16800	7630	18000	8170	18800	8550	20300	9210
	5V	DFC1	N/A	17800	8040	19600	8890	20200	9160	22100	10000
	5V	DFC2	N/A	19200	8680	21000	9530	21000	9530	22900	10380
	5V	N/A	N/A	13600	6170	13800	6260	15600	7080	15800	7170
	6V	N/A	N/A	14600	6630	14800	6720	16600	7530	16800	7630
200	6V	TDFC	N/A	18600	8440	20000	9080	20900	9490	22400	10170
	6V	DFC1	N/A	20400	9220	22400	10160	22900	10370	25000	11310
	6V	DFC2	N/A	21500	9740	23600	10690	22400	10140	26200	11870
	5V	N/A	N/A	14800	6720	15000	6810	17000	7720	17200	7810
	6V	N/A	N/A	15900	7220	16100	7310	18100	8220	18300	8310
225	6V	TDFC	N/A	19900	9030	21300	9670	22300	10120	23800	10800
	6V	DFC1	N/A	20700	9360	22800	10310	23200	10510	25300	11460
	6V	DFC2	N/A	21800	9850	23900	10800	24500	11070	26600	12050
	5V	N/A	N/A	14900	6760	15100	6850	17300	7850	17500	7940
	6V	N/A	N/A	16300	7400	16500	7490	18400	8350	18700	8490
250	6V	TDFC	N/A	20300	9210	21700	9850	22500	10210	24200	10980
	6V	DFC1	N/A	20800	9440	22900	10390	23300	10530	25400	11490
	6V	DFC2	N/A	20900	9480	24000	10890	24600	11160	26700	12080
	6V	N/A	N/A	16500	7490	16700	7580	18500	8400	18800	8530
	6V	TDFC	N/A	20400	9260	21800	9860	22600	10260	24500	11080
	7V	N/A	N/A	17400	7900	17700	8030	19600	8900	19800	8990
275	7V	TDFC	N/A	21700	9850	23800	10780	24400	11070	26400	11980
213	7V	DFC1	N/A	22800	10330	24900	11290	25300	11450	27500	12440
	7V	DFC1	PUMP	27000	12220	30700	13910	29400	13340	33200	15060
	7V	DFC2	N/A	23900	10830	26200	11870	26100	11830	28400	12880
	7V	DFC2	PUMP	28100	12720	32000	14490	30300	13720	34200	15500

Table 4. Weights — 150 to 330 ton units (continued)

Unit		Free			Standar	d Length			Extended	Length(d)	
Size	Condenser Length(a)	Cooling	Pump Option (c)	Ship	ping	Oper	ating	Ship	ping	Oper	ating
(tons)		Option ^(b)		lb	kg	lb	kg	lb	kg	lb	kg
	7V	N/A	N/A	17500	7940	17700	8030	19700	8900	19900	9030
	7V	TDFC	N/A	21800	9890	23900	10840	24500	11040	26500	11990
	8V	N/A	N/A	18500	8400	18800	8530	20700	9390	20900	9490
	8V	TDFC	N/A	23400	10590	25500	11620	25800	11670	27900	12660
300	8V	TDFC	PUMP	27600	12470	31300	14180	29800	13520	33500	15180
	8V	DFC1	N/A	24700	11180	27000	12210	26900	12180	29300	13260
	8V	DFC1	PUMP	28800	13070	32800	14850	31100	14070	35100	15890
	8V	DFC2	N/A	25600	11600	28200	12790	27800	12540	30400	13790
	8V	DFC2	PUMP	29800	13490	33900	15380	31900	14420	36100	16380
	8V	N/A	N/A	19100	8650	19500	8830	21400	9680	21800	9870
	8V	TDFC	NONE	23800	10780	26000	11780	26300	11920	28600	12940
	8V	TDFC	PUMP	28000	12670	31800	14410	30500	13800	34400	15570
220	9V	N/A	NONE	20300	9200	20800	9400	22300	10100	22700	10280
330	9V	TDFC	NONE	25500	11570	27900	12630	27700	12570	30100	13650
	9V	TDFC	PUMP	29700	13450	33700	15270	31900	14450	35900	16270
	9V	DFC1	N/A	26200	11870	28700	12980	27900	12640	30500	13830
Notes:	9V	DFC1	PUMP	30400	13760	34400	15610	32100	14530	36100	16350

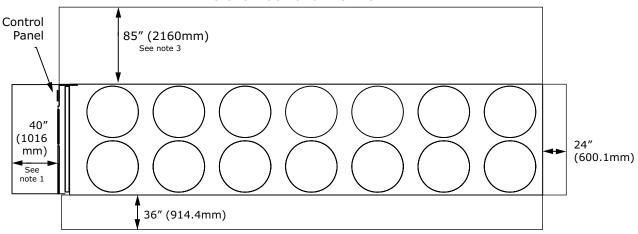
Notes:

- 1. Weights include factory charge of refrigerant and oil, ultimate sounds, and architectural louvered panels.
- 2. All weights are plus/minus 10%
- (a) Condenser length defined by model number digit 25: 4V = A; 5V = B; 6V = C; 7V = D; 8V = E; 9V = F
- (b) Direct Free Cooling defined by model number digit 42: T=TDFC; J=DFC1; H=DFC2.
- (c) Pump Package defined by model number digit 40 = 5, 6, 7
- (d) Extended Length is required for voltages 200V, 230V, 380V, 400V, 575V (model number digit 9 = A, B, C, D, F), and harmonic filtration model number digit 44 = L.

Table 5. Weights — 375 to 550 ton units

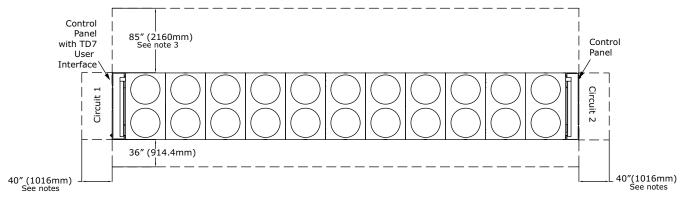
			Standard Un	it with SPP(b)		Std U	Init with SPP	and Options I	Box ^(c)
Unit Size (tons)	Condenser Length ^(a)	Ship	ping	Oper	ating	Ship	ping	Oper	ating
(10110)	Longin	lb	kg	lb	kg	lb	kg	lb	kg
	1		Uı	nits without Dire	ct Free-Cooling	g(d)			
375	9V	22900	10390	23300	10570	25500	11570	25900	11750
440	9V	22900	10390	23300	10570	25500	11570	25900	11750
380	11V	25200	11440	25500	11570	27200	12340	27600	12520
450	11V	25200	11440	25500	11570	27200	12340	27600	12520
500	11V	27400	12430	27900	12660	29500	13390	29900	13570
550	11V	27400	12430	27900	12660	29500	13390	29900	13570
			ı	Units with Direc	t Free-Cooling(c	i)			
380	11V	30900	14020	33200	15060	33400	15150	35500	16100
450	11V	30900	14020	33200	15060	33400	15150	35500	16100
500	11V	33100	15020	35500	16100	35200	15600	37600	17060
550	11V	33100	15020	35500	16100	35200	15600	37600	17060

Notes:


- 1. Weights include factory charge of refrigerant and oil, architectural louvered panels, and Superior sound option.
- 2. All weights are plus/minus 10%.
- (a) Condenser length defined by model number digit 25: 9V = F; 11V = H.
- (b) Single Point Power (SPP) is indicated by model number digit 29 = 1.
- (c) Options box is used for units with either 575V (model number digit 9 = F) or Low Harmonics Option (model number digit 44 = L).

d) Direct Free-Cooling defined by model number digit 42 = T.

Service Clearance


Figure 1. Unit service clearance requirements — 150 to 330 ton units

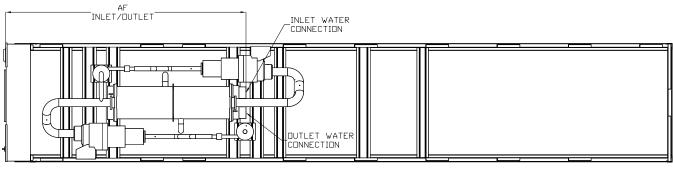
NO OBSTRUCTIONS ABOVE UNIT

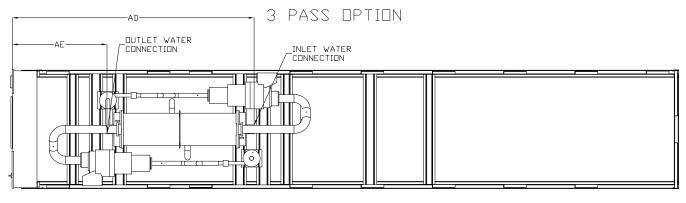
TOP VIEW

Figure 2. Unit service clearance requirements — 375 to 550 ton units

Notes:

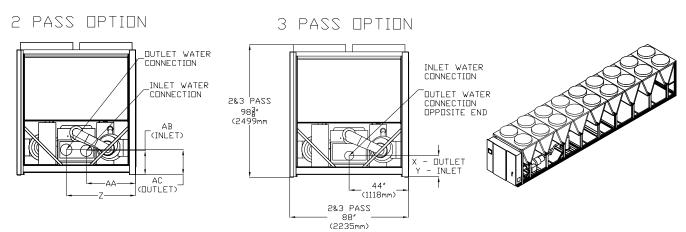
- A full 40" clearance is required in front of the control panel(s). Must be measured from front of panel, not end of unit base. Installer must also follow NEC and local/state codes for electrical clearance requirements.
- Area above unit is required for operation, maintenance, access panel and air flow. No obstructions above unit.
- Clearance of 85" on the side of the unit is required for coil replacement. Preferred side for coil replacement is shown (left side of the unit, as facing control panel), however either side is acceptable.
- For obstructions or multiple units, refer to Close-Spacing and Restricted Airflow Situations, Ascend™ Chiller Models ACR and ACS, Sintesis™ Chiller Model RTAF Engineering Bulletin (AC-PRB001*-EN).




Unit Dimensions

Unit Sizes 150 to 330 Tons

Figure 3. Dimensions — 150 to 330 ton units, standard length



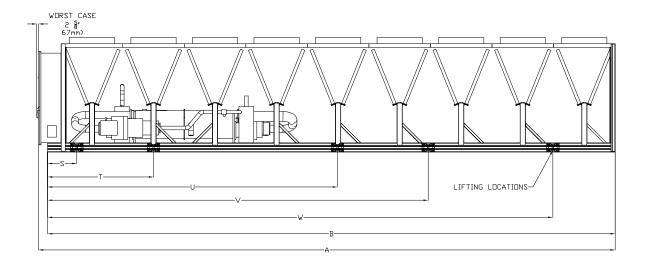


Figure 4. Dimensions — 150 to 330 ton units, standard length, mounting and lifting

MOUNTING LOCATIONS
TOP OF UNIT (CONDENSER REMOVED)
NOT TOO SCALE - REPRESENTATION ONLY

LIFTING LOCATIONS
NOT TOO SCALE - REPRESENTATION ONLY

Dimensions — 150 to 330 ton units, standard length, I-P (inch) Table 6.

Cond					F					ŀ	-					ŀ	-	L				-	
Length (a)	۷4	20	26	%		20 60	>	>	8		V 8V	>	8	6	2	& &	77 76	8 8	6	8	· 6		} 6
Free Cool ^(b)	N/A	N/A TDF0	TDFC DFC1	N/A IT	DFC D	TDFC DFC2 DFC1 TDFC	1 TDFC	N/A	N/A	FC2 DF	DFC2 DFC1 TDFC DFC1 TDFC	C DFC1	TDFC	A/A	DFC2 DFC1	FC1 TL	JFC DF	C2 DFC	TDFC DFC2 DFC1 TDFC DFC2 DFC1 DFC2 DFC1	DFC2 [JFC1 D	FC2 DI	5
Pump Opt(c)	A/A	A/N		δ V			A/A		NONE	ž	NONE	P	PUMP	NONE		N/A		PUMP	ЛР	NON	Щ	PUMP	
Compr (d)	r GP4- V	GP4V		GP4V			GP4V		GP4V	Ō	GP4V	9	GP4V	GP4V	9	GP4V		GP4V	۲۱	GP4V	>.	GP4V	
(e)	233.7	286.4		339.4			392.1		445.0	4	445.0	44	445.0	497.8	4	497.8		497.8	8.	550.6	9.	550.6	
В	223.0	275.8		328.6			381.5		435.5	.4	435.5	43	435.5	487.2	4	487.2		487.2	.2	540.0	0.	540.0	
ပ	11.8	11.8		11.8			11.8		11.8		11.8	<u>+</u>	11.8	11.8		11.8		11.8	8	11.8	6	11.8	
Ω	63.0	63.0		63.0			63.0		63.0	9	63.0	9	63.0	63.0		63.0		63.0	0	63.0	0	63.0	
Е	141.7	137.8		137.8			124.4		137.8	 	137.8	13	137.8	196.9		124.4		124.4	4.	137.8	80.	137.8	
ш	204.7	255.9		238.6			196.9		238.6	1	196.9	16	196.9	334.6		196.9		196.9	6.	196.9	6.	196.9	
9	n/a	n/a		315.0			n/a		n/a	3	311.3	23	238.6	n/a	es.	334.6		291.4	4.	238.6	9.	238.6	
I	n/a	n/a		n/a		.,	334.6		413.4	4	413.4	31	311.3	465.2	4	465.2		334.6	9.	311.3	n	311.3	
_	n/a	n/a		n/a			n/a		n/a		n/a	4	413.4	n/a		n/a		465.2	.2	413.4	4.	413.4	
ſ	n/a	n/a		n/a			n/a		n/a		n/a		n/a	n/a		n/a		n/a	¥.	n/a	_	518.0	
ᅩ	15.7	15.7		15.7			15.7		15.7	_	15.7	Ť	15.7	15.7		15.7		15.7	7	15.7	2	15.7	
٦	82.7	82.7		82.7			82.7		82.7	80	82.7	8	82.7	82.7		82.7		82.7	7	82.7	2	82.7	
Σ	141.7	137.8		137.8			124.4		137.8	¥	137.8	13	137.8	196.9		124.4		124.4	4.	137.8	80.	137.8	
z	204.7	255.9		238.6			196.9		238.6	1	196.9	16	196.9	334.6		196.9		196.9	6:	196.9	6.	196.9	
0	n/a	n/a		315.0			n/a		n/a	3	311.3	23	238.6	n/a	e	334.6		291.4	4.	238.6	9.	238.6	
Ы	n/a	n/a		n/a		•	334.6		393.7	ř	393.7	31	311.3	465.2	4	465.2		334.6	9.	311.3	8	311.3	
Ö	n/a	n/a		n/a			n/a		n/a	_	n/a	36	393.7	n/a		n/a		465.2	.2	393.7	7.	393.7	
Я	n/a	n/a		n/a			n/a		n/a		n/a		n/a	n/a		n/a		n/a	E	n/a	_	518.0	
S	25.0	25.0		25.0			25.0		25.0	64	25.0	2,	25.0	25.0		25.0		25.0	0	25.0	0	25.0	
T	153.1	170.6		6.06			90.7		6.06	S	6.06	6	6.06	6.06	<i>J,</i>	6.06		90.9	6	6.06	0	90.9	
n	n/a	n/a		211.8		, ,	249.4		170.6	1.	170.6	17	170.6	248.8	2	248.8		248.8	.8	170.6	9:	170.6	
Λ	n/a	n/a		n/a			327.3		355.1	3	355.1	35	355.1	326.8	6)	326.8		326.8	.8	355.1	1.	355.1	
M	n/a	n/a		n/a			n/a		n/a	_	n/a	<u></u>	n/a	433.7	4	433.7		433.7	7.	487.0	0.	487.0	
(a) Conc	denser lei	(a) Condenser length defined by model number digit 25: $4V = A$; $5V$	y model nu	umber dig	it 25: 4V		= B; 6V = C; 7V = D; 8V = E; 9V = F.	7V = D;	8V = E; 9	V = F.													

Compensation retinuously inouen intuitier digit 40: = 4, 50 = 5; 00 = 0; 80 = 5; 90 = 1; 80 = 5; 90 = 1. Free Cooling defined by model number digit 40: T = TDFC; H = DFC2; J = DFC1.

Pump Package defined by model number digit 40 = 5, 6, 7.

Compressor type defined by model digit 8: 4 = GPMX, 5 = GP4V.

Total unit length includes additional extruded features such as louvers and circuit breaker handles.

Dimensions — 150 to 330 ton units, standard length, SI (mm) Table 7.

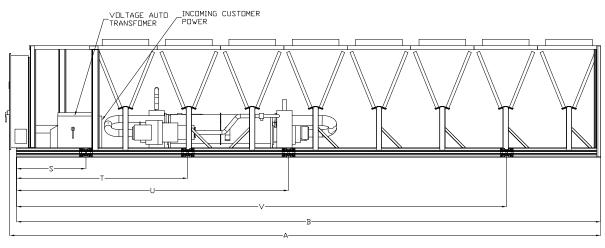
Cond Length	\$	5V	20	79		20 60	2	2	8	. 79	V2 8	2	8	۸6	2	N8 80	٧ /	/ 8/	>6	8	8 /6	
Free Cool ^(b)	N/A	N/A TDFG	TDFC DFC1	A D	FC	TDFC DFC2 DFC1 TDFC	1 TDFC	A	₹ ¥	JFC2 DI	DFC2 DFC1 TDFC DFC1 TDFC	C DFC	1 TDFC	Ą	DFC2 D	DFC2 DFC1 TDFC DFC2 DFC1 DFC2 DFC1	ic DFC)2 DFC1	TDFC I	DFC2 D	FC1 DF	C2 DFC
Pump Opt(c)	A/N	Ø/N		A/N		-	ΑN		NONE	jž 	NONE	<u> </u>	PUMP	NONE	-	A/N		PUMP		NONE	ш	PUMP
Compr (d)	GP4- V	GP4V		GP4V		0	GP4V		GP4V	G	GP4V	ט	GP4V	GP4V		GP4V		GP4V		GP4V	>	GP4V
(e)	5936	7275		8620			0966		11302	+	11302	_	11302	12646	_	12646		12646		13984	4	13984
В	5664	9002		8348			0696		11212	,	11212		11212	12376		12376		12376		13716	9	13716
O	300	300		300			300		300		300		300	300		300		300		300		300
О	1600	1600		1600		Ì	1600		1600		1600		1600	1600		1600		1600		1600		1600
Ш	3600	3500		3500			3160		3500	3	3500	(.)	3500	2000		3160		3160		3500		3500
ш	5200	0059		0909			2000		0909	5	2000	41)	2000	8500		2000		2000		2000		2000
ŋ	n/a	n/a		8000			n/a		n/a	7	7908	۴	0909	n/a		8500		7402		0909		0909
I	n/a	e/u		n/a		~	8500		10500	1	10500		7908	11816	_	11816		8500		7908	~	2062
-	n/a	n/a		n/a			n/a		n/a		n/a	_	10500	n/a		n/a		11816		10500	0	10500
٦	n/a	e/u		n/a			n/a		n/a		n/a		n/a	n/a		n/a		n/a		n/a		13158
メ	400	400		400			400		400	7	400		400	400		400		400		400		400
٦	2100	2100		2100		. •	2100		2100	2	2100	. 1	2100	2100	- "	2100		2100		2100		2100
Σ	3600	3500		3500			3160		3500	3	3500	.,	3500	2000		3160		3160		3500		3500
z	5200	0059		0909		/	2000		0909	5	2000	4,	2000	8500		2000		2000		2000		2000
0	n/a	e/u		8000			n/a		n/a	7	7908	و	0909	n/a		8500		7402		0909		0909
Ь	n/a	e/u		n/a		~	8500		10000	1	10000		2062	11816		11816		8500		7908		8062
O	n/a	e/u		n/a			n/a		n/a		n/a	7	10000	n/a		n/a		11816		10000	0	10000
ď	n/a	e/u		n/a			n/a		n/a		n/a		n/a	n/a		n/a		n/a		n/a		13158
S	635	635		635			635		635		635		635	635		635		635		635		635
1	3890	4334		2309		. •	2305		2309	2	2309	.,	2309	2309		2309		2309		2309		2309
n	n/a	e/u		5380		,	6335		4333	4	4333	7	4333	6320		6320		6320		4333	~	4333
>	n/a	e/u		n/a			8314		9019	6	9019	J,	9019	8300		8300		8300		9019	•	9019
M	n/a	n/a		n/a			n/a		n/a		n/a			11017		11017		11017		12369	6	12369
(a) Conde	enser ler	(a) Condenser length defined by model number digit 25: $4V = A$; $5V = B$; $6V = C$; $7V = D$; $8V = E$; $9V = F$.	y model ni	umber digit	.25: 4V	= A; 5V = L	B; 6V = C;	7V = D; ¿	8V = E; 5	¹V = F.												

Compensation retinuously inouen intuitier digit 40: = 4, 50 = 5; 00 = 0; 80 = 5; 90 = 1; 80 = 5; 90 = 1. Free Cooling defined by model number digit 40: T = TDFC; H = DFC2; J = DFC1.

Pump Package defined by model number digit 40 = 5, 6, 7.

Compressor type defined by model digit 8: 4 = GPMX, 5 = GP4V.

Total unit length includes additional extruded features such as louvers and circuit breaker handles.


Table 8. Water connection dimensions — 150 to 330 ton units, standard length, without free-cooling or pump package

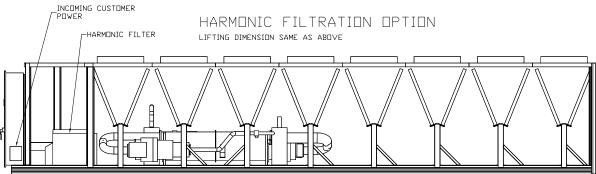
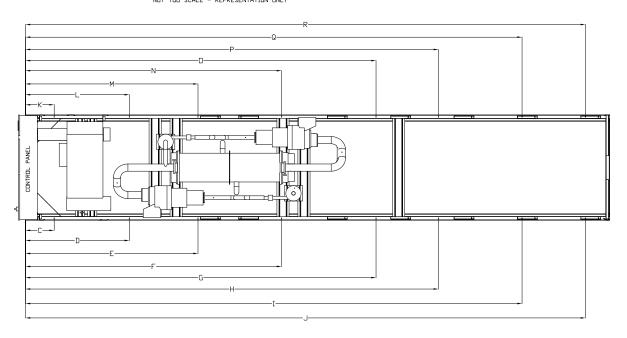

Unit Size (tons)	150,	, 165	180	, 200	225	, 250	275, 3	00, 330
Dim	in	mm	in	mm	in	mm	in	mm
Х	20.4	520	19.6	498	21.8	554	20.6	523
Υ	17.7	450	15.4	391	17.6	447	16.1	408
Z	49.3	1253	49.9	1268	49.9	1268	51.3	1303
AA	38.5	978	37.9	962	37.9	962	36.5	927
AB	19.3	490	17.6	448	19.8	504	18.2	463
AC	19.7	500	18.2	463	20.4	519	18.9	481
AD	176.5	4483	178.2	4526	178.1	4524	178.4	4531
AE	70.3	1786	69.2	1758	69.2	1758	69.3	1760
AF	175.3	4453	176.2	4475	176.2	4475	177.1	4498

Figure 5. Dimensions — 150 to 330 ton units, extended length


VOLTAGE AUTO TRANSFORMER OPTION

USED WITH 200, 230, 380, 400 AND 575V

MOUNTING LOCATIONS
TOP VIEW (CONDENSER REMOVED)
NOT TOO SCALE - REPRESENTATION ONLY

Dimensions — 150 to 330 ton units, extended length, I-P (inch) Table 9.

Cond ength	٧4	20	20	N9	>	26	>9	2	>	8		- % - }		8	76	2	8		V2 8V	%	8	76	8	}
Free Cool ^(b)	A/N	N/A TDI	TDFC DFC1	ΑN	TDFC	TDFC DFC2 DI	DFC1	FC1 TDFC	NON-	NONE	JFC2 DF	-C1 TD	FC DFC	NONE DFC2 DFC1 TDFC DFC1 TDFC NONE DFC2 DFC1 TDFC DFC2 DFC1	NON	DFC2 [FC1 T	DFC Di	C2DFC	11 TDFC	DFC2	TDFC DFC2 DFC1 DFC2 DFC1)FC2 D	5
Pump Opt(c)	ΑN	N/A		N/A			N/A/A	4		NONE	ž	NONE		PUMP	NONE		NONE		PUMP	ā	ON.	NONE	PUMP	a
compr (d)	GP4- V	GP4V		GP4V			GP4V	V		GP4V	์ อ	GP4V		GP4V	GP4V		GP4V		GP4V	2	GP.	GP4V	GP4V	>
(e) V	286.4	339.4		392.1			445.0	5.0		497.8	4	497.8		8.764	550.6		9.055		550.6	9.	09	603.3	603.3	8
В	275.8	328.6		381.5			434.3	1.3		487.1	34	487.1		487.1	540.0		540.0		540.0	0.	29	592.7	592.7	
ပ	27.6	27.6		51.2			51.2	.2		51.2	5	51.2		51.2	27.6		27.6		27.6	9	51	51.2	51.2	
۵	114.2	114.2		114.2			114.2	1.2		114.2	+	114.2		114.2	114.2		114.2		114.2	.2	11,	114.2	114.2	2
Ш	194.6	190.6		190.6			177.2	7.2		190.6	1	190.7		190.7	249.7		177.2		177.2	.2	19	190.7	190.7	_
ш	257.6	308.7		249.7			249.7	7.6		291.4	25	249.7		249.7	387.5		249.7		249.7	7.	24	249.7	249.7	_
ŋ	n/a	n/a		367.8			n/a	a		n/a	25	291.4		291.4	n/a		344.3		344.3	ε.	29	291.4	291.4	4
I	n/a	n/a		n/a			387.5	7.5		466.2	,4	466.3		364.2	518.0		518.0		420.6	9.	36	364.2	364.2	2
_	n/a	n/a		n/a			n/a	a		n/a	_	n/a		466.2	n/a		n/a		518.0	0.	200	502.0	466.3	8
7	n/a	n/a		n/a			n/a	a		n/a	_	n/a		n/a	n/a		n/a		n/a	_	22	6.073	570.9	0
ᅩ	27.6	27.6		51.2			51.2	.2		51.2	5	51.2		51.2	27.6		27.6		27.6	9	51	51.2	51.2	
_	114.2	114.2		114.2			114.2	1.2		114.2	-	114.2		114.2	114.2		114.2		114.2	.2	7	114.2	114.2	2
Σ	194.6	190.6		190.6			177.2	7.2		190.6	¥	190.7		190.7	249.7		177.2		177.2	.2	19	190.7	190.7	_
z	257.6	308.7		249.7			249.7	7.6		291.4	75	249.7		249.7	387.5		249.7		249.7	7.	24	249.7	249.7	2
0	n/a	n/a		367.8			n/a	a		n/a	25	291.4		291.4	n/a		344.3		344.3	ε.	29	291.4	291.4	4
Ь	n/a	u/a		n/a			387.5	7.5		446.5	4	446.5		364.2	518.0		518.0		420.6	9.	36	364.2	364.2	2
Ø	n/a	u/a		n/a			n/a	а		n/a	1	n/a		446.6	n/a		n/a		518.0	0.	203	502.0	446.6	9
ď	n/a	u/a		n/a			n/a	a		n/a	_	n/a		n/a	n/a		n/a		n/a	-	25	6.073	570.9	0
S	55.1	55.1		58.3			58.3	6.		58.3	2	58.3		58.3	54.6		54.6		54.6	9	35	58.3	58.3	
⊥	206.0	223.5		143.7			143.7	3.7		143.7	1	143.7		143.7	140.0		140.0		140.0	0.	14	143.7	143.7	
n	n/a	u/a		264.2			302.4	2.4		223.4	2,	223.4		223.4	298.5		298.5		298.5	.5	22	223.4	223.4	4
^	n/a	e/u		n/a			380.2	7.2		407.9	4(407.9		407.9	376.4		376.4		376.4	4.	.04	6.704	407.9	6
W	n/a	u/a		n/a			n/a	а		n/a	_	n/a		n/a	483.4		483.4		483.4	4.	53	539.1	539.1	_
Cond	enser lei	Condenser length defined by model number digit 25: 4V = A; 5V	by model	number d	igit 25: 4	1V = A; {		= B; 6V = C; 7V = D; 8V = E; 9V = F.	V = D; 8	3V = E; 9	✓ = F.													

Condenser length defined by model number digit 25: 4V = A; 5V = B; 5V = C; 7V = D; 8V = E; 9V = I.

Free Cooling defined by model number digit 42: T = TDFC J; H = DFC2; J = DFC1.

Pump Package defined by model number digit 40 = 5, 6, 7.

Compressor type defined by model digit 8: 4 = GPMX, 5 = GP4V.

Total unit length includes additional extruded features such as louvers and circuit breaker handles.

Dimensions — 150 to 330 ton units, extended length, SI (mm) Table 10.

Cond Length (a)	4V	5V	20	Λ9	2	5V 6'	VZ 09	۷۲ /	88	Λ9	٧.	80	٧.	8 A8	V7 V6	8	/ ۸6	7.	88	76	88	76	V6 V8
Free Cool ^(b)	N/A	N/A TDFC DFC1		N/A TD	трғс рғс2 рғ	C2 DF	C1 TDFC	c NON-		DFC2	DFC1 1	TDFC D	FC1 TI	DFC NC	NONE DFC2 DFC1 TDFC DFC1 TDFC NONE DFC2 DFC1	;2 DF(31 TDF(C DFC;	TDFC DFC2 DFC1 TDFC DFC2 DFC1 DFC2 DFC1	TDFC	DFC2 [FC1 DI	C2 DF
Pump Opt(c)	A/A	N/A		A/A			A/A		NONE		NONE		PUMP		NONE	NONE	Ш		PUMP		NONE	ш	PUMP
Compr (d)	GP4-	GP4V		GP4V			GP4V		GP4V		GP4V		GP4V		GP4V	GP4V	\$		GP4V		GP4V	>	GP4V
(e)	7275	8620		0966			11302		12646		12646		12646		13984	13984	84		13984		15325	22	15325
В	2006	8348		0696			11032		12374		12374		12374		13715	13715	15		13715		15053	53	15053
O	200	700		1300			1300		1300		1300		1300		200	700	0		200		1300	0	1300
۵	2900	2900		2900			2900		2900		2900		2900		2900	2900	00		2900		2900	0	2900
Ш	4942	4842		4842			4502		4842		4843		4843		6342	4502	72		4502		4843	8	4843
ш	6542	7842		6342			6342		7402		6342		6342		9842	6342	12		6342		6342	2	6342
g	n/a	n/a		9342			n/a		n/a		7402		7402		n/a	8744	4		8744		7402	2	7402
I	n/a	n/a		n/a			9842		11842		11843		9250		13158	131	13158		10684		9250	0	9250
-	n/a	n/a		n/a			n/a		n/a		n/a		11842		n/a	n/a	a		13158		12750	0:	11843
٦	n/a	n/a		n/a			n/a		n/a		n/a		n/a		n/a	n/a	a		n/a		14500	00	14500
¥	200	200		1300			1300		1300		1300		1300		200	700	0		200		1300	0	1300
Γ	2900	2900		2900			2900		2900		2900		2900		2900	2900	00		2900		2900	0	2900
Σ	4942	4842		4842			4502		4842		4843		4843		6342	4502	72		4502		4843	8	4843
z	6542	7842		6342			6342		7402		6342		6342		9842	6342	12		6342		6342	2	6342
0	n/a	n/a		9342			n/a		n/a		7402		7402		n/a	8744	4		8744		7402	2	7402
Ь	n/a	n/a		n/a			9842		11342		11342		9250		13158	131	13158		10684		9250	0	9250
Ø	n/a	n/a		n/a			n/a		n/a		n/a		11343		n/a	n/a	а		13158		12750	09	11343
Я	n/a	n/a		n/a			n/a		n/a		n/a		n/a		n/a	n/a	а		n/a		14500	00	14500
S	1400	1400		1482			1482		1482		1482		1482		1387	1387	37		1387		1482	2	1482
⊥	5232	9299		3651			3651		3651		3651		3651		3556	3556	26		3556		3651	_	3651
n	n/a	n/a		6710			7680		5675		2675		5675		7582	7582	32		7582		2675	2	5675
^	n/a	n/a		n/a			9657		10361		10361		10361		9562	9562	32		9562		10361	11	10361
Μ	n/a	n/a		n/a			n/a		n/a		n/a		n/a		12279	12279	62.		12279		13911	_	13911
(a) Conde	enser ler	Condenser length defined by model number digit 25: 4V = A; 5V	model nu	mber digit	25: 4V =		= B; 6V =	= B; 6V = C; 7V = D; 8V = E; 9V = F.); $8V = E$;	9V = F.													

Condenser length defined by model number digit 25: 4V = A; 5V = B; 5V = C; 7V = D; 8V = E; 9V = I.

Free Cooling defined by model number digit 42: T = TDFC J; H = DFC2; J = DFC1.

Pump Package defined by model number digit 40 = 5, 6, 7.

Compressor type defined by model digit 8: 4 = GPMX, 5 = GP4V.

Total unit length includes additional extruded features such as louvers and circuit breaker handles.

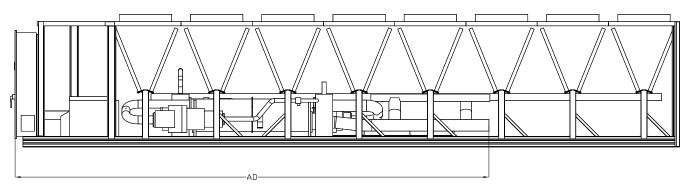


Table 11. Water connection dimensions — 150 to 330 ton units, extended length, without free-cooling or pump package

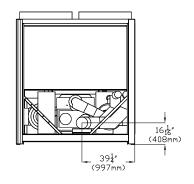
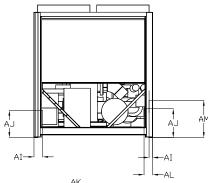

Unit Size (tons)	150,	, 165	180,	200	225	, 250	275, 3	00, 330
Dim	in	mm	in	mm	in	mm	in	mm
Х	20.4	520	19.6	498	21.8	554	20.6	523
Y	17.7	450	15.4	391	17.6	447	16.1	408
Z	49.3	1253	49.9	1268	49.9	1268	51.3	1303
AA	38.5	978	37.9	962	37.9	962	36.5	927
AB	19.3	490	17.6	448	19.8	504	18.2	463
AC	19.7	500	18.2	463	20.4	519	18.9	481
AD	229.3	5824	231.0	5867	231.0	5867	231.2	5872
AE	123.1	3127	122.1	3101	122.1	3101	122.1	3101
AF	227.9	5794	229.1	5819	229.1	5819	229.9	5839

Figure 6. Water connection dimensions — 150 to 330 ton units with free-cooling or pump package option

DIRECT FREE COOLING OPTION



FREE COOLING OPTIONS

PUMP PACKAGE OPTIONS

INLET AND DUTLET/2 PASS AND 3 PASS

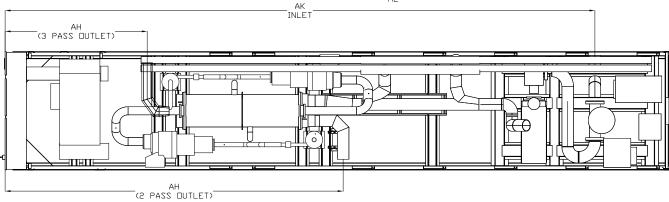


Table 12. Water connection dimensions — 150 to 330 ton units, with free-cooling (no pump package)

Unit Size (tons)	16	65	180,	, 200	225,	250	27	75	300,	330
Dim	in	mm	in	mm	in	mm	in	mm	in	mm
					Standard Leng	th				
Х	20.4	520	19.6	498	21.8	554	20.6	523	20.6	523
Z	49.3	1253	49.9	1268	49.9	1268	51.3	1303	51.3	1303
AC	19.7	500	18.2	463	20.4	519	18.9	480	18.9	480
AD(a)	270.9	6882	270.9	6881	270.9	6881	298.8	7588	298.8	7588
AE	70.3	1786	69.2	1758	69.2	1758	69.3	1760	69.3	1760
AF	176.2	4475	176.2	4475	176.2	4475	177.1	4498	177.1	4498
AG	270.9	6881	270.9	6881	270.9	6881	298.8	7588	298.8	7588
				Ex	ctended Lengt	h (b)				
Х	20.4	520	19.6	498	21.8	554	20.6	523	20.6	523
Z	49.3	1253	49.9	1268	49.9	1268	51.3	1303	51.3	1303
AC	19.7	500	18.2	463	20.4	519	18.9	480	18.9	480
AD(a)	323.7	8222	323.7	8222	323.7	8222	351.6	8930	351.6	8930
AE	123.1	3127	122.0	3100	122.0	3100	122.0	3100	122.0	3100
AF	228.0	5791	229.1	5819	229.1	5819	229.1	5819	229.1	5819
AG	323.7	8222	323.7	8222	326.5	8293	351.6	8930	351.6	8930

Note: Free-cooling defined by model number digit 42: T = TDFC; J = DFC1; H = DFC2.

Table 13. Water connection inlet dimensions — 275, 300, 330 ton units with pump package option

Unit Option	Standard	d Length	Extended	Length ^(a)
Dim	in	mm	in	mm
AK	383.5	9741	436.3	11081
AL	2.9	73	2.9	73
AM	27.2	691	27.2	691

Note: Free-cooling defined by model number digit 42: T = TDFC; J = DFC1; H = DFC2.

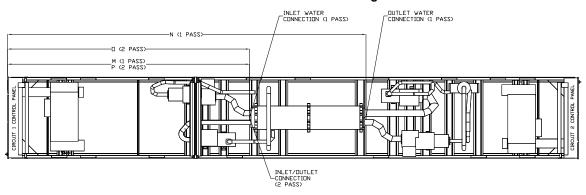
Table 14. Water connection outlet dimensions — 275, 300, 330 ton units with pump package option

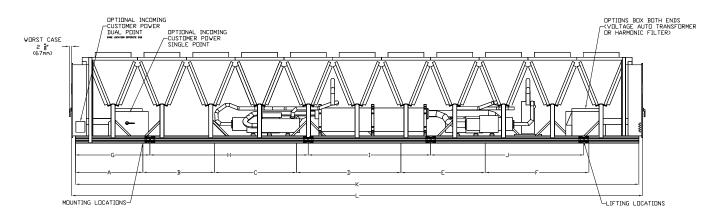
Unit Option	50HP 2	2-Pass		P or 2-Pass	50HP	3-Pass		P or 3-Pass
Dim	in	mm	in	mm	in	mm	in	mm
,				Standard Length				
AH	191.6	4866	193.4	4913	54.5	1385	52.3	1327
Al	4.5	115	0.6	16	7	177	8	204
AJ	18.9	481	18.9	481	20.6	523	19.6	497
			E	xtended Length	a)			
AH	244.4	6208	246.3	6255	107.3	2727	105.1	2669
Al	4.5	115	0.6	16	7	177	8	20
AJ	18.9	481	18.9	481	20.6	523	19.6	497

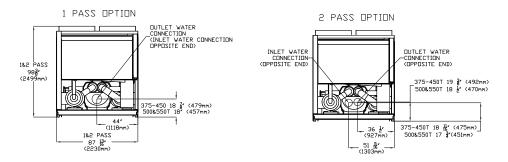
Note: Pump Package defined by model number digit 40 = 5 (50 HP), 6 (60 HP), 7 (75 HP). Pass options are defined by model number digits 19 and 20 (C2 or D2 are 2-pass, C3 is 3-pass).

⁽a) Only applicable on units with direct free-cooling cooling option (model number digit 42 = T, J, or H).

⁽b) Extended Length is required for voltages 200V, 230V, 380V, 400V, 575V (model number digit 9 = A, B, C, D, F), and harmonic filtration model number digit 44 = L.

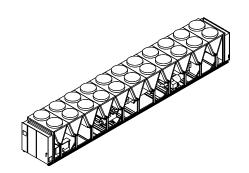

⁽a) Extended Length is required for voltages 200V, 230V, 380V, 400V, 575V (model number digit 9 = A, B, C, D, F), and harmonic filtration model number digit 44 = L.

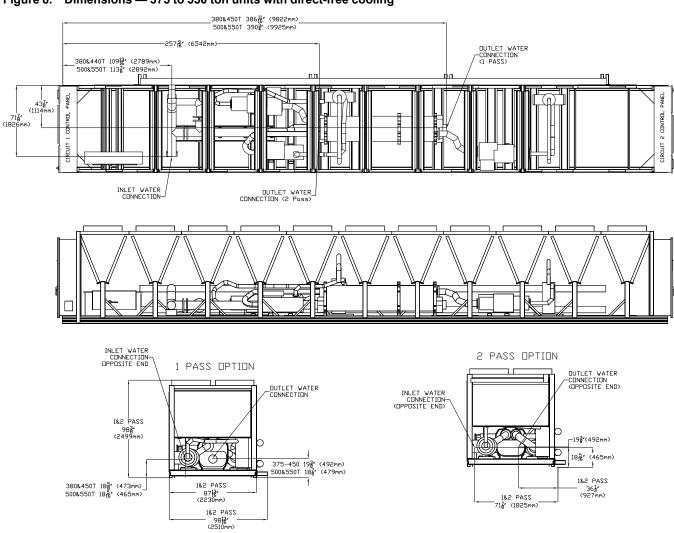

⁽a) Extended Length is required for voltages 200V, 230V, 380V, 400V, 575V (model number digit 9 = A, B, C, D, F), and harmonic filtration model number digit 44 = L.



Unit Sizes 375 to 550 Tons

Figure 7. Dimensions — 375 to 550 ton units without direct-free cooling




Table 15. Dimensions — 375 to 550 ton units

Unit Size (tons)	375,	440	375,	440	380,	450	500	550
Unit Length	Stan	dard	Exten	ded ^(a)	Stan	dard	Stan	dard
Dimension	in	mm	in	mm	in	mm	in	mm
А	52.4	1330	52.4	1330	56.1	1424	56.1	1424
В	99.6	2530	152.0	3860	174.2	4424	174.2	4424
С	180.6	4588	233.0	5918	252.9	6424	252.9	6424
D	298.7	7588	351.1	8918	371.0	9424	371.0	9424
Е	377.5	9588	429.8	10918	457.6	11624	457.6	11624
F	474.4	12050	547.9	13917	528.5	13424	528.5	13424
G	77.2	1962	77.2	1962	60.7	1542	60.7	1542
Н	196.5	4990	196.5	4990	218.2	5542	218.2	5542
I	332.9	8455	332.9	8455	354.6	9007	354.6	9007
J	463.4	11770	490.4	12455	526.7	13377	526.7	13377
К	504.3	12810	551.7	14012	604.5	15355	604.5	15355
L(b)	517.5	13146	570.4	14487	623.2	15829	623.2	15829
М	200.7	5098	200.7	5098	253.5	6440	253.5	6440
N	333.9	8480	333.9	8480	386.7	9822	389.8	9902
0	200.7	5098	200.7	5098	253.5	6440	253.5	6440
Р	200.7	5098	200.7	5098	253.5	6440	253.5	6440

⁽a) Extended Length Units are defined model number digit 44 = L and model number digit 9: 380 = C, 400=D, 575 = F or model number digit 9: 380 = C,400 = D,575 = F.
(b) Total unit length includes additional extruded features such as circuit breaker handles.

Figure 8. Dimensions — 375 to 550 ton units with direct-free cooling

Installation Mechanical Location Requirements

Sound Considerations

- · Locate the unit away from sound-sensitive areas.
- Install the optional elastomeric isolators under the unit.
 See Isolation and Sound Emission section.
- Chilled water piping should not be supported by chiller.
- Install rubber vibration isolators in all water piping.
- · Use flexible electrical conduit.
- Seal all wall penetrations.

Note: Consult an acoustical engineer for critical applications.

Foundation

Provide rigid, non-warping mounting pads or a concrete foundation of sufficient strength and mass to support the applicable operating weight (completed piping and full operating charges of refrigerant, oil and water). Attached piping must be fully supported by an independent structure/ system, without being connected to the waterbox. Once in place, the unit must be level within 1/2 inch (12.7 mm) across its length and width. Trane is not responsible for equipment problems resulting from an improperly designed or constructed foundation.

Clearances

Provide enough space around the unit to allow the installation and maintenance personnel unrestricted access to all service points. See submittal drawings for the unit dimensions to provide sufficient clearance for the opening of control panel doors and unit service. See Dimensions and Weights chapter for minimum clearances. In all cases, local codes which require additional clearances will take precedence over these recommendations.

For close spacing information, see Close-Spacing and Restricted Airflow Situations, Ascend™ Chiller Models ACR and ACS, Sintesis™ Chiller Model RTAF Engineering Bulletin (AC-PRB001*-EN).

Lifting and Moving Instructions

A WARNING

Heavy Object!

Failure to follow instructions below could result in unit dropping which could result in death or serious injury, and equipment or property-only damage. Ensure that all the lifting equipment used is properly rated for the weight of the unit being lifted. Each of the cables (chains or slings), hooks, and shackles used to lift the unit must be capable of supporting the entire weight of the unit. Lifting cables (chains or slings) may not be of the same length. Adjust as necessary for even unit lift.

A WARNING

Improper Unit Lift!

Failure to properly lift unit in a LEVEL position could result in unit dropping and possibly crushing operator/technician which could result in death or serious injury, and equipment or property-only damage.

Test lift unit approximately 24 inches (61 cm) to verify proper center of gravity lift point. To avoid dropping of unit, reposition lifting point if unit is not level.

A WARNING

Proper Lifting Configuration Required!

Failure to follow instructions below could cause the unit to drop which could result in death, serious injury or equipment damage.

Use ONLY lifting locations designated with label shown below. DO NOT use locations marked with donot-lift label. See following figures for acceptable lifting configuration, and refer to labels on the unit.

Figure 9. Lift/Do Not Lift labels

NOTICE

Equipment Damage!

Moving the chiller using a fork lift could result in equipment or property-only damage.

Do not use a fork lift to move the chiller!

Installation Mechanical

Important:

- See unit nameplate and/or unit submittal for total shipping weight.
- See following figures for unit lifting configuration.
- See Dimensions and Weights chapter, or unit submittal, for lifting point locations.

- · Diagram is generic representation of unit.
- The maximum rigging angle at each chiller lift point is 30° from vertical.
- Do not allow lifting straps to contact unit during lifting.

To determine the lift configuration, see the following table and corresponding figures.

Table 16. Lift configuration selections

		L	ift Configuration (Points)	
Condenser Length	4 Figure 10, p. 36	6 Figure 11, p. 36	8 Figure 12, p. 37	10 Figure 13, p. 37
		Used v	with model number selections:	•
4V	Digit 42 = X	n/a	n/a	n/a
5V	Digit 42 = X or T	Digit 42 = J	Digit 42 = H	n/a
6V	n/a	Digit 42 = X or T	Digit 42 = J or H	n/a
71.4			Digit 40 = X and Digit 42 = X, Tor J	Digit 42 - 11
7V	n/a	n/a	Digit 40 = 5, 6, or 7 and Digit 42 = J	Digit 42 = H
01.6	,	,	Digit 40 = X and Digit 42 = X or T	Digit 40 - Log II
8V	n/a	n/a	Digit 40 = 5, 6, or 7 and Digit 42 = T	Digit 42 = J or H
9V	n/a	n/a	n/a	All
11V	n/a	n/a	All	n/a

Note: Condenser length is designated by model number digit 25. Model number digit 40 designates pump option, and digit 42 is free-cooling.

Figure 10. 4-point lift configuration

Spreader bar/lifting rig width: 96 inch

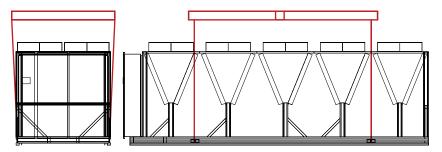
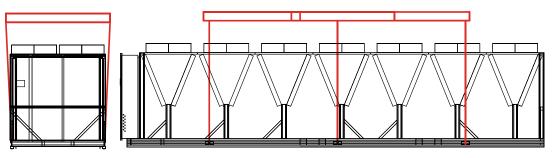



Figure 11. 6-point lift configuration

Spreader bar/lifting rig width: 96 inch

Figure 12. 8-point lift configuration

Spreader bar/lifting rig width: 120 inch (11V units with direct free-cooling option) 96 inch (all other units)

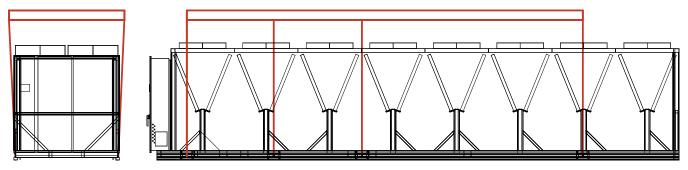
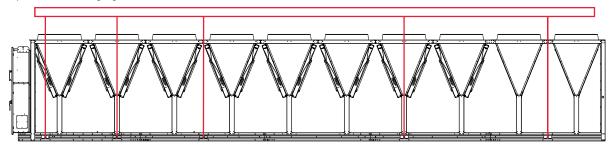



Figure 13. 10-point lift configuration

Spreader bar/lifting rig width:96 inch

Isolation and Sound Emission

The most effective form of isolation is to locate the unit away from any sound sensitive area. Structurally transmitted sound can be reduced by elastomeric vibration eliminators. Spring isolators are not recommended. Consult an acoustical engineer in critical sound applications.

For maximum isolation effect, isolate water lines and electrical conduit. Wall sleeves and rubber isolated piping hangers can be used to reduce the sound transmitted through water piping. To reduce the sound transmitted through electrical conduit, use flexible electrical conduit.

State and local codes on sound emissions should always be considered. Since the environment in which a sound source is located affects sound pressure, unit placement must be carefully evaluated. Sound power levels are available on request.

Unit Isolation and Leveling

For additional reduction of sound and vibration, install the optional elastomeric isolators.

Construct an isolated concrete pad for the unit or provide concrete footings at the unit mounting points. Mount the unit directly to the concrete pads or footings.

Level the unit using the base rail as a reference. The unit must be level within 1/2 inch (12.7 mm) over the entire length and width. Use shims as necessary to level the unit.

Elastomeric Isolators

Note: See unit submittal, or tables in this section, for point weights, isolator locations, and isolator selections.

- Secure the isolators to the mounting surface using the mounting slots in the isolator base plate. Do not fully tighten the isolator mounting bolts at this time.
- 2. Align the mounting holes in the base of the unit with the threaded positioning pins on the top of the isolators.
- 3. Lower the unit onto the isolators and secure the isolator to the unit with a nut.
- Level the unit carefully. Fully tighten the isolator mounting bolts.

Figure 14. Elastomeric isolator

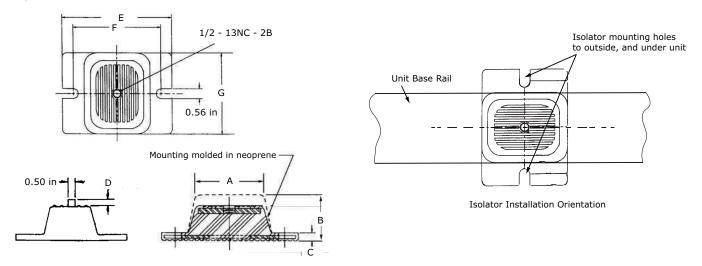
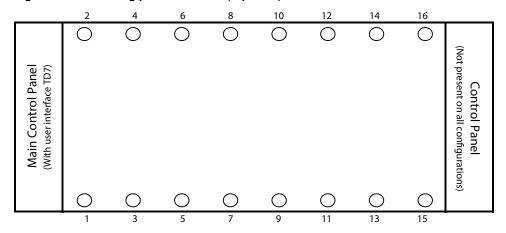


Table 17. Elastomeric isolator specifications


	Max Load				Dimensior	ı (in)				_
Isolator	(lb)	Max Deflection	Α	В	С	D	E	F	G	Type
Charcoal 60	1100	0.5	2.5	2.88	0.25	1.13	5.50	4.12	3.38	RDP3-WR
Brown 61	1500	0.5	3.0	2.75	0.38	1.60	6.25	5.00	4.63	RDP4-WR
Brick Red 62	2250	0.5	3.0	2.75	0.38	1.60	6.25	5.00	4.63	RDP4-WR
Lime 63	3000	0.5	3.0	2.75	0.38	1.60	6.25	5.00	4.63	RDP4-WR
Charcoal 64	4000	0.5	3.0	2.75	0.38	1.60	6.25	5.00	4.63	RDP4-WR

Note: Maximum deflection is 0.5 for all isolators.

Mounting Locations, Weights, Isolators

See figure below for mounting point location designations.

Figure 15. Mounting point locations (top view)

Note: Quantity of isolators varies with unit. See submittal for actual number required for specific unit.

Point Weights

Table 18. Point weights - I-P (Ib)

ınt		יפי	113																													
	16		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a														
	15		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a														
	14		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a														
	13		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a														
	12		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	092	760	760	n/a	n/a														
	1		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	099	650	029	n/a	n/a														
_	10		n/a	290	290	1560	1600	300	330	330	330	096	970	1520	940	1890	1890	1890	2340	2350	2350	096	096									
Location	6		n/a	350	710	1030	1070	280	280	280	280	930	089	940	930	1340	1340	1340	1790	1800	1800	870	880									
Mounting Location	8		940	950	096	1100	1130	1130	1270	1270	1860	1800	2400	2430	2930	3090	1400	1550	1560	1580	2070	2170	1240	2390	3340	3380	3390	2740	2770	2780	2030	2030
M	7	nits	740	750	750	950	096	096	1020	1020	1970	1460	1750	1060	2340	2510	1290	1370	1390	1430	1160	1740	1190	1190	2550	2600	2630	1990	2020	2040	1840	1840
	9	ength U	1790	1810	1830	1970	2050	2060	2330	2340	2530	2780	2800	2880	2420	2570	1950	2130	2190	2220	2880	3080	3740	3330	2750	2800	2820	2570	2610	2630	2010	2020
	2	Standard Length Units	1720	1740	1750	1950	1980	1990	2210	2220	2960	2570	2480	3010	2180	2340	1970	2120	2180	2200	3020	2890	3510	3280	2460	2520	2540	2560	2610	2640	2040	2050
	4	S	1680	1700	1710	1860	1930	1930	2150	2160	2170	2600	2520	2600	2090	2210	1910	2140	2200	2230	2660	2920	2630	3010	2430	2470	2480	2370	2410	2430	1990	2000
	က		1870	1880	1890	1910	1940	1950	2170	2180	2560	2430	2360	2500	1970	2090	1990	2240	2300	2330	2600	2900	2520	2930	2370	2420	2440	2420	2460	2480	2120	2130
	2		1610	1630	1630	1710	1760	1770	1880	1890	1440	2250	1990	2030	1710	1790	1850	1930	1980	2030	2000	2000	2240	1950	1630	1650	1660	1710	1730	1740	1850	1850
	-		1820	1830	1830	1760	1780	1780	1960	1970	1710	2110	1910	1830	1720	1780	1800	2000	2050	2070	1720	1950	2170	1840	1680	1700	1710	1680	1690	1700	1950	1950
Unit	Size		150	165	180	165	180	200	225	250	165	180	165	180	165	180	200	225	250	275	200	225	250	275	200	225	250	200	225	250	275	300
(3)			N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A														
Free-	Cooling ^(b)		A/N	N/A	N/A	NONE	NONE	NONE	NONE	NONE	TDFC	TDFC	DFC1	DFC1	DFC2	DFC2	NONE	NONE	NONE	NONE	TDFC	TDFC	TDFC	TDFC	DFC1	DFC1	DFC1	DFC2	DFC2	DFC2	NONE	NONE
(3)			4	4V	4V	5V	5V	5V	20	5V	5V	20	20	20	5V	5V	N9	N9	۸9	/9	N9	۸9	۸9	۸9	۸9	N9	۸9	۸9	۸9	N9	7.2	72

Table 18. Point weights - I-P (Ib) (continued)

	16	n/a	1190	n/a	950	n/a																										
	15	n/a	n/a	n/a	u/a	u/a	u/a	e/u	n/a	n/a	u/a	e/u	u/a	n/a	068	e/u	u/a	n/a	u/a	n/a	n/a	n/a	089	e/u	u/a	n/a	u/a	u/a	n/a	n/a	n/a	n/a
	14	n/a	n/a	3160	n/a	1500	u/a	e/u	n/a	n/a	3400	e/u	1740	086	0688	e/u	n/a	3270	n/a	n/a	2110	3110	3240	e/u	n/a	n/a	u/a	n/a	n/a	n/a	n/a	n/a
	13	n/a	n/a	2480	n/a	1250	n/a	e/u	n/a	n/a	2600	e/u	1480	062	2880	e/u	n/a	2570	n/a	n/a	1850	2250	2700	e/u	n/a	n/a	u/a	e/u	n/a	n/a	n/a	n/a
	12	n/a	1510	2700	029	2820	n/a	n/a	n/a	1730	2830	068	2870	2040	2980	n/a	2240	2810	n/a	1270	3450	1790	2990	1630	1630	2230	2230	2480	2480	3240	3240	3380
	11	n/a	1150	2550	260	2430	n/a	n/a	n/a	1270	2640	720	2490	1730	2620	n/a	1430	2670	n/a	1090	3010	1560	2670	1800	1800	2330	2330	2440	2440	2830	2830	2970
u	10	2500	1950	1840	2890	2720	2250	870	870	1930	1900	2900	2770	2310	1950	890	1760	1930	260	2870	1920	1090	2040	1870	1870	1900	1900	2550	2550	2360	2360	2890
Mounting Location	6	1710	1680	1690	2180	2350	1690	750	750	1770	1730	2250	2400	1940	1600	09/	1700	1790	260	2230	1670	1000	1720	2210	2210	2240	2240	2470	2470	2310	2310	2530
lounting	8	2940	2870	1880	3470	2880	3420	2060	2060	2910	1910	3440	2980	2480	1900	2290	2700	1970	1840	3390	3320	2390	2010	2170	2170	2050	2050	2560	2560	2840	2840	3370
2	7	2310	2390	1290	2530	1950	2650	1950	1950	2440	1300	2740	2020	2070	1590	2160	2380	1370	1730	2690	2260	1680	1720	2390	2390	2270	2270	2490	2490	2720	2720	2970
	9	2720	2640	2600	2850	2760	2830	2310	2310	2640	2620	2890	2990	2880	2480	2440	2620	2710	3130	2900	2940	2650	2630	2290	2290	2200	2200	2380	2380	3240	3240	3410
	2	2470	2380	2510	2890	2700	2550	2350	2350	2410	2480	2650	2910	2740	2330	2470	2450	2640	3050	2650	2910	2590	2530	2260	2260	2170	2170	2280	2280	2840	2840	3000
	4	2680	2420	1980	2510	2720	2530	2240	2240	2440	1990	2570	2260	2530	2410	2220	2510	2030	2890	2620	1990	1970	2540	1820	1820	1940	1940	1980	1980	2960	2960	3000
	3	2630	2240	2060	2490	2760	2480	2340	2340	2420	1990	2510	2320	2030	1950	2330	2530	2100	2970	2570	1980	2000	2120	1660	1660	1760	1760	1830	1830	2400	2400	2520
	2	1970	1760	2000	1640	1630	1740	1940	1940	1790	1980	1700	1800	1750	1820	1920	1870	1960	1990	1810	2150	2320	1900	1690	1690	2340	2340	2330	2330	3080	3080	3020
	1	1900	1940	2010	1580	1560	1790	1990	1990	1750	1930	1720	1760	1930	1920	2030	1840	1990	2050	1810	2170	2290	2070	1470	1470	2070	2070	2110	2110	2380	2380	2440
Unit	Size	275	275	275	275	275	008	008	300	008	008	008	008	300	008	330	088	330	330	330	330	330	088	375	440	088	450	009	099	088	450	200
Pump(c)		N/A	N/A	PUMP	N/A	PUMP	N/A	N/A	None	None	PUMP	None	PUMP	NONE	PUMP	None	None	Pump	None	None	Pump	None	Pump	N/A								
Free-	Cooling ^(b)	TDFC	DFC1	DFC1	DFC2	DFC2	TDFC	NONE	NONE	TDFC	TDFC	DFC1	DFC1	DFC2	DFC2	None	TDFC	TDFC	None	TDFC	TDFC	DFC1	DFC1	NONE	NONE	NONE	NONE	NONE	NONE	TDFC	TDFC	TDFC
Cond(a)		7.7	72	2	7.7	7.7	7	88	88	88	88	88	88	88	88	88	88	88	76	76	76	76	76	76	76	11/	110	117	11V	11V	11V	110

Table 18. Point weights - I-P (Ib) (continued)

	16	n/a		n/a		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	0/0							
	15	n/a		n/a		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	=/=							
	14	n/a		n/a		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	-)							
	13	n/a		n/a		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	,							
	12	3380		2470	2470	2730	2730	3490	3490	3660	3660		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	-/
	7	2970		2980	2980	3060	3060	3410	3410	3570	3570		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	-/
u.	10	2890		1970	1970	2640	2640	2470	2470	2960	2960		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	910	910	1640	1640	200	750	730	730	1290	4040
Mounting Location	6	2530		2240	2240	2450	2450	2490	2490	2700	2700		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	790	800	1230	1230	620	610	009	009	1150	0077
lounting	8	3370	Box ^(d)	2070	2070	2580	2580	2870	2870	3350	3350		1010	1030	1830	026	980	086	1090	1110	1670	1830	2580	2620	2700	2740	098	026	066	066	2260	0000
2	7	2970	Options	2290	2290	2510	2510	2740	2740	2950	2950	Inits(e)	740	022	1550	022	780	062	820	840	1100	1080	066	1010	1820	1860	740	062	810	810	1130	0077
	9	3410	nits with	2170	2170	2350	2350	3300	3300	3400	3400	Extended Length Units®	2090	2110	2530	2590	2780	2800	3160	3210	2870	3300	2540	2580	2480	2530	2250	2520	2590	2610	2850	0110
	2	3000	ength U	2190	2190	2310	2310	2870	2870	3000	3000	ctended	1890	1910	2720	2340	2430	2460	2700	2760	3440	2900	2560	2620	1860	1910	2040	2240	2320	2340	2810	0000
	4	3000	Standard Length Units with Options Box ^(d)	1870	1870	1920	1920	3160	3160	3140	3140	Û	2050	2070	1850	2210	2250	2260	2470	2510	2560	3210	2650	2690	2470	2510	2290	2470	2550	2560	2760	0.400
	3	2520	S.	1870	1870	1920	1920	2500	2500	2600	2600		2240	2250	1870	2320	2390	2410	2660	2710	3610	3040	2740	2780	2620	2670	2360	2620	2700	2720	2790	0300
	2	3020		3070	3070	3070	3070	3600	3600	3560	3560		2030	2040	1230	1970	1940	1950	1990	2040	1840	2440	2990	3000	2850	2870	2380	2480	2520	2530	2640	0770
	-	2440		2330	2330	2370	2370	2600	2600	2710	2710		2270	2280	1220	2190	2150	2150	2260	2290	2910	2500	3070	3080	2950	2960	2590	2810	2850	2860	2720	2030
Unit	Size	250		380	450	200	220	380	450	200	250		150	165	180	180	180	200	225	250	165	180	165	180	165	180	200	225	250	275	200	200
D.m.n(c)		N/A		N/A		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	*							
Free-	Cooling ^(b)	TDFC		NONE	NONE	NONE	NONE	TDFC	TDFC	TDFC	TDFC		N/A	N/A	N/A	NONE	NONE	NONE	NONE	NONE	TDFC	TDFC	DFC1	DFC1	DFC2	DFC2	NONE	NONE	NONE	NONE	TDFC	CLCL
(a) Pub (a)	Cond(a)	110		110	11V	11/	11/	110	110	11/	11/		V 4	4V	4V	20	20	20	20	20	20	20	20	20	20	20	۸9	Λ9	Λ9	Λ9	۸9	719

Table 18. Point weights - I-P (Ib) (continued)

	16	n/a	200	1180	n/a	n/a	n/a	n/a	n/a	n/a	720	930																				
	15	n/a	200	800	n/a	n/a	n/a	n/a	n/a	n/a	560	730																				
	14	n/a	3550	n/a	1090	n/a	n/a	n/a	n/a	3450	n/a	1410	1590	4170	n/a	n/a	3330	n/a	n/a	1490	1880	3280										
	13	n/a	e/u	2620	n/a	940	e/u	n/a	n/a	n/a	2680	n/a	1100	1490	2600	n/a	n/a	2580	n/a	n/a	1440	1370	2470									
	12	n/a	n/a	n/a	u/a	u/a	1950	1940	1940	n/a	n/a	2470	2840	1090	2790	u/a	u/a	u/a	2740	2970	1320	2560	2540	3800	n/a	2590	2880	n/a	1700	0908	1890	2940
	11	n/a	n/a	n/a	n/a	n/a	1230	1230	1220	n/a	n/a	1700	2590	910	2370	n/a	n/a	n/a	1920	2800	1150	2760	1900	2140	n/a	1800	2690	n/a	1430	2850	1760	2950
u	10	1220	1350	1790	1790	1790	2550	2580	2580	1140	2340	2620	1440	2840	2970	1140	2180	810	2810	1490	3000	3300	1740	2700	880	2740	1470	200	2660	2990	1880	2190
Mounting Location	6	1160	870	1340	1340	1340	1810	1830	1840	1020	1600	1920	1230	1880	2360	1020	1730	710	2120	1350	2020	2070	1320	1040	022	2040	1320	520	1990	1810	1190	1460
lounting	8	2850	2760	3150	3200	3210	1930	1970	1970	1210	3410	1950	2610	3070	3190	1210	3290	2090	2030	2600	3100	3280	2380	2100	2360	2030	2630	1710	3310	3160	1650	1730
Σ	2	1200	2030	2090	2140	2150	1760	1800	1810	1000	2470	1810	1570	2510	2480	1000	2230	1820	1950	1730	2550	2580	1820	1040	2070	1920	1730	1550	2470	2360	1350	1460
	9	2840	2870	2850	2910	2920	2620	2690	2700	2740	3000	2630	2090	2980	3220	2750	2960	2480	2660	2650	2980	3190	2480	2860	2550	2750	2760	3280	2990	3170	2360	2340
	9	3110	2340	2130	2190	2200	1820	1880	1890	2500	2490	1850	2180	2610	2800	2510	2240	2290	1900	2410	2620	2630	2010	1450	2350	1940	2500	2870	2580	3100	2020	2020
	4	2890	2930	2700	2740	2750	1990	2030	2040	2490	2830	1990	2090	2910	2440	2500	2780	2580	1900	1920	2910	2280	2350	0098	2410	2060	2100	3360	2770	2340	2880	2810
	3	3140	2910	2920	2970	2990	2620	2690	2700	2620	2780	2630	2500	2770	2320	2630	3020	2780	2530	1980	2770	2770	2130	1900	2620	2730	2170	3570	2820	2430	2890	2830
	7	2820	060£	2910	2920	2930	2940	2970	2970	2400	2700	2920	2970	2240	2420	2400	2930	2490	2630	2570	2240	2530	2390	2860	2700	2970	2970	2510	2560	2780	2900	2850
	1	2970	3330	3090	3100	3110	3000	3020	3020	2700	2920	2970	2990	2630	2820	2710	3120	2890	2710	2860	2630	2620	2860	1860	3080	3020	3250	2830	2860	2980	3200	3130
Unit	Size	250	275	200	225	250	200	225	250	275	275	275	275	275	275	300	300	300	300	300	300	300	300	300	330	330	330	330	330	330	330	330
Pilmn(c)		N/A	A/N	PUMP	N/A	AMNA	A/N	N/A	N/A	N/A	PUMP	N/A	AWNA	N/A	AWNA	None	None	Pump	None	None	Pump	None	Pump									
Free-	Cooling ^(b)	TDFC	TDFC	DFC1	DFC1	DFC1	DFC2	DFC2	DFC2	NONE	TDFC	DFC1	DFC1	DFC2	DFC2	NONE	TDFC	NONE	TDFC	TDFC	DFC1	DFC1	DFC2	DFC2	None	TDFC	TDFC	None	TDFC	TDFC	DFC1	DFC1
Cond(a)		۸9	۸9	/9	/9	۸9	/9	/9	79	7	2	7.2	7	7	7.2	7.2	7.2	8V	88	88	88	88	88	88	88	8	88	76	76	76	76	76

Table 18. Point weights - I-P (Ib) (continued)

Cond(a)	Free-	(s)dwi1d	Unit							Ž	ounting	Aounting Location	_						
	Cooling ^(b)		Size	-	2	က	4	2	9	7	8	6	10	1	12	13	41	15	16
10V	NONE	W/A	375	2180	2730	2290	2500	2440	2360	2450	2050	2220	1800	1550	1330	n/a	n/a	n/a	n/a
10V	NONE	Y/N	440	2180	2730	2290	2500	2440	2360	2450	2050	2220	1800	1550	1330	n/a	n/a	n/a	n/a
,																			

Weights include factory charge of refrigerant and oil, ultimate sounds, and architectural louvered panels.

All weights are plus/minus 10%

(a)

(Q

© © @

Condenser length defined by model number digit 25: 4V = A; 5V = B; 6V = C; 7V = D; 8V = E; 9V = F; 11V = H.

Free-cooling defined by model number digit 42: T=TDFC; H=DFC2; J=DFC1.

Pump Package defined by model number digit 40 = 5, 6, 7.

Options box is used for units with either 575V (model number digit 9 = F) or Low Harmonics Option (model number digit 44 = L).

Extended Length is required for voltages 200V, 230V, 575V model number digit 9=A, B, F and harmonic filtration model number digit 44=L.

Table 19. Point weights - SI (kg)

ize 1 2 3
150 830 730 850 770
165 830 740 850
180 840 740 860
165 800 780 870
180 810 800 880
200 810 800 890
225 890 860 990
250 890 860 990
165 780 660 1160
180 960 1010 1100
165 870 900 1070
180 830 920 1130
165 780 780 900
180 810 850
200 820 840 910
225 910 880 1020
250 930 900 1050
275 940 910 1060
200 780 910 1180
225 890 900 1320
250 980 1020 1150
275 840 890 1330
200 770 740 1080
225 780 750 1100
250 780 750 1100
200 760 780 1100
225 770 790 1120
250 770 790 1120
275 890 840 960
300 890 840 970

Table 19. Point weights - SI (kg) (continued)

	16	n/a	220	n/a	440	n/a																										
	15	n/a	380	n/a	290	n/a																										
	14	n/a	n/a	n/a	1440	n/a	089	n/a	n/a	n/a	1550	n/a	062	460	1550	n/a	n/a	1490	n/a	n/a	096	1410	1470	n/a								
	13	n/a	n/a	e/u	1130	n/a	029	n/a	n/a	n/a	1180	e/u	089	390	1350	n/a	n/a	1170	n/a	e/u	840	1030	1230	n/a								
	12	u/a	u/a	069	1230	300	1280	n/a	n/a	062	1270	410	1300	930	1350	n/a	1020	1280	u/a	089	1570	810	1360	740	740	1000	1000	1120	1120	1470	1470	1540
	11	n/a	n/a	230	1160	260	1100	n/a	n/a	280	1200	330	1130	790	1180	n/a	029	1210	n/a	200	1370	710	1210	820	820	1070	1070	1100	1100	1290	1290	1340
(kg)	10	1170	1020	890	840	1310	1240	400	390	880	860	1320	1260	1040	880	410	800	880	260	1300	870	200	930	850	850	850	850	1160	1160	1080	1080	1310
Mounting Location (kg)	6	790	022	770	022	066	1070	340	340	810	780	1020	1090	880	730	350	780	810	260	1020	760	460	780	1000	1000	1020	1020	1120	1120	1050	1050	1150
unting L	8	1360	1560	1300	850	1580	1310	940	930	1320	870	1560	1350	1120	860	1040	1230	006	840	1540	1510	1090	920	980	086	930	930	1170	1170	1280	1280	1520
Mo	7	1060	1200	1090	290	1150	890	068	880	1110	290	1240	920	920	730	086	1080	620	790	1220	1030	260	780	1090	1090	1040	1040	1130	1130	1240	1240	1350
	9	1240	1290	1200	1180	1300	1250	1050	1050	1210	1190	1310	1360	1300	1120	1110	1190	1230	1420	1320	1330	1210	1190	1040	1040	1000	1000	1070	1070	1470	1470	1550
	2	1160	1160	1080	1140	1310	1230	1070	1070	1100	1120	1200	1320	1230	1060	1120	1120	1200	1390	1210	1320	1180	1150	1020	1020	980	980	1040	1040	1280	1280	1360
	4	1230	1150	1100	006	1140	1230	1020	1020	1110	006	1170	1030	1140	1080	1010	1140	920	1310	1190	006	006	1160	830	830	880	880	006	006	1350	1350	1360
	3	1140	1130	1020	940	1130	1250	1060	1060	1100	006	1140	1060	920	088	1060	1150	096	1350	1170	006	910	096	092	092	810	810	830	830	1090	1090	1150
	2	810	062	800	910	740	740	880	880	810	068	022	820	800	810	870	850	068	006	820	980	1050	870	170	022	1050	1050	1060	1060	1390	1390	1360
	1	820	810	880	920	720	710	910	006	800	880	780	800	870	870	920	840	006	930	820	066	1040	940	029	029	940	940	096	096	1070	1070	1110
Unit	Size	275	300	275	275	275	275	300	300	300	300	300	300	300	300	330	330	330	330	330	330	330	330	375	440	380	450	009	029	088	450	200
0,122		Y/N	W/A	Y/N	PUMP	N/A	AWNA	N/A	NON	NON	AWNA	Y/N	AWNA	N/A	AWNA	NON	NONE	Mund	NONE	NON	Pump	NON	Pumb	Y/N	Y/N	W/A	N/A	W/A	Y/N	W/A	W/A	A/N
Free-	Cooling ^(b)	TDFC	TDFC	DFC1	DFC1	DFC2	DFC2	NONE	NONE	TDFC	TDFC	DFC1	DFC1	DFC2	DFC2	None	TDFC	TDFC	None	TDFC	TDFC	DFC1	DFC1	NONE	NONE	NONE	NONE	NONE	NONE	TDFC	TDFC	TDFC
(a)		7.7	7.2	7.2	2	2	7.7	88	8V	8V	88	88	88	88	88	8V	88	88	Λ6	۸6	76	۸6	76	۸6	Λ6	110	11/	11V	11V	11V	11V	11/

Table 19. Point weights - SI (kg) (continued)

	16	n/a		n/a		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a							
	15	n/a		e/u	u/a	e/u	u/a	n/a	n/a	n/a	n/a		n/a	n/a	e/u	u/a	n/a	u/a	e/u	n/a	e/u	n/a	e/u	u/a	n/a	n/a						
	14	n/a		e/u	n/a	n/a	u/a	n/a	n/a	n/a	n/a		n/a	n/a	u/a	u/a	n/a	n/a	u/a	n/a	u/a	n/a	e/u	n/a	n/a	n/a						
	13	n/a		e/u	n/a	n/a	u/a	n/a	n/a	n/a	n/a		n/a	n/a	u/a	u/a	n/a	n/a	u/a	n/a	u/a	n/a	e/u	n/a	n/a	n/a						
	12	1540		1120	1120	1240	1240	1590	1590	1660	1660		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	11	1340		1350	1350	1400	1400	1550	1550	1620	1620		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
(kg)	10	1310		006	006	1200	1200	1110	1110	1350	1350		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	420	420	740	740	320	340	330	330	280	280
Mounting Location (kg)	6	1150		1020	1020	1110	1110	1130	1130	1220	1220		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	360	360	260	260	280	280	280	280	520	540
unting L	8	1520	Box ^(d)	940	940	1180	1180	1300	1300	1520	1520		460	460	825	440	450	450	200	200	755	830	1170	1190	1230	1250	390	440	450	450	1020	1270
Mo	7	1350	Options	1030	1030	1140	1140	1250	1250	1340	1340	Jnits ^(e)	340	340	200	350	350	360	370	370	495	200	450	460	830	850	340	360	370	370	530	540
	9	1550	Length Units with	066	066	1060	1060	1500	1500	1560	1560	Length Units(e)	950	096	1150	1180	1260	1270	1440	1460	1310	1490	1150	1170	1130	1150	1020	1140	1180	1190	1290	1250
	2	1360	ength U	1000	1000	1050	1050	1300	1300	1350	1350	Extended	860	870	1240	1070	1100	1110	1230	1260	1560	1320	1160	1190	850	870	930	1020	1050	1060	1270	1370
	4	1360	Standard L	098	098	870	870	1420	1420	1430	1430	Û	930	940	835	1010	1020	1030	1120	1140	1165	1450	1200	1220	1120	1140	1040	1120	1160	1170	1260	1280
	3	1150	ช	850	850	870	870	1130	1130	1170	1170		1020	1030	855	1060	1080	1090	1210	1230	1635	1380	1250	1270	1190	1210	1070	1190	1230	1240	1280	1380
	2	1360		1400	1400	1400	1400	1630	1630	1620	1620		920	940	260	006	880	880	006	920	840	1110	1360	1360	1300	1300	1080	1130	1150	1150	1190	1260
	1	1110		1060	1060	1080	1080	1190	1190	1220	1220		1030	1040	222	066	086	086	1030	1040	1320	1130	1390	1400	1340	1350	1180	1280	1300	1300	1230	1330
Unit	Size	220		380	450	009	099	380	450	200	220		150	165	180	165	180	200	225	250	165	180	165	180	165	180	200	225	250	275	200	225
Dimp(c)		N/A		W/A	W/A	W/A	W/A	A/N	A/N	N/A	N/A		A/N	N/A	W/A	W/A	N/A	W/A	W/A	N/A	N/A	W/A	A/N	N/A	N/A	N/A	W/A	N/A	W/A	W/A	N/A	N/A
Free-	Cooling ^(b)	TDFC		NONE	NONE	NONE	NONE	TDFC	TDFC	TDFC	TDFC		A/N	A/A	N/A	NONE	NONE	NONE	NONE	NONE	TDFC	TDFC	DFC1	DFC1	DFC2	DFC2	NONE	NONE	NONE	NONE	TDFC	TDFC
Cond(a)		11V		11V	11V	110	11V	110	110	110	110		V 4	4\	4V	20	20	20	20	20	20	20	20	20	20	20	۸9	/9	۸9	۸9	۸9	09

Table 19. Point weights - SI (kg) (continued)

	16	n/a	360	009	n/a	n/a	n/a	n/a	n/a	n/a	330	420																				
	15	n/a	280	400	n/a	n/a	n/a	n/a	n/a	n/a	250	330																				
	14	n/a	1610	n/a	009	n/a	n/a	1560	n/a	049	082	1840	n/a	n/a	1510	n/a	n/a	089	098	1490												
	13	n/a	u/a	n/a	n/a	1190	e/u	430	n/a	u/a	1220	n/a	009	099	1200	n/a	n/a	1170	n/a	n/a	029	970	1120									
	12	n/a	n/a	n/a	n/a	n/a	068	880	880	n/a	n/a	n/a	n/a	1130	1290	200	1270	n/a	1240	1350	009	1160	1160	1700	n/a	1180	1310	n/a	022	1390	098	1340
	11	n/a	n/a	n/a	n/a	n/a	260	260	260	n/a	n/a	n/a	n/a	770	1180	420	1080	n/a	870	1270	520	1260	870	920	n/a	820	1220	n/a	029	1300	800	1340
(kg)	10	220	610	820	820	820	1160	1170	1170	520	520	066	066	1190	099	1290	1350	370	1270	089	1370	1500	780	1230	400	1250	029	230	1210	1360	850	1000
ocation	6	530	400	610	610	610	820	830	840	460	460	730	790	870	099	098	1070	320	096	610	920	940	610	470	350	930	009	240	910	820	540	029
Mounting Location (kg)	8	1290	1250	1430	1450	1460	880	890	006	250	250	1520	1490	890	1190	1400	1450	950	920	1180	1410	1490	1070	920	1070	930	1190	780	1500	1440	740	790
Mor	7	250	920	950	026	086	800	820	820	450	450	1130	1010	830	710	1140	1130	830	880	780	1160	1170	830	470	940	870	190	710	1120	1070	610	099
	9	1280	1310	1300	1320	1330	1190	1220	1230	1250	1250	1370	1340	1200	950	1350	1460	1120	1210	1200	1360	1450	1110	1290	1160	1250	1250	1490	1360	1440	1070	1060
	2	1420	1060	970	1000	1000	830	860	860	1140	1140	1130	1020	840	066	1190	1270	1040	860	1090	1190	1190	920	099	1070	880	1140	1310	1170	1410	920	920
	4	1320	1330	1230	1250	1250	006	920	930	1130	1130	1290	1260	006	950	1320	1110	1170	860	870	1320	1040	1060	1590	1100	940	096	1530	1260	1060	1300	1280
	3	1420	1320	1330	1350	1360	1190	1220	1230	1190	1190	1260	1370	1200	1140	1260	1050	1260	1160	006	1260	1260	026	860	1190	1240	066	1620	1280	1100	1310	1290
	2	1270	1400	1320	1330	1330	1340	1350	1350	1090	1090	1230	1330	1330	1350	1020	1100	1130	1200	1170	1020	1150	1080	1280	1230	1350	1350	1140	1160	1260	1310	1290
	7	1350	1510	1400	1410	1410	1360	1370	1370	1230	1230	1330	1420	1350	1360	1190	1280	1310	1230	1300	1200	1190	1310	850	1400	1370	1480	1290	1300	1350	1440	1420
Unit	Size	250	275	200	225	250	200	225	250	275	300	275	300	275	275	275	275	300	300	300	300	300	300	300	330	330	330	330	330	330	330	330
Dimp(c)		N/A	PUMP	N/A	PUMP	NONE	NONE	PUMP	NONE	PUMP	NONE	PUMP	NONE	NONE	Pump	NONE	NONE	Pump	NONE	Pump												
Free-	Cooling ^(b)	TDFC	TDFC	DFC1	DFC1	DFC1	DFC2	DFC2	DFC2	NONE	NONE	TDFC	TDFC	DFC1	DFC1	DFC2	DFC2	NONE	TDFC	TDFC	DFC1	DFC1	DFC2	DFC2	None	TDFC	TDFC	None	TDFC	TDFC	DFC1	DFC1
Condia		Λ9	Λ9	۸9	Λ9	۸9	Λ9	۸9	Λ9	2	>	7.	^_	2	7.7	7.7	7.	8V	88	88	88	8V	88	88	88	8V	88	Λ6	Λ6	۸6	Λ6	76

Table 19. Point weights - SI (kg) (continued)

Cond(a)	Free-	Dimp(c)	Unit							Mou	nting Lc	Mounting Location (kg)	kg)						
5	Cooling ^(b)	-	Size	-	2	3	4	2	9	7	8	6	10	1	12	13	14	15	16
10V	NONE	W/A	375	066	1240	1040	1130	1110	1070	1110	920	1010	820	200	610	n/a	n/a	n/a	n/a
10V	NONE	Y/N	440	066	1240	1040	1130	1110	1070	1110	920	1010	820	200	610	n/a	n/a	n/a	n/a
Notoe.																			

Weights include factory charge of refrigerant and oil, ultimate sounds, and architectural louvered panels.

All weights are plus/minus 10%

(a)

(Q

© © @

Condenser length defined by model number digit 25: 4V = A; 5V = B; 6V = C; 7V = D; 8V = E; 9V = F; 11V = H.

Free-cooling defined by model number digit 42. T=TDFC; H=DFC2; J=DFC1.

Pump Package defined by model number digit 40 = 5, 6, 7.

Options box is used for units with either 575V (model number digit 9 = F) or Low Harmonics Option (model number digit 44 = L).

Extended Length is required for voltages 200V, 230V, 575V model number digit 9=F). B, F and harmonic filtration model number digit 44=L.

Isolator Selections

Table 20. Elastomeric isolator selections

	16		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	Brown 61
	15		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	Brown 61
	41		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	Char- coal 64	n/a	Lime 63	n/a	n/a	Char- coal 64	n/a	Char- coal 64	Brick Red 62	Char- Coal 64
	13		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	Char- coal 64 c	n/a	Lime 63 L	n/a	n/a	Char- coal 64 c	n/a	Char- coal 64 c	Brick Red 62	Char- coal 64 c
	12		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	Brown 61	n/a	n/a	Lime 63	Char- coal 64 c	Brown 61	Char- coal 64	n/a	Char- coal 64	Char- coal 64 c	Brown 61	Char- coal 64 c	Lime 63	Char- coal 64
	7		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	Brown 61	n/a	n/a	Lime 63	Char- coal 64	Brown 61	Char- coal 64	n/a	Lime 63	Char- coal 64	Brown 61	Char- coal 64	Lime 63 L	Char- coal 64
	10		n/a	n/a	n/a	Brown 61	Lime 63	Brown 61	Brown 61	Lime 63	Char- coal 64	Brown 61	Lime 63	Lime 63	Lime 63	Char- coal 64	Char- coal 64	Brown 61	Lime 63	Lime 63	Char- coal 64	Char- coal 64	Char- coal 64	Lime 63
osition	6		n/a	n/a	n/a	Brown 61	Lime 63 L	Brown 61	Brown 61	Lime 63 L	Lime 63	Brown 61	Lime 63 L	Lime 63	Lime 63	Lime 63	Char- coal 64	Brown 61	Lime 63 L		Lime 63	Char- coal 64	Char- coal 64	Lime 63 L
Isolator Position	8		Brown 61	Brown 61	Lime 63	Lime 63	Char- coal 64	Brown 61	Lime 63	Char- coal 64	Char- coal 64	Lime 63	Char- coal 64	Char- coal 64	Lime 63	Char- coal 64	Char- coal 64	Lime 63	Char- coal 64	Lime 63 Lime 63	Char- coal 64	Char- coal 64	Char- coal 64	Lime 63 L
8	7	th Units	Brown 61	Brown 61	Lime 63 L	Brown 61	Char- coal 64	Brown 61	Brown 61	Char- coal 64	Lime 63	Lime 63 L	Char- coal 64	Char- coal 64	Brick Red 62	Lime 63	Lime 63	Lime 63 L	Char- coal 64	Brick Red 62	Lime 63	Lime 63	Char- coal 64	Lime 63 L
	9	Standard Length Units		Lime 63	Char- coal 64	Lime 63 L	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Lime 63 L	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64						
	2	Stand	Lime 63 Lime 63	Lime 63 L	Char- coal 64	Lime 63 L	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Lime 63 L	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64						
	4		Lime 63	Lime 63	Char- coal 64	Char- coal 64	Char- coal 64	Lime 63	Char- coal 64	Char- coal 64	Char- coal 64	Lime 63	Char- coal 64	Char- coal 64	Lime 63	Char- coal 64	Char- coal 64	Lime 63	Char- coal 64	Lime 63	Char- coal 64	Lime 63	Lime 63	Char- coal 64
	ဗ		Lime 63 [Lime 63	Char- coal 64	Char- coal 64	Char- coal 64	Lime 63	Char- coal 64	Char- coal 64	Char- coal 64	Lime 63	Char- coal 64	Char- coal 64	Lime 63	Char- coal 64	Char- coal 64	Lime 63	Char- coal 64	Lime 63	Char- coal 64	Lime 63	Char- coal 64	Lime 63
	2		Lime 63	Lime 63	Lime 63	Lime 63	Lime 63	Lime 63	Lime 63	Lime 63	Lime 63	Lime 63	Lime 63	Lime 63	Lime 63	Lime 63	Brick Red 62	Lime 63	Lime 63	Lime 63	Lime 63	Brick Red 62	Char- coal 64	Lime 63 L
	-		Lime 63	Lime 63	Lime 63	Lime 63	Lime 63	Lime 63	Lime 63	Lime 63	Lime 63	Lime 63	Lime 63	Char- coal 64	Lime 63	Lime 63	Brick Red 62	Lime 63	Lime 63	Lime 63	Lime 63	Brick Red 62	Char- coal 64	Lime 63
Comp	(Đ)		GP4V	GP4V	GP4V	GP4V	GP4V	GP4V	GP4V	GP4V	GP4V	GP4V	GP4V	GP4V	GP4V	GP4V	GP4V	GP4V	GP4V	GP4V	GP4V	GP4V	GP4V	GP4V
Comp			NA	ΑN	ΑN	N/A	Ą	Ϋ́	Ą	Ą	N/A	AN	AN	None	Pump	None	Pump	AN	None	Pump	None	Pump	None	Pump
	Cooling ^(b)		NA	NA	TDFC	DFC1	DFC2	Ą	TDFC	DFC1	DFC2	NA	TDFC	DFC1	DFC1	DFC2	DFC2	NONE	TDFC	TDFC	DFC1	DFC1	DFC2	DFC2
(a)	5		4V	20	20	20	20	/9	/9	/9	Λ9	7	7	>	>	>	>	8\	88	\ 8	88	88	88	88

Table 20. Elastomeric isolator selections (continued)

(3)	Free-	D. mp.(c)	Comp							1	solator Position	osition							
	Cooling ^(b)) dim L	(p)	1	2	3	4	2	9	7	8	6	10	11	12	13	14	15	16
76	None	None	GP4V	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Brown 61	Brown 61	n/a	n/a	n/a	n/a	n/a	n/a
76	TDFC	None	GP4V		Lime 63	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Lime 63	Char- coal 64	Lime 63	Char- coal 64	Brown 61	Brown 61	n/a	n/a	n/a	n/a
Λ6	TDFC	Pump	GP4V	Char- coal 64	Char- coal 64	Lime 63	Lime 63	Char- coal 64	Char- coal 64	Lime 63	Char- coal 64	Brick Red 62	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Brick Red 62	n/a	n/a
Λ6	DFC1	None	GP4V	Char- coal 64	Char- coal 64	Lime 63	Lime 63	Char- coal 64	Char- coal 64	Lime 63	Char- coal 64	Brick Red 62	Brick Red 62	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	n/a	n/a
Λ6	DFC1	Pump	GP4V	Lime 63	Lime 63	Lime 63	Char- coal 64	Char- coal 64	Char- coal 64	Lime 63	Lime 63	Lime 63	Lime 63	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Brown 61	Brown 61
Λ6	ΝA	AN	GPMX	Lime 63	Lime 63	Lime 63	Lime 63	Lime 63	Lime 63	Lime 63 I	Lime 63	n/a	n/a	n/a	n/a				
110	ΝA	ĄN	GPMX	Lime 63	Lime 63	Lime 63	Lime 63	Lime 63	Lime 63	Lime 63	Lime 63	Lime 63	Lime 63	Lime 63	Lime 63	n/a	n/a	n/a	n/a
11V(e)	NA	ĄN	GPMX	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	n/a	n/a	n/a	n/a
110	STOPEC	ĄN	GPMX	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	n/a	n/a	n/a	n/a
								Exten	Extended Length Units ^(f)	th Units(e.								
>4	ΑN	₹ Z	GP4V	Lime 63	Lime 63	Lime 63 Lime 63 Lime 63		Lime 63	Lime 63	Brown 61	Brown 61	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
20	NA	₹ Z	GP4V	Lime 63	Lime 63	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Brown 61	Lime 63	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
5V	TDFC	₹ Z	GP4V		Lime 63	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Brown 61	Lime 63	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
20	DFC1	₹ Z	GP4V	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Brown 61	Char- coal 64	Brown 61	Brown 61	n/a	n/a	n/a	n/a	n/a	n/a
20	DFC2	N/A	GP4V	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Lime 63	Char- coal 64	Lime 63	Char- coal 64	Lime 63	Lime 63	n/a	n/a	n/a	n/a	n/a	n/a
۸9	ΝA	ĄN	GP4V	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Brown 61	Brown 61	Brown 61	Brown 61	n/a	n/a	n/a	n/a	n/a	n/a
N9	TDFC	AN	GP4V	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Brown 61	Char- coal 64	Brown 61	Brown 61	n/a	n/a	n/a	n/a	n/a	n/a
N9	DFC1	N/A	GP4V	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Lime 63	Char- coal 64	Lime 63	Char- coal 64	Lime 63	Lime 63	n/a	n/a	n/a	n/a	n/a	n/a
N9	DFC2	N/A	GP4V	Char- coal 64	Char- coal 64	Char- coal 64	Lime 63	Lime 63	Char- coal 64	Lime 63	Lime 63	Lime 63	Char- coal 64	Lime 63	Char- coal 64	n/a	n/a	n/a	n/a
7.7	NONE	AN	GP4V	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Brown 61	Brown 61	Brown 61	Brown 61	n/a	n/a	n/a	n/a	n/a	n/a
7.7	TDFC	Ą	GP4V	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Lime 63	Char- coal 64	Lime 63	Char- coal 64	Lime 63	Lime 63	n/a	n/a	n/a	n/a	n/a	n/a
7.7	DFC1	None	GP4V	Char- coal 64	Char- coal 64	Char- coal 64	Lime 63	Lime 63	Char- coal 64	Lime 63	Lime 63	Lime 63	Char- coal 64	Lime 63	Char- coal 64	n/a	n/a	n/a	n/a
77	DFC1	Pump	GP4V		Char- coal 64	Char- coal 64	Lime 63	Char- coal 64	Lime 63	Lime 63	Char- coal 64	Brick Red 62	Brick Red 62	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	n/a	n/a

Elastomeric isolator selections (continued) Table 20.

Free- Pump(c) Comp	Comp	-	,	,		,	,		solator Position	Position	:	:	:	:	:	!	!
e)		-	7	က	4	2	9	7	∞	6	9	7	12	13	4	15	16
GP4V	>	Char- coal 64	Lime 63	Char- coal 64	Lime 63	Char- coal 64	Lime 63	Lime 63	n/a	n/a	n/a	n/a					
GP4V	>	Char- coal 64	Lime 63	Lime 63	Lime 63	Char- coal 64	Brick Red 62	Brick Red 62	n/a	n/a							
GP4V	. ≥	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Brown 61	Brown 61	n/a	n/a	n/a	n/a	n/a	n/a
GP4V		Char- coal 64	Char- coal 64	Char- coal 64	Lime 63 L	Lime 63	Char- coal 64	Lime 63	Lime 63	Lime 63	Char- coal 64	Lime 63	Char- coal 64	n/a	n/a	n/a	n/a
GP4V	}	Char- coal 64	Char- coal 64	Lime 63	Lime 63	Char- coal 64	Char- coal 64	Lime 63	Char- coal 64	Brick Red 62	Brick Red 62	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	n/a	n/a
GP4V	\$	Char- coal 64	Lime 63	Char- coal 64	Lime 63	Char- coal 64	Lime 63	Lime 63	n/a	n/a	n/a	n/a					
GP4V	¥	Char- coal 64	Char- coal 64	Char- coal 64	Lime 63	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Lime 63	Char- coal 64	Char- coal 64	Lime 63	Brick Red 62	Brick Red 62	n/a	n/a
В	GP4V	Char- coal 64	Char- coal 64	Lime 63	Char- coal 64	Lime 63	Char- coal 64	Lime 63	Char- coal 64	Brick Red 62	Lime 63	Char- coal 64	Char- coal 64	Brick Red 62	Brick Red 62	Char- coal 60	Char- coal 60
Ę.	GP4V	Char- coal 64	Lime 63	Char- coal 64	Char- coal 64	Lime 63	Lime 63	Brick Red 62	Brick Red 62	Brick Red 62	Lime 63	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 60	Char- coal 60
P.	GP4V	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Brown 61	Brown 61	n/a	n/a	n/a	n/a	n/a	n/a
GP4V	\$	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Lime 63	Lime 63	Lime 63	Lime 63	n/a	n/a	n/a	n/a
9	GP4V	Char- coal 64	Char- coal 64	Lime 63	Lime 63	Char- coal 64	Char- coal 64	Lime 63	Char- coal 64	Brick Red 62	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Brick Red 62	n/a	n/a
Ę.	GP4V	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Lime 63	Lime 63	Brick Red 62	Brick Red 62	Brick Red 62	Lime 63	Char- coal 64	Char- coal 64	Lime 63	Char- coal 64	Char- coal 60	Char- coal 60
Ğ	GP4V	Char- coal 64	Char- coal 64	Char- coal 64	Char- coal 64	Lime 63	Lime 63	Brick Red 62	Brick Red 62	Brick Red 62	Lime 63	Char- coal 64	Char- coal 64	Lime 63	Char- coal 64	Char- coal 60	Char- coal 60
GР	GPMX	Lime 63	Lime 63	Lime 63	Lime 63 L	Lime 63	n/a	n/a	n/a	n/a							
-07		A Chicait Off. 477	7.4	77 - 0.67	1	2		4477 - 11									

Condenser length defined by model number digit 25: 4V = A; 5V = B; 6V = C; 7V = D; 8V = E; 9V = F; 11V = H. Free-cooling defined by model number digit 42: T=TDFC; H=DFC2; J=DFC1. Pump Package defined by model number digit 40 = 5, 6, 7.

⊕ © © © ®

Compressor type defined by model digit 8: $\frac{1}{4} = GPMX$, $\frac{1}{4} = GPMX$, or where harmonic filter = low (model number digit 44 = L).

11V Units without Free Cooling, with Options Box. Options box is used for units with either unit voltage = 575V (model number digit 9 = F) or where harmonic filter = low (model number digit 44 = L).

Extended Length is required for voltages 200V, 230V, 380V, 400V, 575V model number digit 9=A,B,C,D, F and harmonic filtration model number digit 44=L

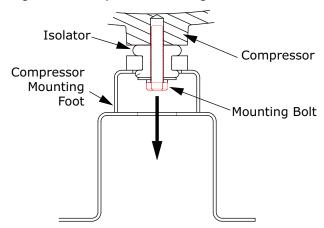
Compressor Mounting Bolt Removal

Units with InvisiSound™ Ultimate Option (Model Number Digit 13 = E)

For chillers built with InvisiSound Ultimate option, compressor mounting bolts must be removed to assure minimum noise during operation. Use a 24mm socket to remove the (3) M15 x 75mm mounting bolts for each compressor. They are located under compressor mounting feet. See figure below.

Important:

- DO NOT DISCARD MOUNTING BOLTS. Store bolts in the control panel for future use.
- All mounting bolts MUST be reinstalled prior to compressor removal or unit move.


NOTICE

Equipment Damage!

Failure to reinstall bolts could cause shifting of parts and result in equipment damage.

Do not remove compressor or move unit without reattaching compressor mounting bolts.

Figure 16. Compressor mounting bolt removal

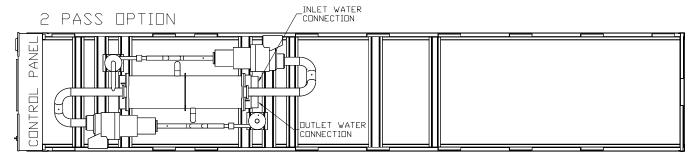
Drainage

Locate the unit near a large capacity drain for water vessel drain-down during shutdown or repair. Evaporators are provided with drain connections. A vent on top of evaporator waterbox prevents vacuum by allowing air into evaporator for complete drainage. All local and national codes apply.

Refrigerant Pressure Relief Valves

See General Data for refrigerant pressure relief valve information.

Evaporator Piping


Available pass configurations:

- Two-compressor units: Two or three passes
- Three- and Four-Compressor units: One or two passes

Note: The following figures are top views. Condenser removed for clarity.

TRANE

Figure 17. Evaporator pass configurations — two-compressor units

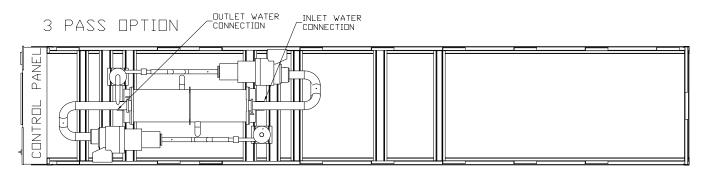
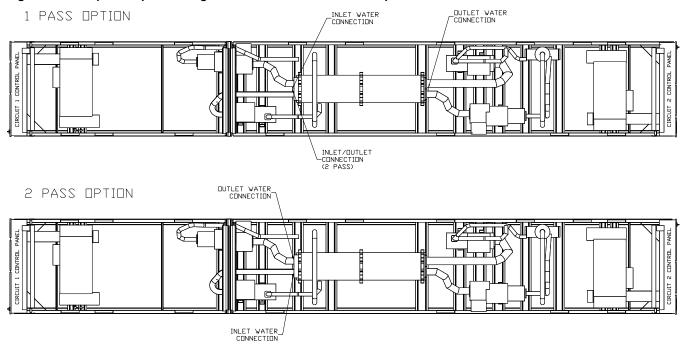



Figure 18. Evaporator pass configurations — three- and four-compressor units

NOTICE

Proper Water Treatment Required!

The use of untreated or improperly treated water could result in scaling, erosion, corrosion, algae or slime.

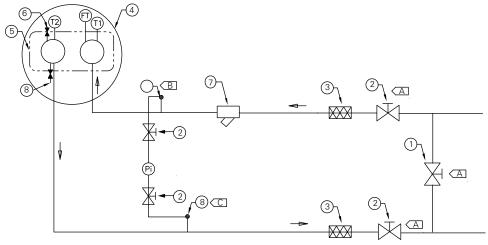
Use the services of a qualified water treatment specialist to determine what water treatment, if any, is required. Trane assumes no responsibility for equipment failures which result from untreated or improperly treated water, or saline or brackish water.

NOTICE

Evaporator Damage!

Failure to follow instructions below could cause damage to the evaporator.

The chilled water connections to the evaporator are to be "victaulic" type connections. Do not attempt to weld these connections, as the heat generated from welding can cause microscopic and macroscopic fractures on the cast iron waterboxes that can lead to premature failure of the waterbox. To prevent damage to chilled water components, do not allow evaporator pressure (maximum working pressure) to exceed 150 psig (10.5 bar).


- · Evaporator water connections are grooved.
- Thoroughly flush all water piping to the unit before making the final piping connections to the unit.

- Components and layout will vary slightly, depending on the location of connections and the water source.
- A vent is provided on the top of the evaporator at the chilled water inlet. Be sure to provide additional vents at high points in the piping to bleed air from the chilled water system. Install necessary pressure gauges to monitor the entering and leaving chilled water pressures.
- Provide shutoff valves in lines to the gauges to isolate them from the system when they are not in use. Use rubber vibration eliminators to prevent vibration transmission through the water lines.
- If desired, install thermometers in the lines to monitor entering and leaving water temperatures.
- Install a balancing valve in the leaving water line to control water flow balance.
- Install shutoff valves on both the entering and leaving water lines so that the evaporator can be isolated for service.

Evaporator Piping Components

Piping components include all devices and controls used to provide proper water system operation and unit operating safety. These components and their general locations are given below.

Figure 19. Typical water piping components

Item	Description	Item	Description
1	Bypass Valve	Pi	Pressure Gauge
2	Isolation Valve	FT	Water Flow Switch
3	Vibration Eliminator	T1	Evap Water Inlet Temp Sensor
4	Evaporator - End View (2-pass)	T2	Evap Water Outlet Temp Sensor
5	Evaporator Waterbox (2-pass)	NOTES	
6	Vent	Α	Isolate unit for initial water loop cleaning
7	Strainer	В	Vent must be installed at the high point of the line
8	Drain	С	Drain must be installed at the low point of the line

Entering Chilled Water Piping

- Air vents (to bleed air from system).
- · Water pressure gauges with shutoff valves.
- · Vibration eliminators.
- Shutoff (isolation) valves.
- · Thermometers (if desired).
- · Clean-out tees.
- Pipe strainer.

Leaving Chilled Water Piping

- · Air vents (to bleed air from system).
- · Water pressure gauges with shutoff valves.
- Vibration eliminators.
- · Shutoff (isolation) valves.
- Thermometers.
- Clean-out tees.
- · Balancing valve.

Drains

A 1/2" drain connection is located under outlet end of evaporator waterbox for drainage during unit servicing. A shutoff valve must be installed on drain line.

Pressure Gauges

Install field-supplied pressure components as shown in figure above. Locate pressure gauges or taps in a straight run of pipe; avoid placement near elbows, etc. Be sure to install the gauges at the same elevation on each shell if the shells have opposite-end water connections.

To read manifolded pressure gauges, open one valve and close the other (depending upon the reading desired). This eliminates errors resulting from differently calibrated gauges installed at unmatched elevations.

Pressure Relief Valves

NOTICE

Evaporator Damage!

Failure to follow instructions below could cause damage to the evaporator.

To prevent evaporator damage, install pressure relief valves in the evaporator water system.

Install a water pressure relief valve in the evaporator inlet piping between the evaporator and the inlet shutoff valve, as shown in figure above. Water vessels with close-coupled shutoff valves have a high potential for hydrostatic pressure buildup on a water temperature increase. Refer to applicable codes for relief valve installation guidelines.

Evaporator Flow Switch

The flow switch is factory-installed and programmed based on the operating conditions submitted with the order. The leaving evaporator temperature, fluid type and fluid concentration affect the selected flow switch. If the operating conditions on the job site change, the flow switch may need to be replaced. Contact your local Trane Sales office for more information.

The sensor head includes 3 LEDs, two yellow and one green. Wait 15 seconds after power is applied to the sensor before evaluating LEDs for flow status. When wired correctly and flow is established, only the green LED should be lit. Following are the LED indicators:

- · Green ON, both yellow OFF Flow
- Green and outside yellow ON No Flow
- · Center yellow ON continuously Miswire

Pump Package

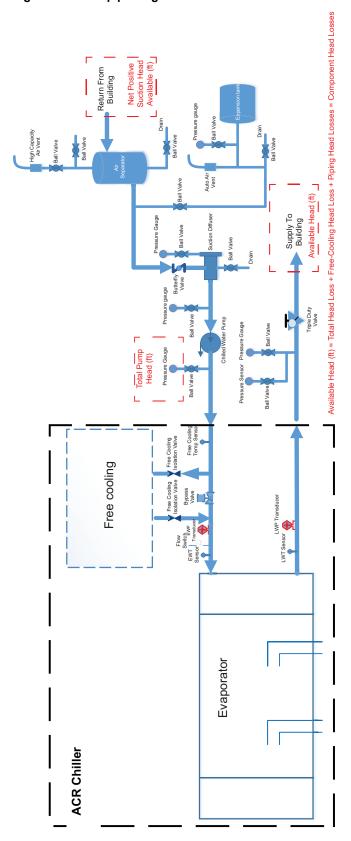
The pump package contains a single pump, triple-duty valves, service isolation valves, pressure ports, air separator, expansion tank, and fluid strainer. Included is -20°F (-29°C) ambient freeze protection for water.

The pump skid contains an independent pump motor starter panel. The pump starter panel's power supply is

prewired into the chiller's control panel assembly. An independent pump motor supply is not required. Variable pump speed command is integrated with the chiller controller, allowing variable flow functionality. Harmonic filtration is standard.

Pump package applications include short loops, decoupled systems, and service for an entire loop volume. Because the fluid distribution system beyond the chiller is unknown, Trane Select Assist reports Available Head as the head leaving the chiller at the system supply connection point. Available Head includes the evaporator head loss, pump package and free-cooling piping frictional effects head losses, valve head losses, air separator head loss, and strainer head loss summation.

See Figure 20, p. 57 for generally recommended field installed piping components and locations.


NOTICE

Equipment Damage!

Failure to follow instructions could result in equipment damage.

Do not operate the pump package at NPSH $_{\rm R}$. Operation at this suction head will cause cavitation. NPSH $_{\rm A}$ should be at least 1.5 to 2.5 times NPSH $_{\rm R}$.

Figure 20. Pump package schematic

Freeze Protection

One or more of the ambient freeze avoidance methods in the table below must be used to protect the chiller from

ambient freeze damage. See RF-PRB002*-EN for more information.

Method	Protects to ambient temperature	Notes
		 Heaters alone will provide low ambient protection down to -20°F (-29°C), but will NOT protect the evaporator from freezing as a result of charge migration. Therefore, it is required that water pump control be used in conjunction with heaters.
		The optional factory installed pump package includes -20°F (-29°C) ambient freeze protection for water.
		Heaters are factory-installed on the evaporator and will protect it from freezing.
		 Install heat tape on all water piping, pumps, and other components that may be damaged if exposed to freezing temperatures. Heat tape must be designed for low ambient temperature applications. Heat tape selection should be based on the lowest expected ambient temperature.
		The controller can start the pump when freezing conditions are detected. For this option the pump must to be controlled by the Stealth unit and this function must be validated.
Water Pump		Water circuit valves need to stay open at all times.
Control AND Heaters	Down to -20°F	 Water pump control and heater combination will protect the evaporator down to any ambient temperature provided power is available to the pump and the controller. This option will NOT protect the evaporator in the event of a power failure to the chiller unless backup power is supplied to the necessary components.
		When no chiller operation is possible and the pump is already off, controller pump control function for freeze protection will command the pump to turn:
		 ON if average of the evaporator entering water temperature, the evaporator leaving water temperature, and the evaporator refrigerant pool temperature is less than Low Evaporator Refrigerant Temperature Cutout (LERTC) + 4°F for a period of time.
		 OFF again if the evaporator refrigerant pool temperature rises above the LERTC + 6°F for a period of time.
		Note: Time period referenced for ON and Off conditions above is dependent on past running conditions and present temperatures measured.
		 ON if entering OR leaving water temperature LWTC for 30°F-sec (17°C-sec)
		 OFF again if water temperature > LWTC for 30 min
F	Varies. See Low Evaporator	Freeze protection can be accomplished by adding sufficient glycol to protect against freezing below the lowest ambient expected.
Freeze Inhibitor	Refrigerant Cutout, Glycol Requirements.	 Use of glycol type antifreeze reduces the cooling capacity of the unit and must be considered in the design of the system specifications.
		For units with free-cooling option, glycol solution is REQUIRED. See Free-Cooling Fluid Management section.
		Shut off the power supply to the unit and to all heaters.
Drain Water Circuit	Below -20°F	Purge the water circuit.
S. Ouit		Blow out the evaporator to ensure no liquid is left in the evaporator.

NOTICE

Evaporator Damage!

Failure to follow these instructions could result in damage to the evaporator.

If insufficient concentration or no freeze inhibitor is used, the evaporator water flow must be controlled by the unit controller AND heaters must be used to avoid catastrophic damage to the evaporator due to freezing. It is the responsibility of the installing contractor and/or the customer to ensure that a pump will start when called upon by the chiller controls. Even with water pump control, a power loss of as little as 15 minutes under freezing conditions can damage the evaporator. Only the proper addition of freeze inhibitor or complete drainage of the water circuit can ensure no evaporator damage in the event of a power failure.

Low Evaporator Refrigerant Cutout, Glycol Requirements

The table below shows the low evaporator temperature cutout for different glycol levels. Additional glycol beyond the recommendations will adversely effect unit performance. The unit efficiency will be reduced and the saturated evaporator temperature will be reduced. For some operating conditions this effect can be significant.

additional glycol is used, then use the actual percent glycol to establish the low refrigerant cutout setpoint.

Note: Tables below are not substitutes for full unit simulation for proper prediction of unit performance with specific operating conditions. For information on specific conditions, contact Trane product support.

Table 21. Low evaporator refrigerant temperature cutout (LERTC) and low water temperature cutout (LWTC) — 150 to 330 ton units

	Ethyl	ene Glycol			Propy	lene Glycol	
Glycol Percentage (%)	Solution Freeze Point (° F)	Minimum Recommended LERTC (°F)	Minimum Recommended LWTC (°F)	Glycol Percentage (%)	Solution Freeze Point (° F)	Minimum Recommended LERTC (°F)	Minimum Recommended LWTC (°F)
0	32	28.6	35	0	32	28.6	35
2	31	27.6	34	2	31	27.6	34
4	29.7	26.3	32.7	4	29.9	26.5	32.9
5	29	25.6	32	5	29.3	25.9	32.3
6	28.3	24.9	31.3	6	28.7	25.3	31.7
8	26.9	23.5	29.9	8	27.6	24.2	30.6
10	25.5	22.1	28.5	10	26.4	23	29.4
12	23.9	20.5	26.9	12	25.1	21.7	28.1
14	22.3	18.9	25.3	14	23.8	20.4	26.8
15	21.5	18.1	24.5	15	23.1	19.7	26.1
16	20.6	17.2	23.6	16	22.4	19	25.4
18	18.7	15.3	21.7	18	20.9	17.5	23.9
20	16.8	13.4	19.8	20	19.3	15.9	22.3
22	14.7	11.3	17.7	22	17.6	14.2	20.6
24	12.5	9.1	15.5	24	15.7	12.3	18.7
25	11.4	8	14.4	25	14.8	11.4	17.8
26	10.2	6.8	13.2	26	13.8	10.4	16.8
28	7.7	4.3	10.7	28	11.6	8.2	14.6
30	5.1	1.7	8.1	30	9.3	5.9	12.3
32	2.3	-1.1	5.3	32	6.8	3.4	9.8
34	-0.7	-4.1	5	34	4.1	0.7	7.1
35	-2.3	-5	5	35	2.7	-0.7	5.7
36	-3.9	-5	5	36	1.3	-2.1	5
38	-7.3	-5	5	38	-1.8	-5	5
40	-10.8	-5	5	40	-5.2	-5	5
42	-14.6	-5	5	42	-8.8	-5	5

Table 21. Low evaporator refrigerant temperature cutout (LERTC) and low water temperature cutout (LWTC) — 150 to 330 ton units (continued)

	Ethyl	ene Glycol			Propy	lene Glycol	
Glycol Percentage (%)	Solution Freeze Point (° F)	Minimum Recommended LERTC (°F)	Minimum Recommended LWTC (°F)	Glycol Percentage (%)	Solution Freeze Point (° F)	Minimum Recommended LERTC (°F)	Minimum Recommended LWTC (°F)
44	-18.6	-5	5	44	-12.6	-5	5
45	-20.7	-5	5	45	-14.6	-5	5
46	-22.9	-5	5	46	-16.7	-5	5
48	-27.3	-5	5	48	-21.1	-5	5
50	-32.1	-5	5	50	-25.8	-5	5

Table 22. Low evaporator refrigerant temperature cutout (LERTC) and low water temperature cutout (LWTC) — units larger than 330 tons

	Ethyl	ene Glycol			Propy	lene Glycol	
Glycol Percentage (%)	Solution Freeze Point (° F)	Minimum Recommended LERTC (°F)	Minimum Recommended LWTC (°F)	Glycol Percentage (%)	Solution Freeze Point (° F)	Minimum Recommended LERTC (°F)	Minimum Recommended LWTC (°F)
0	32.0	32.0	37.0	0	32.0	32.0	37.0
2	31.0	29.5	36.0	2	31.0	29.5	36.0
4	29.7	28.2	34.7	4	29.9	28.4	34.9
5	29.0	27.5	34.0	5	29.3	27.8	34.3
6	28.3	26.8	33.3	6	28.7	27.2	33.7
8	26.9	25.4	31.9	8	27.6	26.1	32.6
10	25.5	24.0	30.5	10	26.4	24.9	31.4
12	23.9	22.4	28.9	12	25.1	23.6	30.1
14	22.3	20.8	27.3	14	23.8	22.3	28.8
15	21.5	20.0	26.5	15	23.1	21.6	28.1
16	20.6	19.1	25.6	16	22.4	20.9	27.4
18	18.7	17.2	23.7	18	20.9	19.4	25.9
20	16.8	15.3	21.8	20	19.3	17.8	24.3
22	14.7	13.2	19.7	22	17.6	16.1	22.6
24	12.5	11.0	17.5	24	15.7	14.2	20.7
25	11.4	9.9	16.4	25	14.8	13.3	19.8
26	10.2	8.7	15.2	26	13.8	12.3	18.8
28	7.7	6.2	12.7	28	11.6	10.1	16.6
30	5.1	3.6	10.1	30	9.3	7.8	14.3
32	2.3	0.8	7.3	32	6.8	5.3	11.8
34	-0.7	-2.2	5.0	34	4.1	2.6	9.1
35	-2.3	-3.8	5.0	35	2.7	1.2	7.7
36	-3.9	-5.0	5.0	36	1.3	-0.2	6.3
38	-7.3	-5.0	5.0	38	-1.8	-3.3	5.0
40	-10.8	-5.0	5.0	40	-5.2	-5.0	5.0
42	-14.6	-5.0	5.0	42	-8.8	-5.0	5.0
44	-18.6	-5.0	5.0	44	-12.6	-5.0	5.0
45	-20.7	-5.0	5.0	45	-14.6	-5.0	5.0
46	-22.9	-5.0	5.0	46	-16.7	-5.0	5.0

Table 22. Low evaporator refrigerant temperature cutout (LERTC) and low water temperature cutout (LWTC) — units larger than 330 tons (continued)

Ī		Ethyl	ene Glycol			Propy	lene Glycol	
	Glycol Percentage (%)	Solution Freeze Point (° F)	Minimum Recommended LERTC (°F)	Minimum Recommended LWTC (°F)	Glycol Percentage (%)	Solution Freeze Point (° F)	Minimum Recommended LERTC (°F)	Minimum Recommended LWTC (°F)
Ī	48	-27.3	-5.0	5.0	48	-21.1	-5.0	5.0
	50	-32.1	-5.0	5.0	50	-25.8	-5.0	5.0

Installation Electrical General Recommendations

As you review this manual, keep in mind that:

- All field-installed wiring must conform to National Electric Code (NEC) guidelines, and any applicable state and local codes. Be sure to satisfy proper equipment grounding requirements per NEC.
- Compressor motor and unit electrical data (including motor kW, voltage utilization range, rated load amps) is listed on the chiller nameplate.
- All field-installed wiring must be checked for proper terminations, and for possible shorts or grounds.

Note: Always refer to wiring diagrams shipped with chiller or unit submittal for specific electrical schematic and connection information.

A WARNING

Hazardous Voltage - Pressurized Flammable Fluid!

Failure to follow all electrical safety precautions could result in death or serious injury.

Do not operate compressor without terminal box cover in place.

The motors in the compressors have strong permanent magnet motors and have the capability to generate voltage during situations when the refrigerant charge is being migrated. This potential will be present at the motor terminals and at the output of the variable speed drives in the power panel. Before removing compressor terminal box cover for servicing, or servicing power side of control panel, CLOSE COMPRESSOR DISCHARGE SERVICE VALVE and disconnect all electric power including remote disconnects. Discharge all motor start/run capacitors. Follow lockout/tagout procedures to ensure the power cannot be inadvertently energized. Verify with an appropriate voltmeter that all capacitors have discharged.

The compressor contains hot, pressurized refrigerant. Motor terminals act as a seal against this refrigerant. Care should be taken when servicing NOT to damage or loosen motor terminals.

A WARNING

Hazardous Voltage w/Capacitors!

Failure to disconnect power and discharge capacitors before servicing could result in death or serious injury.

Disconnect all electric power, including remote disconnects and discharge all motor start/run capacitors before servicing. Follow proper lockout/ tagout procedures to ensure the power cannot be inadvertently energized. For variable frequency drives or other energy storing components provided by Trane or others, refer to the appropriate manufacturer's literature for allowable waiting periods for discharge of capacitors. Verify with a CAT III or IV voltmeter rated per NFPA 70E that all capacitors have discharged.

A WARNING

Proper Field Wiring and Grounding Required!

Failure to follow code could result in death or serious injury.

All field wiring MUST be performed by qualified personnel. Improperly installed and grounded field wiring poses FIRE and ELECTROCUTION hazards. To avoid these hazards, you MUST follow requirements for field wiring installation and grounding as described in NEC and your local/state/national electrical codes.

Important: To prevent control malfunctions, do not run low voltage wiring (30 V) in conduit with conductors carrying more than 30 volts.

Units with Nitrogen Charge Option

For units with nitrogen charge option, the unit must NOT have shore power, or unit power applied until the unit has been charged. Applying power will drive EXV valves closed, and will inhibit sufficient vac for unit charging.

Installer-Supplied Components

Customer wiring interface connections are shown in the electrical schematics and connection diagrams that are shipped with the unit. The installer must provide the following components if not ordered with the unit:

Power supply wiring (in conduit) for all field-wired connections.

Installation Electrical

- All control (interconnecting) wiring (in conduit) for field supplied devices.
- · Fused-disconnect switches or circuit breakers.

Power Supply Wiring

A WARNING

Hazardous Voltage w/Capacitors!

Failure to disconnect power and discharge capacitors before servicing could result in death or serious injury.

Disconnect all electric power, including remote disconnects and discharge all motor start/run capacitors before servicing. Follow proper lockout/ tagout procedures to ensure the power cannot be inadvertently energized. For variable frequency drives or other energy storing components provided by Trane or others, refer to the appropriate manufacturer's literature for allowable waiting periods for discharge of capacitors. Verify with a CAT III or IV voltmeter rated per NFPA 70E that all capacitors have discharged.

A WARNING

Proper Field Wiring and Grounding Required!

Failure to follow code could result in death or serious injury.

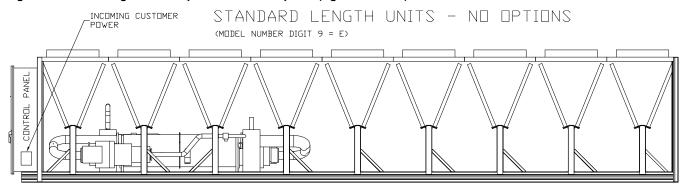
All field wiring MUST be performed by qualified personnel. Improperly installed and grounded field wiring poses FIRE and ELECTROCUTION hazards. To avoid these hazards, you MUST follow requirements for field wiring installation and grounding as described in NEC and your local/state/national electrical codes.

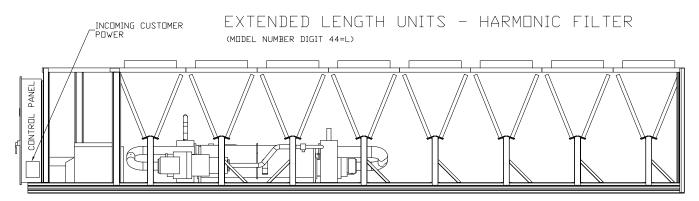
All power supply wiring must be sized and selected accordingly by the project engineer in accordance with NEC Table 310.15(B)(16).

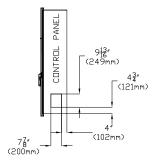
All wiring must comply with local codes and the National Electrical Code. The installing (or electrical) contractor must provide and install the system interconnecting wiring, as well as the power supply wiring. It must be properly sized and equipped with the appropriate overcurrent protection device.

The type and installation location(s) of the overcurrent protection devices must comply with all applicable codes.

Incoming customer power location varies with unit configurations. See figures below.

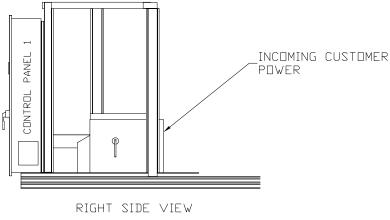

For 150 to 330 ton units:

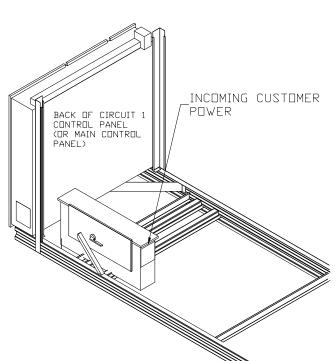

- Control Panel
 - Standard length units (model number digits 9 = C, D, E, G, H or 44 = X)
 - Units with optional harmonic filtration (model number digit 44 = L)
- Transformer: 200, 230, 380, 400, or 575 V units with transformer (model number digit 9 = A, B, C, D, or F)

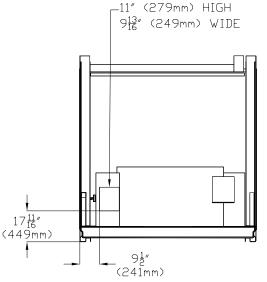


Installation Electrical

Figure 21. Incoming customer power — control panel (right side view)


INCOMING POWER LOCATION




Figure 22. Incoming customer power — transformer

EXTENDED LENGTH UNITS TRANSFORMER

(MDDEL NUMBER DIGIT 9 = A,B,C,D,F)

For units larger than 330 tons:

Units with dual power connections will have different spacing between the connections. Units with a single power connection will shift in regards to the unit extents based on tonnage.

- Dual point power (model number digit 29 = 2): 11V units (model number digits 5-7 = 380, 450)
- Single point power (model number digit 29 = 1): 11V units (model number digits 5-7 = 380, 450)

Cut holes into the location indicated for the appropriatelysized power wiring conduits. The wiring is passed through these conduits and connected to the terminal blocks, or circuit breakers.

For 150 to 330 ton units:

 The high voltage field-provided connections are made through patch plate on the right side of the main control panel or on the right side of the voltage autotransformer panel.

Installation Electrical

 The low voltage connections are made through knockouts provided on the left side of the control panel. Additional grounds may be required for each 115 volt power supply to the unit. Green lugs are provided for 115V customer wiring.

For units larger than 330 tons:

- For dual point power units, the high voltage fieldprovided connections are made through patch plate on the right side of each control panel. Dimensions of incoming power location on each control panel are as shown in Figure 21, p. 64.
- For single point power units, the high voltage field provided connections are made through the right side or rear of the additional enclosure as noted on the enclosure label. See Figure 22, p. 65.
- The low voltage connections are made through knockouts provided on the left side of the circuit one / main control panel.
- Additional grounds may be required for each 115 volt power supply to the unit. Green terminals are provided for 115V customer wiring.

Adaptive Frequency Drive Capacitor Discharge

A WARNING

Hazardous Voltage w/Capacitors!

Failure to disconnect power and discharge capacitors before servicing could result in death or serious injury.

Disconnect all electric power, including remote disconnects and discharge all motor start/run capacitors before servicing. Follow proper lockout/ tagout procedures to ensure the power cannot be inadvertently energized. For variable frequency drives or other energy storing components provided by Trane or others, refer to the appropriate manufacturer's literature for allowable waiting periods for discharge of capacitors. Verify with a CAT III or IV voltmeter rated per NFPA 70E that all capacitors have discharged.

After disconnecting input power, wait twenty minutes for the DC capacitors to discharge before opening the electrical panel. Once the electrical panel is opened, use a noncontact voltage detecting wand to check for any voltage on the input or output terminals of the drive.

Control Power Supply

The unit is equipped with a control power transformer. Additional control power voltage to the unit is not necessary. No other loads should be connected to the control power transformer.

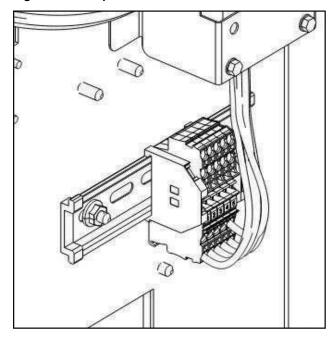
All units are factory-connected for appropriate labeled voltages.

Service Power Connection

The service power connection is a touch-safe procedure for binding the control system and LLIDs. With service power connection, a NEMA 5-15 style extension cord can be used to power Class 2 devices, such as Symbio™ 800, LLIDs, EXVs, and TD7 display, with an external power source, and without line voltage applied to the unit. For the main enclosure (all unit sizes), connect to 1XJ5. For 375 to 550 ton units, an additional connection is required at 2XJ5. Upstream current protection is required for the extension cord power source. Service power connection required voltage is 115V at 60Hz.

Heater Power Supply

The evaporator shell, indirect free cooling water containing components and factory installed pump packages are insulated and protected from ambient temperatures down to -20°F (-29°C) by thermostatically-controlled immersion heaters. If the freeze protection method of "Water pump control AND heaters" is chosen for a non-free cooling unit, see "Freeze Protection," p. 58, the installing contractor needs to supply 115V 60Hz single phase circuit to terminals 1X8-1, 2, and 5. These terminals are located behind the low voltage control panel on the inside wall of the main enclosure. See Figure 23, p. 67.


For units with model number digit 29 = 3, this electrical connection is already made by the factory wiring. See Table 23, p. 67 for heater summary.

For evaporators, whenever the water temperature drops to approximately 37°F (2.8°C), the thermostat energizes the heaters.

For the indirect free cooling water containing components and factory installed pump packages, whenever the water temperature drops to approximately 37°F (2.8°C) and there is not a pump command present the thermostat energizes the heaters.

Figure 23. Evaporator heater view

NOTICE

Evaporator Damage!

Failure to follow instructions below could result in evaporator damage.

A qualified technician must confirm operation of the thermostat. Control panel main processor does not verify thermostat operation.

Table 23. Factory installed water heater summary

Unit Ciro (tono)	Water	boxes
Unit Size (tons)	Supply	Return
1-	-pass Evaporator	
Units larger than 300 tons	400W (Qty 2)	400W (Qty 2)
2-	pass Evaporator	
150 to 165	400W	400W
180 to 200	400W (Qty 2)	400W
225 to 330	600W	600W
Units larger than 330 tons	400W (Qty 2)	400W (Qty 2)
3-	pass Evaporator	
All sizes	400W (Qty 2)	400W
Factory In	stalled Pump Package	(a)
275 to 300	300W (Qty 4)	1200W

⁽a) These heaters are in addition to the evaporator waterbox heaters.

Chilled Water Pump Control

NOTICE

Evaporator Damage!

If the microprocessor calls for a pump to start and water does not flow, the evaporator may be damaged catastrophically.

It is the responsibility of the installing contractor and/ or the customer to ensure that a pump will always be running when called upon by the chiller controls.

An evaporator water pump output relay's normally-open contact closes to start the evaporator water pump when the chiller is given a signal to go into the Auto mode of operation from any source. The contact is opened to turn off the pump in the event of most machine level diagnostics to prevent the build up of pump heat.

The relay output is required to operate the Evaporator Water Pump (EWP) contactor. The relay's contacts are compatible with 115/240 VAC control circuits. See Programmable Relays section for rating details. Normally, the EWP relay follows the AUTO mode of the chiller. Whenever the chiller has no diagnostics and is in the AUTO mode, regardless of where the auto command is coming from, the relay is energized and the normally-open contact is closed. When the chiller exits the AUTO mode, the relay's normally-open contact is timed to open in an adjustable (using Tracer® TU service tool) 0 to 30 minutes. The non- AUTO modes in which the pump is stopped, include Reset, Stop, External Stop, Remote Display Stop, Stopped by Tracer®, Start Inhibited by Low Ambient Temp, and Ice Building complete.

Table 24. Pump relay operation

Chiller Mode	Relay Operation
Auto	Instant Close
Ice Building	Instant Close
Tracer® Override	Close
Stop	Timed Open
Ice Complete	Instant Open
Diagnostics	Instant Operation(a)
Chiller Shutdown Diagnostics (except freeze protection)	Instant Open
Freeze Protection related chiller shutdown diagnostics	Initially: Remain Closed Then: Delayed/Dependent Open
Chiller Off Cycle Freeze Diagnostics	Instant Close – Dependent Open

⁽a) Operation can be instant open or instant close, depending on diagnostic.

When going from Stop to Auto, the EWP relay is energized immediately. If evaporator water flow is not established in 20 minutes (for normal transition) or 4 minutes, 15 seconds (for pump commanded ON due to an override safety), the unit controller de-energizes the EWP relay and generates a non-latching diagnostic. If flow returns (e.g. someone else

Installation Electrical

is controlling the pump), the diagnostic is cleared, the EWP is re-energized, and normal control resumed.

If evaporator water flow is lost once it had been established, the EWP relay remains energized and a non-latching diagnostic is generated. If flow returns, the diagnostic is cleared and the chiller returns to normal operation.

In general, when there is either a non-latching or latching diagnostic, the EWP relay is turned off as though there was a zero time delay. Exceptions whereby the relay continues to be energized occur with:

 Low Chilled Water Temperature diagnostic (nonlatching unless also accompanied by an Evap Leaving Water Temperature Sensor Diagnostic)

OR

 Interrupt Failure —AFDxA diagnostic where x is either 1 or 2 to indicate which drive is affected), in which a compressor continues to draw current even after commanded to have shutdown.

OR

 Loss of Evaporator Water Flow diagnostic (nonlatching) and the unit is in the AUTO mode, after initially having proven evaporator water flow.

Evaporator Pump Package

When optional evaporator pump package is installed, Evaporator Pump Control is set to Single Pump Variable Speed in Tracer® TU. Additional I/Os are required for Symbio™ 800 to control and monitor the pump VFD. Symbio 800 monitors the pump speed, fault, and running status. Two options selectable in Tracer TU are available for evaporator pump speed control:

- Direct Pump Speed Control (factory default): Uses Evap Water Pump Speed setpoint configuration from 0 to 100 percent.
- Water Flow Control: Uses Evap Water Flow Rate setpoint configuration from 50 to 1200 gpm.

For each speed control option, speed or water flow setpoints are accessible through the AdaptiView™ Display, Tracer TU, and building automation system.

Note: For the Water Flow Control option, evaporator water flow measurement must be installed.

Evaporator Flow Measurement

Fluid flow through the chiller evaporator is calculated by sensing the pressure drop across its heat exchanger. The heat exchanger pressure drop is determined by measuring the pressure difference between entering and leaving pressures in the evaporator water box. Using this sensed pressure drop, along with coefficients specific to each heat exchanger, the fluid flow rate through the evaporator is computed and displayed at the human interface. Once the flow rate through the evaporator is known, chiller capacity

can be determined. The differential water pressure range is configurable from 0 to 50 psid.

Three configurable water flow measurement types are available (selectable in Tracer® TU):

- Differential Pressure (4-20mA input to Trane LLID)
- Flow Meter (4-20mA input to Trane LLID)
- Dual Pressure Sensors (entering and leaving pressure transducer Trane LLIDs)

Flow calibration points are factory programmed. Contact technical support for flows and pressure drops used for flow calibration if Symbio™ 800 required reprogramming in the field. These setpoints are accessible in Tracer TU.

Programmable Relays

An optional programmable four relay LLID provides hard-wired interlock of certain events or states of the chiller, selected from a list of likely needs, as shown in the field wiring diagram. The relay contacts are single-pole-double-throw (SPDT) and are suitable for use with 120VAC at 7.2A resistive, 2.88A pilot duty, and 1/3 HP (7.2A) or with 240VAC at 5A general purpose duty.

The list of events/states that can be assigned to the programmable relays can be found in the following table. The relay will be energized when the event/state occurs.

Table 25. Alarm and status relay output configurations

	Description
Alarm (Latching)	This output is true whenever there is any active latching shutdown diagnostic that targets the Unit, Circuit, or any of the Compressors on a circuit.
Alarm (Non-Latching)	This output is true whenever there is any active non-latching shutdown diagnostic that targets the Unit, Circuit, or any of the Compressors on a circuit.
Alarm	This output is true whenever there is any active latching or non-latching shutdown diagnostic that targets the Unit, Circuit, or any of the Compressors on a circuit.
Alarm Ckt 1	This output is true whenever there is any active latching or non-latching shutdown diagnostic that targets Circuit 1, or any of the Compressors on Circuit 1.
Alarm Ckt 2	This output is true whenever there is any active latching or non-latching shutdown diagnostic that targets Circuit 2, or any of the Compressors on Circuit 2.
Unit Limit Mode	This output is true whenever a circuit on the unit has been running in one of the limit modes continuously for the Limit Relay debounce time. A given limit or overlapping of different limits must be in effect continuously for the debounce time prior to the output becoming true. It will become false if no limits are present for the debounce time.
Compressor Running	The output is true whenever any compressor is running.
Circuit 1 Running	The output is true whenever any compressor of Circuit 1 is running.

Table 25. Alarm and status relay output configurations (continued)

	· · · · · · · · · · · · · · · · · · ·
	Description
Circuit 2 Running	The output is true whenever any compressor of Circuit 2 is running.
Maximum Capacity	The output is true whenever the unit has reached maximum capacity continuously for the Max Capacity Relay debounce time. The output is false when the unit is not at maximum capacity continuously for the filter debounce time.
Evaporator Water Freeze Avoidance Request	This relay output is energized any time either the Low Evaporator Water Temperature – Unit Off or the Low Evaporator Temperature Ckt x – Unit Off diagnostics are active. This relay is intended for use as an external interlock for a field engineered and provided solution to mitigate the freeze danger implied by these diagnostics. Generally, this would be used in cases where operation of the evaporator water pump is unacceptable due to the system constraints, (i.e. such as mixing unconditioned warm water with controlled supply water as provided by other parallel chillers. The relay's output can provide the method to close bypass valves so the circulation becomes local to the evap and excludes the load, or can be used to defeat the evap pump override entirely while initiating an independent source of heat / flow to the evap.
Free-Cooling Status	The output is true (closed) whenever Free Cooling is active and the capacity is > 0%. The output is false (open) whenever Free Cooling is inactive or capacity = 0%. Note: Free-cooling option is not available on all sizes.
Free-Cooling Maximum Capacity	The output is true (closed) whenever Free Cooling capacity – 100%. The output is false (open) whenever Free Cooling is 100% capacity. Note: Free-cooling option is not available on all sizes.

Relay Assignments Using Tracer® TU

Tracer®TU Service Tool is used to install the Programmable Relay Option package and assign any of the above list of events or status to each of the four relays provided with the option. (See Tracer® TU section of Controls chapter for more information on this service tool.) The relays to be programmed are referred to by the relay's terminal numbers on the Programmable Unit Status LLID board.

The default assignments for the four available relays of the Programmable Relay option are show in the table below.

Table 26. Default assignments

Relay	Assignment	
Relay 1 Terminals J2-1,2,3:	Unit Limit Mode	
Relay 2 Terminals J2-4,5,6:	Maximum Capacity	

Table 26. Default assignments (continued)

Relay	Assignment	
Relay 3 Terminals J2 - 7,8,9:	Compressor Running	
Relay 4 Terminals J2 -10,11,12:	Alarm	

If any of the Alarm/Status relays are used, provide electrical power, 115 VAC with fused-disconnect to the panel and wire through the appropriate relays (terminals on the LLID board). Provide wiring (switched hot, neutral, and ground connections) to the remote annunciation devices. Do not use power from the chiller's control panel transformer to power these remote devices. See the field wiring diagrams which are shipped with the unit.

Low Voltage Wiring

The remote devices described below require low voltage wiring. All wiring between these remote input devices and the control panel must be made with shielded, twisted pair conductors. Ground the shielding only at the panel.

Important: The remote devices described in this section require low voltage wiring. All wiring between these remote input devices and the control Panel must be made with shielded, twisted pair conductors. Ground the shielding only at the panel.

Emergency Stop

The unit controller provides auxiliary control for a customer-specified or customer-installed latching trip out. When this customer-furnished remote contact is provided, the chiller will run normally when the contact is closed. When the contact opens, the unit will trip on a latching diagnostic. This latched condition requires either a manual reset at the front of the control panel or a power cycle of the unit controller to clear.

Connect low voltage leads to Emergency Stop terminal strip locations on External Auto-Stop and Emergency Stop Inputs LLID board. Refer to the field diagrams that are shipped with the unit.

Silver or gold-plated contacts are recommended. These customer-furnished contacts must be compatible with 24 VDC, 12 mA resistive load.

External Auto/Stop

If the unit requires the external Auto/Stop function, the installer must provide leads from the remote contacts to the External Auto-Stop terminals of the External Auto-Stop and Emergency Stop Inputs LLID board in on the control panel.

The chiller will run normally when the contacts are closed. When either contact opens, the compressor(s), if operating, will go to the RUN:UNLOAD operating mode and cycle off. Unit operation will be inhibited. Closure of the contacts will permit the unit to return to normal operation.

Installation Electrical

Field-supplied contacts for all low voltage connections must be compatible with dry circuit 24 VDC for a 12 mA resistive load. Refer to the field diagrams that are shipped with the unit.

External Circuit Lockout – Circuit #1 and #2

The unit controller provides for an auxiliary input of a customer specified or installed contact closure, for individual inhibition of the operation of either or both circuits. If the contact is closed, the respective refrigerant circuit will not operate.

Upon contact opening, the respective refrigerant circuit will run normally. This feature is used to restrict total chiller operation, e.g. during emergency generator operations.

Connections to External Circuit Lockout Inputs LLID inputs are shown in the field diagrams that are shipped with the unit.

These customer-supplied contact closures must be compatible with 24 VDC, 12 mA resistive load. Silver or gold plated contacts are recommended

Ice Building Option

The unit controller provides auxiliary control for a customer-specified or customer-installed contact closure for ice building if configured and enabled. This output is known as the Ice Building Status Relay. The normally open contact will be closed when ice building is in progress and open when ice building has been normally terminated either through Ice Termination setpoint being reached or removal of the Ice Building command. This output is for use with the ice storage system equipment or controls (provided by others) to signal the system changes required as the chiller mode changes from **ice building** to **ice complete**. When Ice Making Control contact is provided, the chiller runs normally when the contact is open.

The unit controller accepts either an isolated contact closure (External Ice Building command) or a Remote Communicated input (Tracer[®]) to initiate and command the Ice Building mode.

The unit controller also provides a **Front Panel Ice Termination Setpoint**, settable through Tracer[®] TU, and adjustable from 20 to 31°F (-6.7 to -0.5°C) in at least 1°F (1°C) increments.

Note: When in the ice building mode, and the evaporator entering water temperature drops below the ice termination setpoint, the chiller terminates the ice building mode and changes to the ice building complete mode.

NOTICE

Equipment Damage!

Failure to follow instructions could result in damage to system components.

Freeze inhibitor must be adequate for the leaving water temperature.

Tracer[®] TU must also be used to enable or disable Ice Machine Control. This setting does not prevent the Tracer[®] from commanding Ice Building mode.

On contact closure, the unit controller will initiate an ice building mode, in which the unit runs fully loaded at all times. Ice building is terminated either by opening the contact or based on the entering evaporator water temperature. The unit controller does not permit the ice building mode to be reentered until the unit has been switched out of ice building mode (open Ice Making Control contacts) and then switched back into ice building mode (close Ice Making Control contacts.)

In ice building, all limits (freeze avoidance, evaporator, condenser, current) will be ignored. All safeties will be enforced.

If, while in ice building mode, the unit gets down to the freeze state setting (water or refrigerant), the unit will shut down on a manually resettable diagnostic, just as in normal operation.

Connect leads from customer supplied 7S6 to J2-3/4 on 1KF34. Refer to the field diagrams which are shipped with the unit.

Silver or gold-plated contacts are recommended. These customer-furnished contacts must be compatible with 24 VDC, 12 mA resistive load.

External Chilled Water Setpoint (ECWS) Option

The unit controller provides inputs that accept either 4-20 mA or 2-10 VDC signals to set the external chilled water setpoint (ECWS). This is not a reset function. The input defines the setpoint. This input is primarily used with generic building automation systems (BAS). The chilled water setpoint set via the Tracer® AdaptiView™ TD7 or through digital communication. The arbitration of the various chilled water setpoint sources is described in the flow charts at the end of the section.

The chilled water setpoint may be changed from a remote location by sending either a 2-10 VDC or 4-20 mA signal to the External Demand Limit and Chilled Water Setpoint Inputs LLID board, terminals 5 and 6 LLID. 2-10 VDC and 4-20 mA each correspond to a 10 to 65°F (-12 to 18°C) external chilled water setpoint.

The following equations apply:

Voltage Signal			
As generated from external source	VDC=0.1455*(ECWS) + 0.5454		
As processed by controller	ECWS=6.875*(VDC) - 3.75		
Current Signal			
As generated from external source	mA=0.2909(ECWS) + 1.0909		
As processed by controller	ECWS=3.4375(mA) - 3.75		

If the ECWS input develops an open or short, the LLID will report either a very high or very low value back to the main processor. This will generate an informational diagnostic and the unit will default to using the front Panel (TD7) Chilled Water Setpoint.

Tracer® TU Service Tool is used to set the input signal type from the factory default of 2-10 VDC to that of 4-20 mA. Tracer® TU is also used to install or remove the External Chilled Water Setpoint option as well as a means to enable and disable ECWS.

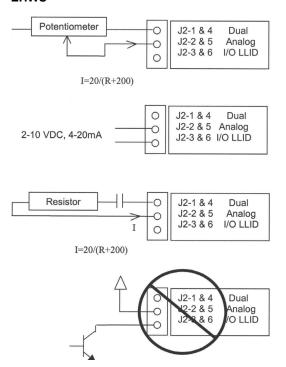
External Demand Limit Setpoint (EDLS) Option

Similar to the above, the controller also provides an optional External Demand Limit Setpoint (EDLS) that will accept either a 2 to 10 Vdc (default) or a 4 to 20 mA signal. The demand limit can also be set via the operator display or through digital communication with Tracer® SC+ building automation system or third party building automation system. The arbitration of the various sources of demand limit is described in the flow charts at the end of this section. The EDLS may be changed from a remote location by hooking up the analog input signal to the board 1A7, J2-2 and 3. Refer to the following paragraph on Analog Input Signal Wiring Details. The following equations apply for EDLS if using default minimum 40 percent and maximum 120 percent.

Voltage Signal			
As generated from external source	VDC=0.1 (%) -2.0		
As processed by the unit controller	%=10*(VDC)+20		
Current Signal			
As generated from external source	mal mA=0.2 (%) -4.0		
As processed by the unit controller	%=5*(mA)+20		

If the EDLS input develops an open or short, the LLID will report either a very high or very low value back to the main processor. This will generate an informational diagnostic and the unit will default to using the Front Panel Demand Limit Setpoint.

Tracer[®] TU must be used to set the input signal type from the factory default of 2 to 10 Vdc to that of 4 to 20 mA current. Tracer TU must be also be used to install or remove the External Demand Limit Setpoint Option for field installation, or can be used to enable or disable the feature (if installed).


EDLS and ECWS Analog Input Signal Wiring Details:

Both the ECWS and EDLS can be connected and setup as either a 2 to 10 Vdc (factory default), 4 to 20 mA, or resistance input (also a form of 4 to 20mA) as indicated below. Depending on the type to be used, Tracer TU must be used to configure the LLID and the controller for the

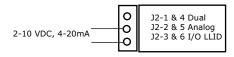
proper input type that is being used. This is accomplished by a setting change on the Custom Tab of the Configuration View within Tracer TU.

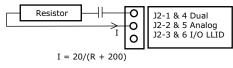
The J2-3 and J2-6 terminal is chassis grounded and terminal J2-1 and J2-4 can be used to source 12 Vdc. The EDLS uses terminals J2-2 and J2-3. ECWS uses terminals J2-5 and J2-6. Both inputs are only compatible with high-side current sources.

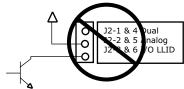
Figure 24. Wiring examples for EDLS and ECWS/ EHWS

EDLS and ECWS Analog Input Signal Wiring

Both the ECWS and EDLS can be connected and setup as either a 2–10 VDC (factory default), 4-20 mA, or resistance input (also a form of 4–20mA) as indicated below. Depending on the type to be used, the Tracer® TU Service Tool must be used to configure the LLID and the main processor for the proper input type that is being used. This is accomplished by a setting change on the Custom Tab of the Configuration View within Tracer® TU.


Important: For proper unit operation, BOTH the EDLS and ECWS settings MUST be the same (2-10 VDC or 4-20mA), even if only one input is to be used.


The J2–3 and J2–6 terminal is chassis grounded and terminal J2–1 and J2–4 can be used to source 12 VDC. The EDLS uses terminals J2–2 and J2–3. ECWS uses terminals J2–5 and J2–6. Both inputs are only compatible with highside current sources.



Installation Electrical

Figure 25. Wiring examples for EDLS and ECWS

Chilled Water Reset (CWR)

The unit controller resets the chilled water temperature set point based on either return water temperature, or outdoor air temperature. Return Reset is standard, Outdoor Reset is optional.

The following shall be selectable:

- One of three Reset types:None, Return Water Temperature Reset, Outdoor Air Temperature Reset, or Constant Return Water Temperature Reset.
- Reset Ratio setpoints: For outdoor air temperature reset there shall be both positive and negative reset ratios.
- Start Reset Setpoints.
- · Maximum Reset setpints.

The equations for each type of reset are as follows:

Return

CWS' = CWS + RATIO (START RESET - (TWE - TWL))
and CWS' > or = CWS

and CWS' - CWS < or = Maximum Reset

Outdoor

CWS' = CWS + RATIO * (START RESET - TOD)

and CWS' > or = CWS

and CWS' - CWS < or = Maximum Reset

where

- CWS' is the new chilled water set point or the reset CWS
- CWS is the active chilled water set point before any reset has occurred, e.g. normally Front Panel, Tracer[®], or ECWS
- RESET RATIO is a user adjustable gain
- START RESET is a user adjustable reference
- TOD is the outdoor temperature
- TWE is entering evap. water temperature

- TWL is leaving evap. water temperature
- MAXIMUM RESET is a user adjustable limit providing the maximum amount of reset. For all types of reset, CWS' - CWS < or = Maximum Reset.

Reset Type	Range Reset Ratio	Start Reset	Max Reset	Incre- ment	Factory Default
Return	10 to 120%	4 to 30°F (2.2 to 16.7 °C)	0 to 20°F (0.0 to 11.1°C)	1%	50%
Outdoor	-80 to 80%	50 to 130°F (10 to 54.4°C)	0 to 20°F (0.0 to 11.1°C)	1%	10%

In addition to Return and Outdoor Reset, the MP provides a menu item for the operator to select a Constant Return Reset. Constant Return Reset will reset the leaving water temperature set point so as to provide a constant entering water temperature. The Constant Return Reset equation is the same as the Return Reset equation except on selection of Constant Return Reset, the MP will automatically set Ratio, Start Reset, and Maximum Reset to the following:

- RATIO = 100%
- START RESET = Design Delta Temp.
- MAXIMUM RESET = Design Delta Temp.

The equation for Constant Return is then as follows:

- CWS' = CWS + 100% (Design Delta Temp. (TWE -TWL)) and CWS' > or = CWS
- and CWS' CWS < or = Maximum Reset

When any type of CWR is enabled, the MP will step the Active CWS toward the desired CWS' (based on the above equations and setup parameters) at a rate of 1 degree F every 5 minutes until the Active CWS equals the desired CWS'. This applies when the chiller is running.

When the chiller is not running, CWS is reset immediately (within one minute) for Return Reset and at a rate of 1 degree F every 5 minutes for Outdoor Reset. The chiller will start at the Differential to Start value above a fully reset CWS or CWS' for both Return and Outdoor Reset.

Building Automation Systems

BACnet[®] Building Automation Control Network

The BACnet control network for Symbio™ 800 expands communications from the unit controls network to the Tracer® Ensemble™ or Tracer® SC+ building automation system (BAS) or third party building automation system. Utilizing BACnet, the BAS allows external setpoint and configuration adjustment and monitoring of status and diagnostics. The Symbio 800 utilizes the BACnet defined TP protocol as defined in ASHRAE standard 135-2004. This controller works in standalone mode, with Tracer

Installation Electrical

Ensemble, Tracer SC+ or when connected to a third party building automation system that supports BACnet.

Modbus® Automation Control Network

Allows the user to easily interface with Modbus RTU communication protocol via a single twisted pair wiring or Modbus TCP over Ethernet from the Symbio $^{\text{TM}}$ 800 controller to a factory installed device.

LonTalk® Building Automation Systems

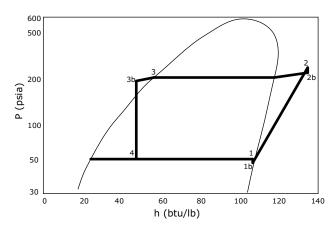
The LonTalk communication protocol for the Symbio[™] 800 controller expands communications from the unit controls network to a Tracer[®] Ensemble [™] building automation system or third party building automation system. Utilizing

LonTalk, the BAS allows external setpoint and configuration adjustment and monitoring of status and diagnostics. The Symbio 800 utilizes an FTT-10A free topology transceiver, which supports non-polarity sensitive, free topology wiring—which in turn allows the system installer to utilize star, bus, and loop architectures. This controller works in standalone mode, peer-to-peer with one or more other units, or when connected to a Tracer Ensemble, Tracer SC+, or a third party building automation system that supports LonTalk.

Note: An optional module is required for Symbio 800 support of LonTalk. See Tracer[®] USB LonTalk Module Installation Instructions (BAS-SVN138*-EN).

Operating Principles

This section describes the overall operating principles of the Ascend™ ACR chiller with Symbio™ controls.


Refrigeration Circuits

Each unit has two refrigerant circuits, with a minimum of one rotary screw compressor per circuit. Each refrigerant circuit includes compressor suction and discharge service valves, liquid line shutoff valve, removable core filter, liquid line sight glass with moisture indicator, charging port and an electronic expansion valve. Fully modulating compressors and electronic expansion valves provide variable capacity modulation over the entire operating range. Lower condensing temperatures and higher suction temperatures along with more efficient compressors and fans result in the premium efficiency level.

Refrigeration Cycle

The refrigeration cycle of the chiller is represented in the pressure enthalpy diagram shown in figure below. Key state points are indicated on the figure. The cycle for the full load AHRI design point is represented in the plot.

Figure 26. Pressure-enthalpy (P-h) diagram

The chiller uses a shell and tube evaporator design with refrigerant evaporating on the shell side and water flowing inside tubes having enhanced surfaces (states 4 to 1). The suction lines are designed to minimize pressure drop. (states 1 to 1b). The compressor is a twin-rotor helical rotary compressor designed similarly to the compressors offered in other Trane Screw Compressor Based Chillers (states 1b to 2). The discharge lines include a highly efficient oil separation system that removes 99.8% of the oil from the refrigerant stream going to the heat exchangers (states 2 to 2b). De-superheating, condensing and subcooling is accomplished in a fin and tube or microchannel air cooled heat exchanger where refrigerant is condensed in the tube (states 2b to 3b). Refrigerant flow through the system is balanced by an electronic expansion valve (states 3b to 4).

Refrigerant

The Ascend™ ACR chiller uses environmentally friendly R-513A. Trane believes responsible refrigerant practices are important to the environment, our customers, and the air conditioning industry. All technicians who handle refrigerants must be certified. The Federal Clean Air Act (Section 608) sets forth the requirements for handling, reclaiming, recovering and recycling of certain refrigerants and the equipment that is used in these service procedures. In addition, some states or municipalities may have additional requirements that must also be adhered to for responsible management of refrigerants. Know the applicable laws and follow them.

Refrigerant R-513A is a medium pressure refrigerant. It may not be used in any condition that would cause the chiller to operate in a vacuum without a purge system. Ascend $^{\text{TM}}$ ACR is not equipped with a purge system. Therefore, the chiller may not be operated in a condition that would result in a saturated condition in the chiller of -20°F (-29°C) or lower.

Refrigerant R-513A requires the use of specific POE oils as designated on the unit nameplate.

Important: Use only R-513A refrigerant and Trane OIL0075E / OIL00386 (5 gallon).

Compressor and Oil System

Each rotary screw compressor is semi-hermetic, direct drive with capacity control via a variable speed drive, rolling element bearings, differential refrigerant pressure oil pump and oil heater. To maximize efficiency, the variable Vi (variable pressure ratio) compressor is controlled to one of two possible states depending on the chiller system operating point and to provide ease of starting. The motor is a suction gas cooled, hermetically sealed, permanent magnet motor. An oil separator is provided separately from the compressor. Oil filtration is provided internal to the compressor. Check valves in the compressor discharge and lube oil system are also provided.

Condenser and Fans

Air-cooled microchannel condenser coils use all Long Life Alloy aluminum brazed fin construction. The condenser will have an integral subcooling circuit. The maximum allowable working pressure of the condenser is 350 psig (2412 kPa).

The condenser coil has an integral subcooling circuit. Condensers are factory proof tested and leak tested.

Condenser fans are direct-drive vertical discharge. The condenser fan motors are permanent magnet motors with integrated drive to provide variable speed fan control for all fans. Fans are designed with permanently lubricated ball bearings, internal temperature and current overload protection, and customer fault feedback as a standard

product offering. The fan impeller is a bladed-shrouded fan made from heavy-duty molded plastic.

Standard units will start and operate between 32 to 105°F (0 to 40°C) ambient.

The unit controller calculates optimum fan speed for maximum efficiency based on compressor load and outdoor air, resulting in high IPLV values

Evaporator

Evaporators are configured as follows:

- Tube-in-shell heat exchanger design, constructed from carbon steel shells and tubesheets.
- Internally and externally finned seamless copper tubes are mechanically expanded into the tube sheets.
- Designed, tested, and marked in accordance with the ASME Boiler and Pressure Vessel Code for a refrigerant side working pressure of 200 psig.
- · Water side working pressure 150 psig.
- Water connection design:
 - Standard: Grooved for Victaulic style pipe couplings.
 - Optional: Flange style connections.

- Waterboxes include vent, drain. and fittings for temperature control sensors. Available pass configurations:
 - 150 to 330 ton units: 2 or 3-pass
 - Units larger than 330 tons: 1 or 2-pass
- Insulated (3/4 inch closed cell).
- Evaporator water heaters with thermostat are provided to protect the evaporator from freezing at ambient temperatures down to -20°F (-29°C).
- Factory installed flow switch is installed on the supply water box in the evaporator inlet connection.

Free-Cooling Operating Modes

The advantage of optional chiller integrated free-cooling is the ability to utilize outdoor air temperatures to assist in making chilled water when appropriate. The unit controls direct flow through or around the free-cooling coils to optimize chiller efficiency. Determining the operating mode depends on four temperatures:

- · Ambient air temperature
- · Evaporator entering fluid temperature
- Evaporator leaving fluid temperature
- · Chilled water setpoint

Table 27. Free-cooling operation

Component	Mechanical Cooling	Combined Mechanical	Free-Cooling Only		
Component	Mechanical Cooling	and Free-Cooling	Fan Control	Valve Control	
Ambient Air	Greater than Fluid	Less than Fluid	Less than Fluid	Less than Fluid	
Compressors	On — Modulating	On — Modulating	Off	Off	
Fans	On — Modulating	On — Modulating	Modulating	15%	
Free-Cooling Coil Flow	Off	100%	100%	Modulating	

Mechanical Cooling Mode

In this operating mode, ambient temperature is the same or higher than the temperature of the fluid entering the evaporator. Free-cooling coils are bypassed, compressors are running, and the controls modulate compressors and fans to meet cooling load at optimum efficiency.

Combined Mechanical and Free-Cooling Mode

If the ambient temperature is below the evaporator entering fluid temperature, and free-cooling only cannot satisfy the load, the controls modulate compressors and fans to meet the remaining cooling load at optimum efficiency. Fluid will continue to flow through free-cooling coils, reducing the evaporator entering fluid temperature.

Note: Depending on load, one or both circuits may engage mechanical cooling.

Free-Cooling Only Mode

In this operating mode, free-cooling is enabled and capable of meeting the cooling load without the need for mechanical cooling. As ambient falls below the temperature at which full load capacity is provided by free cooling only (or as the load drops), capacity control is accomplished by fan control and control valve modulation. If ambient (or load) continues to drop, valve control provides modulation between free-cooling coils.

Controls

Overview

Ascend™ chillers utilize the following control/interface components:

- Symbio[™] 800 Controller
- Tracer® AdaptiView™ TD-7 Operator Interface

Symbio™ 800

The Symbio 800 controller is a factory-installed, application specific and programmable controller designed to control chillers and large packaged HVAC equipment. A 7–inch user interface features a touch-sensitive color screen that provides facility managers at-a-glance operating status, performance monitoring, scheduling changes, and operating adjustments. Other advanced features include automated controller back-up, and optional features such as secure remote connectivity, wireless building communications, mobile device connectivity, and custom programming with an expandable I/O.

For more information, see Symbio™ 800 Controller Installation, Operation, and Maintenance (BAS-SVX080*-EN).

AdaptiView™ Display

Information is tailored to operators, service technicians, and owners. When operating a chiller, specific information is needed on a day-to-day basis—setpoints, limits, diagnostic information, and reports. This information is provided through the AdaptiView™ display. Logically organized groups of information— chiller modes of operation, active diagnostics, settings and reports put information conveniently at your fingertips.

For more information, see AdaptiView™ Display with Symbio™ Controls Ascend™ Air-Cooled Chiller Model ACR Series C User Guide (AC-SVU003*-EN).

Noise Reduction Mode

When InvisiSound™ Standard with Noise Reduction, InvisiSound Superior with Noise Reduction or InvisiSound Ultimate option is selected, noise reduction mode can be enabled to adjust fan speed and lower maximum sound levels. Maximum fan speed is configurable form 600 to 1000 rpm (950 rpm factory default). When noise reduction is enaabled, an additional fan speed clamp setpoint from 70 to 100 percent of maximum fan speed (80 percent factory default) is available. The noise reduction feature is accessible through the operator display, external input, or building automation system. When accessing at Tracer® AdaptiView™ display, access is found on the Settings screen.

- Set the Front Panel Noise Reduction Request to ON.
- Adjust the Noise Reduction Condenser Fan Speed Clamp to desired value.

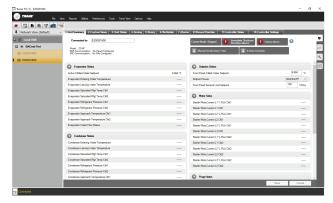
Tracer® TU

The AdaptiView TD-7 operator interface allows for daily operational tasks and setpoint changes. However, to adequately service chillers, Tracer® TU service tool is required. (Non-Trane personnel, contact your local Trane office for software purchase information.) Tracer TU adds a level of sophistication that improves service technician effectiveness and minimizes chiller downtime. This portable PC-based service-tool software supports service and maintenance tasks, and is required for software upgrades, configuration changes and major service tasks.

Tracer TU serves as a common interface to all Trane chillers, and will customize itself based on the properties of the chiller with which it is communicating. Thus, the service technician learns only one service interface.

The panel bus is easy to troubleshoot using LED sensor verification. Only the defective device is replaced. Tracer TU can communicate with individual devices or groups of devices.

All chiller status, machine configuration settings, customizable limits, and up to 100 active or historic diagnostics are displayed through the service-tool software interface


LEDs and their respective Tracer TU indicators visually confirm the availability of each connected sensor, relay, and actuator.

Tracer TU is designed to run on a customer's laptop, connected to the Symbio™ 800 control panel with a USB cable. See *Tracer® TU Service Tool User Guide* (BAS-SVU046*-EN) for laptop requirements.

Notes:

- Tracer TU is designed and validated for this minimum laptop configuration. Any variation from this configuration may have different results. Therefore, support for Tracer TU is limited to only those laptops with the configuration previously specified.
- For more information, see Tracer[®] TU Service Tool User Guide (BAS-SVU046*-EN).

Figure 27. Tracer TU

Integrated Rapid Restart

Chiller controls are designed and engineered for Rapid Restart[™]. In the event of a power interruption, the chiller will start a compressor before the front panel display is fully powered up, eliminating the need for an uninterrupted power supply (UPS). Advanced features and functionality are built into the chillers. Bringing a chiller back online

rapidly after a loss of power is critical to operations in mission critical environments, which demand the highest levels of reliability.

Under optimal conditions, it can restart in as little as 45 seconds with no need for uninterrupted power supply (UPS). An 80 percent cooling load can be achieved in less than 2.5 minutes after power restoration.

Pre-Start

Upon completion of installation, complete the Installation Completion Check Sheet and Request for Trane Service checklist in .

Important: Start-up must be performed by Trane or an agent of Trane specifically authorized to perform start-up and warranty of Trane products. Contractor shall provide Trane (or an agent of Trane specifically authorized to perform start-up) with notice of the scheduled start-up at least two weeks prior to the scheduled start-up.

Important: Initial unit commissioning start-up must be performed by Trane or an agent of Trane specifically authorized to perform start-up and warranty of Trane products. Contractor shall provide Trane (or an agent of Trane specifically authorized to perform start-up) with notice of the scheduled start-up at least two weeks prior to the scheduled start-up.

Unit Start-Up

NOTICE

Equipment Damage!

Failure to follow instructions could result in equipment damage.

Ensure that the compressor and oil sump heaters have been operating properly for a minimum of 24 hours before starting.

NOTICE

Equipment Damage!

Snow, ice, or debris build up on fans could cause excessive imbalance and equipment damage.
Clear fans of build up prior to machine start-up.

If the water flow is lower than Min. flow Cooling in the General Data / for water coolant, set Heating Low Ambient Lockout Temperature to 32°F in TD-7. If required, once the system has been operating for approximately 30 minutes and has become stabilized, complete the remaining start-up procedures, as follows:

- Check the evaporator refrigerant pressure and the condenser refrigerant pressure under Reports on the AdaptiView™ TD-7 or Tracer® TU. The pressures are referenced to sea level (14.6960 psia).
- 2. Check the EXV sight glasses after sufficient time has elapsed to stabilize the chiller. The refrigerant flow past the sight glasses should be clear. Bubbles in the refrigerant indicate either low refrigerant charge or excessive pressure drop in the liquid line or a stuck open expansion valve. A restriction in the line can sometimes be identified by a noticeable temperature differential between the two sides of the restriction. Frost will often form on the line at this point. Proper refrigerant charges are shown in the General Information Section.

Important: A clear sight glass alone does not mean that the system is properly charged. Also check system subcooling, liquid level control and unit operating pressures.

If chiller is limited by any limiting conditions, contact local Trane service organization for more information.

Temporary Shutdown and Restart

To shut the unit down for a short time:

- Press the STOP key on the AdaptiView[™] TD-7. The compressors will continue to operate and an operational pump down cycle may be initiated.
- Symbio[™] 800 pump control will turn off the pump (after a minimum 1 min. delay) when the STOP key is pressed and automatically restart the pump when the unit starts normally.

To restart the unit after a temporary shutdown, enable the chilled-water pump and press the AUTO key. The unit will start normally, provided the following conditions exist:

- The Symbio[™] 800 receives a call for cooling and the differential-to-start is above the setpoint.
- All system operating interlocks and safety circuits are satisfied.

Extended Shutdown Procedure

The following procedure is to be followed if the system is to be taken out of service for an extended period of time, e.g. seasonal shutdown:

- Test the unit for refrigerant leaks and repair as necessary.
- Open the electrical disconnect for the chilled water pump. Lock the switches in the "OPEN" position.

NOTICE

Pump Damage!

Failure to follow instructions could result in pump damage.

Lock the chilled water pump disconnects open and verify pump is off before draining water.

- Close all chilled water supply valves. Drain the water from the evaporator.
- 4. With water drained from the evaporator, remove power from heaters as follows:
 - For units with model number digit 29 = 3, disable power upstream from the chiller.
 - For all other units, disconnect 115 power from evaporator heaters at terminals 1X8-1 and 1X8-2.

NOTICE

Heater Damage!

Failure to follow instructions could result in heater damage.

Do not apply power to the evaporator heaters when no water is present.

Open the main electrical disconnect and lock in the "OPEN" position.

NOTICE

Equipment Damage!

Failure to follow instructions could result in equipment damage.

Lock the disconnect in the "OPEN" position to prevent accidental start-up and damage to the system when it has been shut down for extended periods.

At least every three months (quarterly), check the refrigerant pressure in the unit to verify that the refrigerant charge is intact.

Seasonal Unit Start-Up Procedure

- PRIOR to water being pumped into system, use gauges to verify positive pressure in the evaporator and condenser. Lack of pressure could indicate a system leak. When charging in the factory, approximately 95% of the refrigerant charge is isolated in the evaporator, and the other 5% is contained in the condenser and compressor. In the event that no pressure is present, contact local Trane service.
- Close all drain valves and re-install the drain plugs in the evaporator.
- 3. Service the auxiliary equipment according to the startup/maintenance instructions provided by the respective equipment manufacturers.
- 4. Close the vents in the evaporator chilled water circuits.
- 5. Open all the valves in the evaporator chilled water circuits
- Open all refrigerant valves or verify they are in the open condition.
- If the evaporator was previously drained, vent and fill
 the evaporator and chilled water circuit. When all air is
 removed from the system (including each pass), install
 the vent plugs in the evaporator water boxes.
- 8. Check the adjustment and operation of each safety and operating control.
- 9. Refer to the sequence for daily unit start-up for the remainder of the seasonal start-up.

System Restart after an Extended Shutdown

NOTICE

Equipment Damage!

Failure to follow instructions could result in equipment damage.

Ensure that the compressor and oil sump heaters have been operating properly for a minimum of 24 hours before starting.

Follow the procedures below to restart the unit after extended shutdown:

- Check refrigerant pressure as noted in Seasonal Unit Start-Up procedure.
- Verify that the liquid line service valves, oil line, compressor discharge service valves and suction service valves are open (backseated).

NOTICE

Compressor Damage!

Failure to follow instructions below could cause catastrophic damage to the compressor.

Do not leave oil line shut off valve or the isolation valves closed on unit start-up.

- 3. Check the oil sump level. See instructions in "," chapter.
- Fill the evaporator water circuit. Vent the system while it is being filled. Open the vent on the top of the evaporator and condenser while filling and close when filling is completed.

NOTICE

Proper Water Treatment Required!

The use of untreated or improperly treated water could result in scaling, erosion, corrosion, algae or slime.

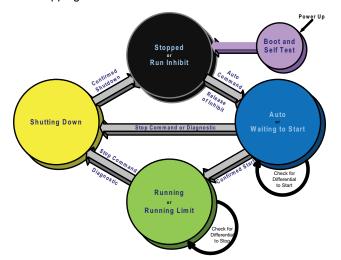
Limit chloride below 300 ppm to avoid corrosion. Use the services of a qualified water treatment specialist to determine what water treatment, if any, is required. Trane assumes no responsibility for equipment failures which result from untreated or improperly treated water, or saline or brackish water.

- 5. Close the fused-disconnect switches that provides power to the chilled water pump.
- Start the evaporator water pump and, while water is circulating, inspect all piping for leakage. Make any necessary repairs before starting the unit.
- 7. While the water is circulating, adjust the water flows and check the water pressure drops through the evaporator. See Evaporator Waterside Pressure Drop Curves in Installation Mechanical chapter, and water flow rates in General Data tables.
- Verify proper operation of flow switch on the evaporator waterbox.

Stop the water pump. The unit is now ready for start-up as described previously

Sequence of Operation

This section provides basic information on chiller operation for common events. Adaptive control algorithms are used on these chillers. This section illustrates common control sequences.


Software Operation Overview

The following figure is a diagram of the five possible software states. This diagram can be thought of as a state chart, with the arrows and arrow text, depicting the transitions between states:

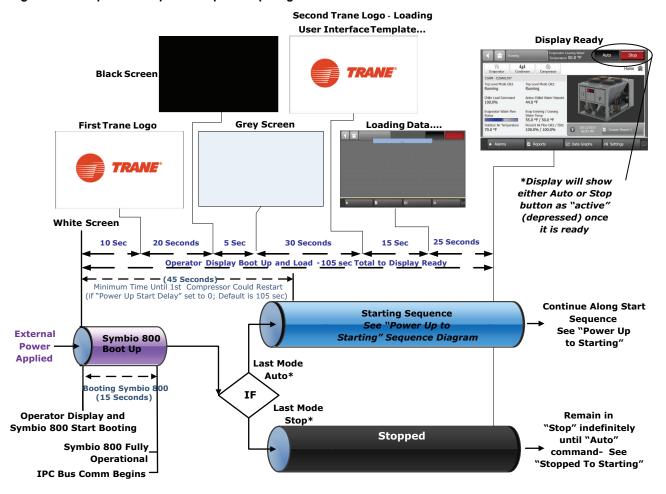
- The text in the circles is the internal software designations for each state.
- The shading of each software state circle corresponds to the shading on the time lines that show the chiller's state

There are five generic states that the software can be in:

- Power Up
- · Stopped
- Starting
- Running
- · Stopping

In the following diagrams:

- The time line indicates the upper level operating mode, as it would be viewed in the Tracer® AdaptiView™.
- The shading color of the cylinder indicates the software state.
- Text in parentheses indicates sub-mode text as viewed in the Tracer® AdaptiView™.
- Text above the time line cylinder is used to illustrate inputs to the Symbio[™] 800. This may include user input to the Tracer® AdaptiView[™] touch screen, control inputs from sensors, or control inputs from a generic BAS.
- Boxes indicate control actions such as turning on relays, or pulsing compressor load or unload solenoids.
- Smaller cylinders under the main cylinder indicate diagnostic checks.
- Text outside a box or cylinder indicates time-based functions.
- · Solid double arrows indicate fixed timers.
- · Dashed double arrows indicate variable timers.



Power Up Diagram

The following diagram shows the respective TD7 AdaptiView™ screens during a power up of the Symbio™ 800 and display. This process takes 15 seconds for the Symbio™ 800, and 105 seconds for the display. On all

power ups, the software model always will transition through the 'Stopped' Software state independent of the last mode. If the last mode before power down was 'Auto', the transition from 'Stopped' to 'Starting' occurs, but it is not apparent to the user.

Figure 28. Sequence of operation: power up diagram

Power Up to Starting

The following diagram shows the timing from a power up event to energizing the first compressor. The shortest allowable time would be under the following conditions:

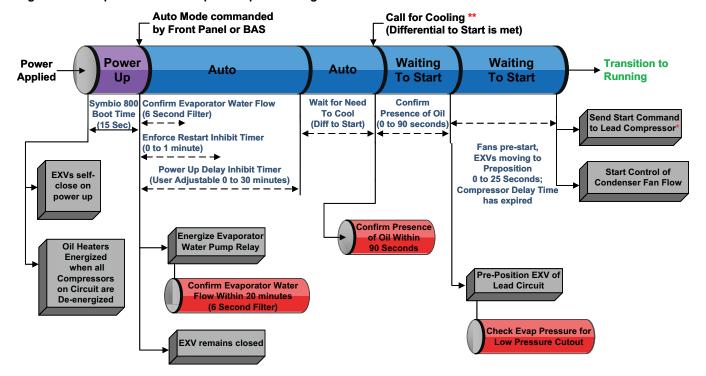

- · No motor restart inhibit time left from subsequent starts
- Evaporator water flow occurs quickly with pump on command
- Power up Start Delay set to 0 minutes

Figure 29. Sequence of events: power up to starting

- · Need to cool (differential to start) already exists
- · Oil level is detected immediately

The above conditions would allow for a minimum power up to starting the first compressor time of about 45 seconds. (Variations may exist due to options installed.)

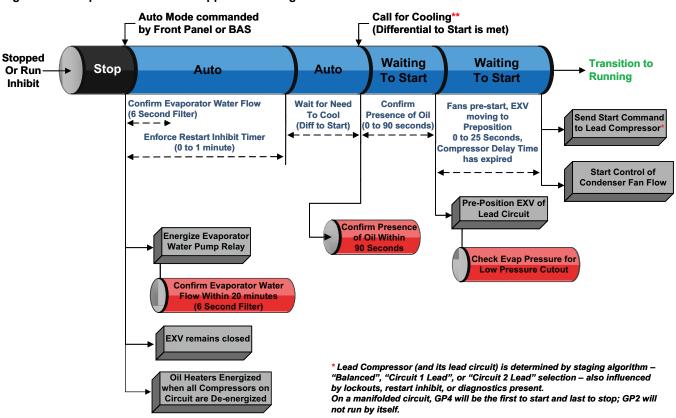
Note: Do not start a chiller "cold". The oil heaters must be in operation for a sufficient length of time prior to first start

^{*} Lead Compressor (and its lead circuit) is determined by staging algorithm – "Balanced", "Circuit 1 Lead", or "Circuit 2 Lead" selection – also influenced by lockouts, restart inhibit, or diagnostics present.

On a manifolded circuit, GP4 will be the first to start and last to stop; GP2 will not run by itself.

^{**} If Free Cooling is available, it shall be the first level control to start.

Total Free Cooling: balanced starts and hours or circuit x lead are available.

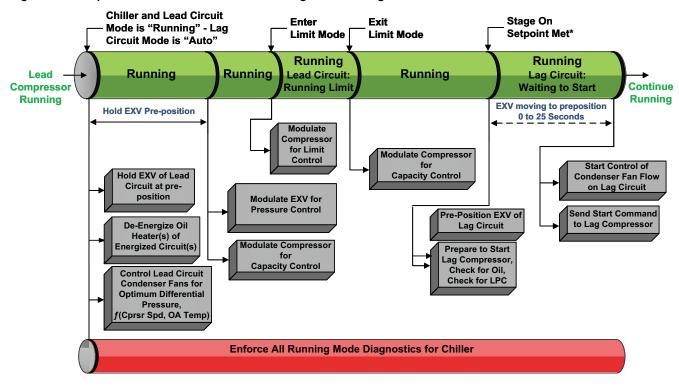

Stopped to Starting

The following diagram shows the timing from a stopped mode to energizing the first compressor. The shortest allowable time would be under the following conditions:

- · No motor restart inhibit time left from subsequent starts
- Evaporator water flow occurs quickly with pump on command
- · Need to cool (differential to start) already exists

The above conditions would allow a compressor to start in about 20 seconds.

Figure 30. Sequence of events: stopped to starting



^{**}Note: If Free Cooling is active, it will be the first stage of cooling to stage on.

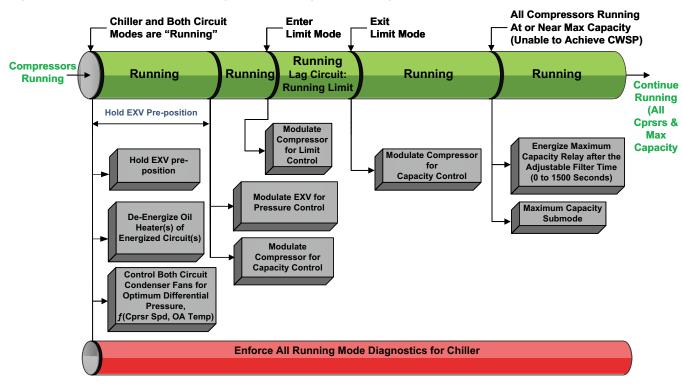
Lead Circuit Running — Increasing Load

The following diagram shows a typical start and run sequence for the lead compressor and its circuit.

Figure 31. Sequence of events: lead circuit running — increasing load

*Note: The decision to stage on or off another compressor is determined by

the Average Running Compressor Load Command, Water Temperature Error, and Time Since Last Stage

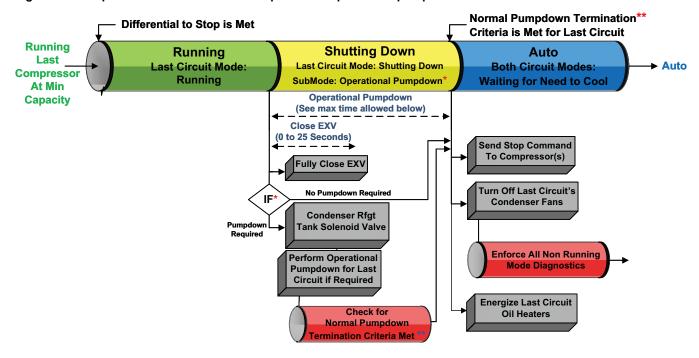

Circuit X Lead: XA compressor on the selected circuit will lead followed by a compressor on the alternate circuit, given an appropriately increasing chiller load. Additional compressors will alternate between lead and lag circuits.

On a manifolded circuit, GP4 will be the first to start and last to stop; GP2 will not run by itself.

Lag Circuit Running — Increasing Load

The following diagram shows a typical start and run sequence for the lag compressor and its circuit.

Figure 32. Sequence of operation: lag circuit running — increasing load



*Note: The decision to stage on or off another compressor is determined by the Average Running Compressor Load Command, Water Temperature Error, and Time Since Last Stage On a manifolded circuit, GP4 will be the first to start and last to stop; GP2 will not run by itself.

Satisfied Setpoint with Operational Pumpdown

The following diagram shows the normal transition from running to shutting down due to the evaporator leaving water temperature falling below the differential to stop setpoint. It also outlines the termination criteria for operational pumpdown.

Figure 33. Sequence of events: satisfied setpoint with operational pumpdown

^{*} Operational Pumpdown is required if the Outdoor Air Temperature is less than 50F, or the Entering Evaporator Water Temperature is greater than (outdoor air temperature – 10°F). With AFD, compressors will be at max speed for operational pumpdown.

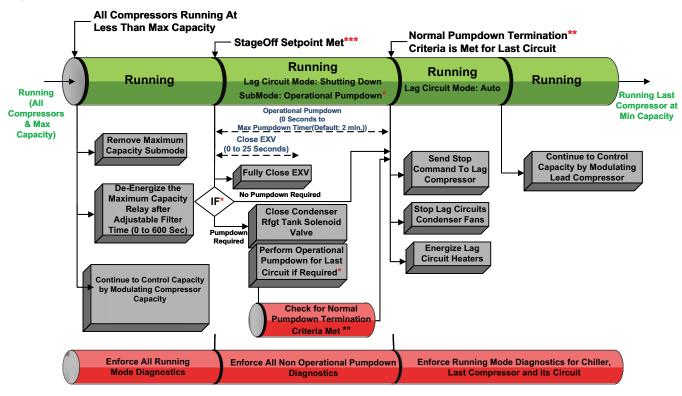
^{**} Operational pumpdown is terminated normally when:

⁻The evaporator (suction) pressure is at or below the "Pumpdown Termination Pressure" setting OR LERTC saturated pressure (32F for water [default]; -5F for glycol), which ever is greater

⁻The condenser (compressor discharge) pressure exceeds 315psia.

⁻The compressor pressure ratio exceeds 12.3

⁻The system differential pressure exceeds 265psid

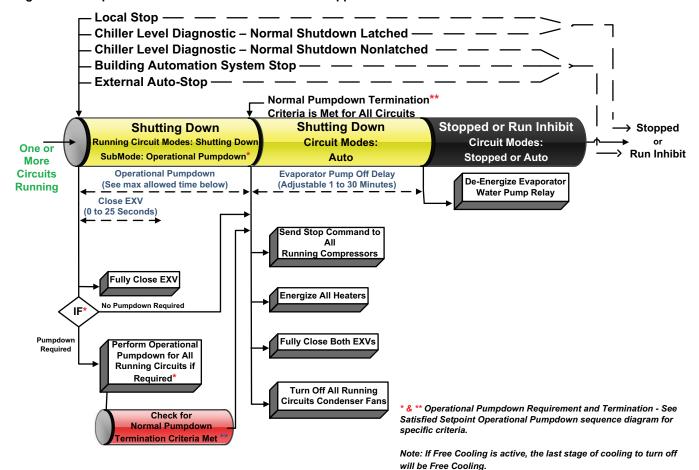

^{**} The maximum allowed time for Operational Pumpdown is Max Pumpdown Time setting (default to 120 sec.) * number of compressors configured on the circuit.

Full Load to Minimum Load

The following diagram shows the normal transition from full load to minimum load while the chiller is running.

Figure 34. Sequence of events: full load to minimum load

* & ** Operational Pumpdown Requirement and Termination - See Satisfied Setpoint Operational Pumpdown sequence diagram for specific criteria. *** Note: The decision to stage off another compressor is determined by the Average Running Compressor Load Command, Water Temperature Error, and Time since Last Stage. Compressors will stage off in the reverse order they staged on. All fixed speed compressors will stage off before variable speed compressors stage off.

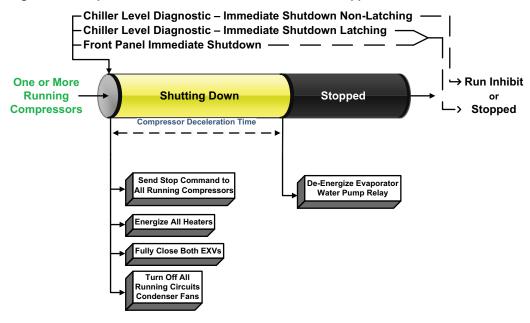

On a manifolded circuit, GP4 will be the first to start and last to stop; GP2 will not run by itself.

Normal Shutdown to Stopped or Run Inhibit

the top attempt to show the final mode if stop is selected via various inputs.

The following diagram shows the transition from Running through a Normal (friendly) Shutdown. The dashed lines on

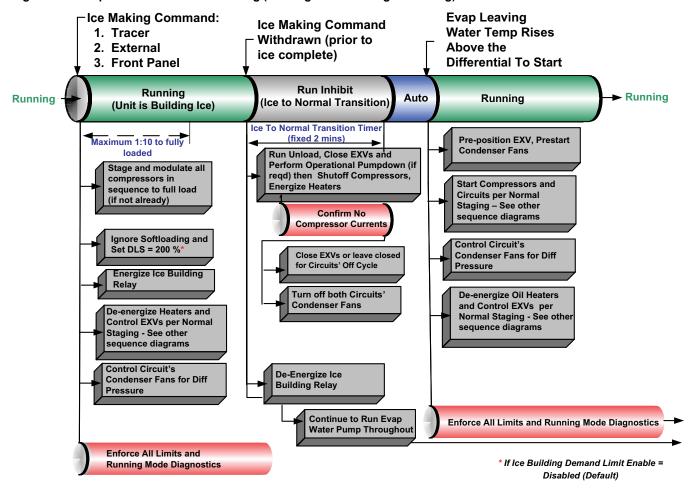
Figure 35. Sequence of events: normal shutdown to stopped or run inhibit



Immediate Shutdown to Stopped or Run Inhibit

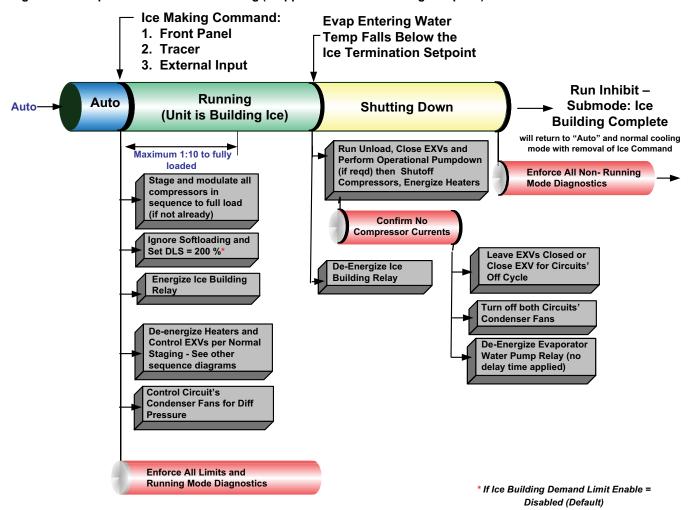
top attempt to show the final mode if stop is selected via various inputs.

The following diagram shows the transition from Running through an Immediate Shutdown. The dashed lines on the


Figure 36. Sequence of events: immediate shutdown to stopped or run inhibit

Ice Making (Running to Ice Making to Running)

The following diagram shows the transition from normal cooling to ice making, and back to normal cooling.


Figure 37. Sequence of events: ice making (running to ice making to running)

Ice Making (Stopped to Ice to Ice Making Complete)

The following diagram shows the transition from stopped to ice to ice making complete.

Figure 38. Sequence of events: ice making (stopped to ice to ice making complete)

Maintenance

A WARNING

Hazardous Voltage - Pressurized Flammable Fluid!

Failure to follow all electrical safety precautions could result in death or serious injury.

Do not operate compressor without terminal box cover in place.

The motors in the compressors have strong permanent magnet motors and have the capability to generate voltage during situations when the refrigerant charge is being migrated. This potential will be present at the motor terminals and at the output of the variable speed drives in the power panel. Before removing compressor terminal box cover for servicing, or servicing power side of control panel, CLOSE COMPRESSOR DISCHARGE SERVICE VALVE and disconnect all electric power including remote disconnects. Discharge all motor start/run capacitors. Follow lockout/tagout procedures to ensure the power cannot be inadvertently energized. Verify with an appropriate voltmeter that all capacitors have discharged.

The compressor contains hot, pressurized refrigerant. Motor terminals act as a seal against this refrigerant. Care should be taken when servicing NOT to damage or loosen motor terminals.

A WARNING

Pressurized Burning Fluid!

Failure to follow the instructions below could result in death or serious injury.

Do not operate compressor without terminal box cover in place.

The compressor contains hot, pressurized refrigerant. Motor terminals act as a seal against this refrigerant. Care should be taken when servicing NOT to damage or loosen motor terminals.

A WARNING

Hazardous Voltage w/Capacitors!

Failure to disconnect power and discharge capacitors before servicing could result in death or serious injury.

Disconnect all electric power, including remote disconnects and discharge all motor start/run capacitors before servicing. Follow proper lockout/ tagout procedures to ensure the power cannot be inadvertently energized. For variable frequency drives or other energy storing components provided by Trane or others, refer to the appropriate manufacturer's literature for allowable waiting periods for discharge of capacitors. Verify with a CAT III or IV voltmeter rated per NFPA 70E that all capacitors have discharged.

This section describes the basic chiller preventive maintenance procedures, and recommends the intervals at which these procedures should be performed. Use of a periodic maintenance program is important to ensure the best possible performance and efficiency.

Use an Operator Log (see Log and Check Sheet chapter) to record an operating history for unit. The log serves as a valuable diagnostic tool for service personnel. By observing trends in operating conditions, an operator can anticipate and prevent problem situations before they occur.

If unit does not operate properly during inspections, see Diagnostics chapter.

Recommended Maintenance

Weekly

While unit is running in stable conditions.

- At AdaptiView[™] TD7 or Tracer® TU service tool, check pressure for evaporator, condenser and intermediate oil.
- Observe liquid line sight glass on EXV. If liquid line sight glass has bubbles measure the subcooling entering the EXV. Subcooling should always be greater than 10°F for single compressor circuits, and 5°F for dual compressor circuits.
- 3. Inspect the entire system for unusual operation.
- Inspect the condenser coils for dirt and debris. If the coils are dirty, see Condenser Coil Cleaning section of Maintenance chapter.

NOTICE

Coil Damage!

Use of detergents could cause damage to coils. Do not use detergents to clean coils. Use clean water only.

Monthly

- 1. Perform all weekly maintenance procedures.
- 2. Record the system subcooling.

Annual

- 1. Perform all weekly and monthly procedures.
- Check oil level while unit is off. See Maintenance chapter.
- 3. Perform pH test of drive cooling fluid. See pH Test section of Maintenance chapter.
- Have a qualified laboratory perform a compressor oil analysis to determine system moisture content and acid level

Maintenance

- 5. Contact a Trane service organization to leak test the chiller, to check operating and safety controls, and to inspect electrical components for deficiencies.
- 6. Clean and repaint any areas that show signs of corrosion.
- 7. Clean the condenser coils. See Condenser Coil Cleaning section of Maintenance chapter.

NOTICE

Coil Damage!

Use of detergents could cause damage to coils. Do not use detergents to clean coils. Use clean water only.

Refrigerant and Oil Charge Management

Proper oil and refrigerant charge is essential for proper unit operation, unit performance, and environmental protection. Only trained and licensed service personnel should service the chiller.

The following table lists baseline measurements for chillers running at AHRI standard operating conditions. If chiller measurements vary significantly from values listed below. problems may exist with refrigerant and oil charge levels. Contact your local Trane office.

Note: Low temperature applications units will have values that vary from the following table. Contact your local Trane office for more information.

Table 28. Typical baselines (AHRI conditions)

Measurement	Baseline
Evaporator Pressure	51 psia
Evaporator Approach	3.4°F average
EXV Position	45-65% open
Evaporator Temp - entering	54°F
Evaporator Temp - leaving	44°F
Discharge Superheat	16.5°F
Condenser Pressure	212 psia
Subcooling	10 to 20°F

Lubrication System

The lubrication system has been designed to keep most of the oil lines filled with oil as long as there is a proper oil level in the oil sump.

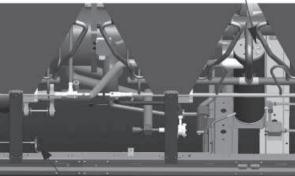
Oil Sump Level Check

The oil level in the sump can be measured to give an indication of the system oil charge. Follow the procedures below to measure the level.

- 1. Run the unit as near to full load as possible for a minimum of 30 minutes. For an accurate reading, 40 or more minutes at full load with normal/steady discharge superheat readings and no limits/warnings is recommended. Assessing oil charge after running at minimum or low loads may lead to an inaccurate reading.
- 2. Cycle the compressors off.
- 3. Let the chiller sit (powered, but off line) to allow the oil separator heater to boil off the refrigerant that may be in the oil separator. An initial assessment of the oil separator level may be made after 30 minutes of heater ON dwell time, but oil charge adjustments should not be made without allowing the oil heaters to run for a minimum of 4 hours.

NOTICE

Equipment Damage!


Operating compressors with service valves open will result in severe oil loss and equipment damage. Never operate the compressor with the sight glass service valves opened. Close the valves after checking the oil level.

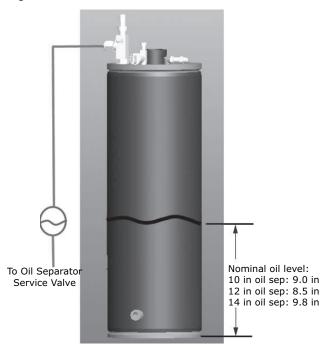
4. Attach a 3/8 inch or 1/2 inch hose with a sightglass in the middle to the oil sump service valve (1/4 inch flare) and the oil separator service valve (1/4 inch flare). See the following figure for valve locations.

Note: High pressure rated clear hose with appropriate fittings can help speed up the process. Hose must be rated to withstand system pressures as found on unit nameplate.

Figure 39. Oil service valves

To Oil Separator Service Valve

Oil Service Valve


- 5. After the unit is off line for 30 minutes, move the sightglass along the side of the oil sump.
- 6. The nominal oil level from the bottom of the oil separator should be as shown in the following table and figure. Depending on running conditions and oil heater dwell time, some deviation from nominal levels is expected.

Important: If level is less than 4 inches from the bottom of the oil separator, contact your local Trane office.

Unit Size (tons)	Oil Separator Size (in)	Nominal Oil Charge Height (in)
150 to 200	10	9.0
225 to 330	12	8.5
375 to 550	12	8.5
373 (0 550	14	9.7

Figure 40. Nominal oil level

Condenser Coil Cleaning

For information regarding the proper microchannel coil cleaning procedure, see *Microchannel Coil Servicing Guidelines Service Guide* (RF-SVG001*-EN).

Coil Cleaning Interval

Clean condenser coils at least once a year or more frequently if it is in a **dirty** environment. A clean condenser coil will help maintain chiller operating efficiency.

Cleaning Air Side of Coils

NOTICE

Coil Damage!

Use of coil cleaning agents on uncoated coils could cause damage to coils.

Do not use coil cleaning agents to uncoated clean coils. Use clean water only.

Do not use detergents to clean the air side of coils. Use clean water only. Clean from inside out by removing end panels.

Cleaning Microchannel Coils

For proper operation, microchannel condenser coils must be cleaned regularly. Eliminate pollution and other residual material help to extend the life of the coils and the

Regular coil maintenance, including annual cleaning, enhances the unit's operating efficiency by minimizing compressor head pressure and amperage draw. The condenser coil should be cleaned at minimum once each year, or more if the unit is located in a "dirty" or corrosive environment.

NOTICE

Coil Damage!

Use of detergents could cause damage to coils. Do not use detergents to clean coils. Use clean water only.

Cleaning with cleansers or detergents is strongly discouraged. Water should prove sufficient. Any breach in the tubes can result in refrigerant leaks.

A WARNING

Hazardous Voltage w/Capacitors!

Failure to disconnect power and discharge capacitors before servicing could result in death or serious injury.

Disconnect all electric power, including remote disconnects and discharge all motor start/run capacitors before servicing. Follow proper lockout/ tagout procedures to ensure the power cannot be inadvertently energized. For variable frequency drives or other energy storing components provided by Trane or others, refer to the appropriate manufacturer's literature for allowable waiting periods for discharge of capacitors. Verify with a CAT III or IV voltmeter rated per NFPA 70E that all capacitors have discharged.

1. Disconnect power to the unit.

Use a soft brush or vacuum to remove base debris or surface loaded fibers from both sides of the coil.

Note: When possible, clean the coil from the opposite direction of normal air flow (inside of unit out) to push debris out.

Using a sprayer and water ONLY, clean the coil following the guidelines below.

- Sprayer nozzle pressure should not exceed 580 psi.
- The maximum source angle should not exceed 25° to the face of the coil. See figure below. For best results spray the microchannel perpendicular to face of the coil.

Maintenance

- Spray nozzle should be approximately 1 to 3 inches from the coil surface.
- d. Use at least a 15° fan type of spray nozzle.

Note: To avoid damage from the spray wand contacting the coil, make sure the 90° attachment does not come in contact with the tube and fin as abrasion to the coil could result.

Cleaning the Evaporator

Because the evaporator is typically part of a closed circuit, it does not accumulate appreciable amounts of scale or sludge with properly treated working fluids. However, if cleaning is deemed necessary, chemical and mechanical means are both acceptable. If using chemical means, any and all materials used in the external circulation system, the quantity of the solution, the duration of the cleaning period, and any required safety precautions should be approved by the company furnishing materials or performing the cleaning. When using mechanical means, care must be taken in selecting the cleaning method and equipment, as well as appropriate brush type and size if used. The evaporator utilizes highly enhanced tubes which can be damaged by some cleaning methods, resulting in a loss of system performance.

In particular, evaporators in units larger than 300 nominal tons may be equipped with a highly enhanced "micro" structure that will not behave like a typical helical structure when cleaned mechanically. This may require specialized equipment or methods to force tube cleaning heads through the tubes. In these instances, determination of brush/head type and size is critical, as using an oversized brush/head may damage the tube enhancement, while using a brush/head that is too small could result in incomplete cleaning.

Pump Package

Pumps not immediately placed into service, or removed from service and stored, must be properly prepared to prevent excessive rusting.

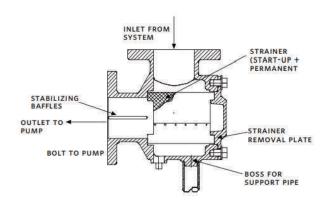
- Pump port protection plates must not be removed until the pump is ready to connect to the piping.
- Rotate the shaft periodically (at least monthly) to keep rotating element free and bearings fully functional.
- For long term storage (3 months or longer), prevent internal rust buildup and possibility of freezing by performing the following steps:
 - Remove the casing plugs.
 - If water is to be drained:
 - Disconnect evaporator and piping heaters.
 - Drain or blow out all water.
 - As an optional step, it is acceptable to rustproof or pack the casing with moisture absorbing material and cover the flanges.

When returning pumps to service.

- Remove drying agent from the pump, if used.
- Reinstall casing plugs.
- · If water had been drained:
 - Refill water.
 - Reconnect evaporator and piping heaters.

A blow–down valve may be installed on the Suction Guide drain connection. Suction Guides are supplied with an inlet tapped gauge connection. Monitoring the differential pressure across the fitting, from the suction guide inlet gauge to the pump inlet gauge, will alert the operator should the strainer need to be removed and cleaned.

NOTICE


Equipment Damage!

Failure to follow instructions below could result in equipment damage.

The factory installed temporary fine-mesh start-up strainer must be removed following system clean up.

After all debris has been removed from the system, or a maximum of 24 running hours, stop the pump and close the pump isolation valves. Drain the Suction Guide by removing the drain plug or opening the blowdown valve, if installed. Remove the Suction Guide cover and remove the strainer assembly from the valve body. A temporary finemesh start-up strainer is tack-welded to the permanent stainless steel strainer. This temporary strainer should now be removed from the permanent strainer. The fine-mesh strainer is designed to remove small particulate from new piping systems and could easily clog with debris if left in place. This will be detrimental to the operation of the pump. Replace the permanent strainer into the fitting body, once the temporary strainer is removed. Inspect the cover Oring and replace if necessary. Replace the cover into the body. Ensuring that the strainer is properly seated, tighten the cover bolts diagonally, evenly and firmly.

Figure 41. Pump package

Free-Cooling Coil

Free-Cooling Coil Cleaning

Regular coil maintenance enhances the unit's operating efficiency by optimizing free-cooling heat transfer and amperage draw. The free cooling coil should be cleaned at minimum once each year, or more if the unit is located in a dirty or corrosive environment.

Free-cooling coil cleaning process is the same as condenser coil cleaning.

Free-Cooling Fluid Management

NOTICE

Equipment Damage!

Failure to follow instructions below could result in equipment damage.

DO NOT USE UNTREATED WATER. Glycol solution must be utilized with the Direct Free Cooling options and in the free cooling loop of Indirect Free Cooling options. Glycol percentage should be based on freeze avoidance requirements. The glycol solution requires an inhibitor package to be carefully chosen with the aid of qualified water treatment specialist to abate corrosion in a mixed metal system.

The building glycol loop should not be vented to atmosphere. A closed system is required to limit oxidation potential within the loop.

Make-up water should be avoided.

NOTICE

Coil Damage!

Failure to follow instructions below could result in free-cooling coil freeze.

For units with free-cooling option, introduction of uninhibited water into the system is not recommended, as it could lead to internal corrosion and risk of coil freeze. To avoid free-cooling coil damage:

- If the building loop needs to be charged with water for testing purposes, isolate free-cooling coils by closing free-cooling service shut-off valve and modulating valve.
- Completely drain any water inadvertently introduced into the system, and replace with glycol fluid as required for the free-cooling system.
- If water was introduced for hydronic testing, and was not immediately replaced with glycol solution, a glycol (freeze inhibitor) solution must be introduced to the free-cooling system/ coils for any long term storage.

The free cooling option circuit consists of copper, carbon steel, cast iron, zinc, EPDM rubber, brass, and Aluminum AA3102, AA3003, AA4045. Direct free cooling units will also have the addition of other materials that may be in the building loop connected to the chiller. An inhibitor is required in the glycol/water system to passivate metal surfaces and decrease the corrosion rate. The effectiveness of a corrosion inhibitor depends on the fluid composition and quantity of water. Avoid system fluid dilution and ensure a level of reserve alkalinity is maintained. Glycol fluid should be free from foreign solid particles. A maintenance schedule should be selected per the glycol manufacturer's requirements to insure adequate protection during product usage.

Reinstallation of Compressor Mounting Bolts

Units with InvisiSound™ Ultimate Only (Model Number Digit 13 = E)

If compressor removal or unit move is required on a unit with InvisiSound™ Ultimate option, reinstall compressor mounting bolts which were removed per installation or maintenance instructions.

Servicing Chiller Roof

A WARNING

Do Not Climb on Top of Unit!

Failure to follow these instructions could result in technician falling off the equipment which could result in death or serious injury.

Do not climb on roof to service unit. Use service tools designed to access top of chiller.

Service tools are available to access top of chiller. Entry on chiller roof is not required.

Diagnostics

General Diagnostics Information

Diagnostic Name and Source: Name of Diagnostic and its source. The variable "x" in the AFD diagnostic name string denotes a circuit designator (either 1 or 2). With that exception, this is the exact text used in the User Interface and/or Service Tool displays.

Affects Target: Defines the "target" or what is affected by the diagnostic. Usually either the entire Chiller, or a particular Circuit or Compressor is affected by the diagnostic (the same one as the source), but in special cases functions are modified or disabled by the diagnostic. "None" implies that there is no direct affect to the chiller, sub components or functional operation.

Design Note: Functions that are affected by a diagnostic are simply reported as "chiller or circuit x" targets in Tracer® TU and on the Alarms page of the AdaptiView™ display, even though only a specific function and not the entire circuit or chiller would be effected.

Severity: Defines the severity of the above effect. Immediate means immediate shutdown of the affected portion, Normal means normal or friendly shutdown of the affected portion, Special Action means a special action or mode of operation (limp along) is invoked, but without shutdown, and Info means an Informational Note or Warning is generated. Design Note: Tracer TU does not support display of "Special Action", on its Diagnostics pages, so that if a diagnostic has a special action defined in the table below, it will be displayed only as "Informational"

Warning" as long as no circuit or chiller shutdown results. If there is a shutdown and special action defined in the table, then the Tracer TU Diagnostics Page display will indicate the shutdown type only.

Persistence: Defines whether or not the diagnostic and its effects are to be manually reset (Latched), or can be either manually or automatically reset when and if the condition returns to normal (Nonlatched).

Active Modes [Inactive Modes]: States the modes or periods of operation that the diagnostic is active in and, as necessary, those modes or periods that it is specifically "not active" in as an exception to the active modes. The inactive modes are enclosed in brackets, []. Note that the modes used in this column are internal and not generally annunciated to any of the formal mode displays.

Criteria: Quantitatively defines the criteria used in generating the diagnostic and, if nonlatching, the criteria for auto reset.

Reset Level: Defines the lowest level of manual diagnostic reset command which can clear the diagnostic. The manual diagnostic reset levels in order of priority are: Local or Remote. For example, a diagnostic that has a reset level of Remote, can be reset by either a remote diagnostic reset command or by a local diagnostic reset command.

AFD Diagnostics

Table 29. Diagnostics — AFD

Diagnostic Name and Source	Affects		Persistence		Active Modes	Criteria	Reset
	Target	Severity		AFD(a)	[Inactive Modes]		Level
AFD Bus Over Voltage - xA	Cprsr	Immediate	NonLatch	Momentary NonLatch	All	TR200 Alarm Code (A7), Alarm Word: 1, Bit: 11, Dec: 2048 If the intermediate circuit voltage exceeds the limit, the adjustable frequency drive trips after a time.	Remote
AFD Bus Under Voltage - xA	Cprsr	Immediate	NonLatch	Momentary NonLatch	All	TR200 Alarm Code (A8), Alarm Word: 1, Bit: 10, Dec: 1024 If the intermediate circuit voltage (DC) drops below the undervoltage limit, the adjustable frequency drive checks if a 24 V backup supply is connected. If no 24 V backup supply is connected, the adjustable frequency drive trips after a fixed time delay.	Remote

Table 29. Diagnostics — AFD (continued)

Diagnostic	Affocts	Affects	Persistence		Active Modes		Doort
Name and Source	Target	Severity	Controller	AFD ^(a)	[Inactive Modes]	Criteria	Reset Level
AFD Comm Loss: Main Processor - xA	Cprer	Immediate	NonLatch	NonLatch	All	TR200 Alarm Code (W17), Alarm Word: 1, Bit: 4, Dec: 16 TR200 detected communication loss to unit controller known as Control Word Timeout warning on TR200. (Note: In case where the TR200 losses communication with the unit controller, the UC will not see this diagnosite via the alarm word. This has been included even though UC will most likely not see this alarm.)	Remote
AFD Fault Mains - xA	Cprsr	Immediate	NonLatch	Momentary NonLatch	All	TR200 Alarm Code (A36), Alarm Word: 1, Bit: 24, Dec: 16777216 Active if the supply voltage to the adjustable frequency drive is lost.	Remote
AFD General Fault - xA	Cprsr	Immediate	NonLatch ^(b)	Varies	All	This is a catch-all group for any faults in alarm words 1 or 2 that are not listed here. These faults are unlikely to occur. They are treated with immediate attention since they are not expected.	Local(c)
AFD Ground Fault - xA	Cprsr	Immediate	Latch	Latch (Trip Lock)	All	TR200 Alarm Code (A14), Alarm Word: 1, Bit: 2, Dec: 4 There is a discharge from the output phases to ground, either in the cable between the adjustable frequency drive and the motor or in the motor itself.	Local
AFD Harmonic Filter Over Temperature - xA	Cprsr	Immediate	NonLatch	Momentary NonLatch	All	TR200 Alarm Code (A60), Alarm Word: 2, Bit: 12, Dec: 4096 The AFD Harmonic Filter temperature has exceeded the maximum allowed value. This diagnostic is also non-latching on the AFD itself. The drive calls alarm 60 because that is tied to I/O pins 12 and 18, which function as a safety interlock. Note that on the TR200 drive this diagnostic will populate as [A60] External Hardware Interlock.	Remote
AFD High Pressure Cutout - xA	Cprsr	Immediate	Latch	Latch (Trip Lock)	All	TR200 Alarm Code (A68), Alarm Word: 1, Bit: 30, Dec: 1073741824 The respective drive's Safe Stop circuitry was activated (open circuit). The respective compressor's High Pressure Cutout Switch is wired into this circuit, and will cause an immediate shutdown of the drive and compressor in the event of an HPC trip.	Local
AFD High Torque - xA	Cprsr	Immediate	NonLatch	Momentary NonLatch	Running	TR200 Alarm Code (A12), Alarm Word: 1, Bit: 6, Dec: 64 The torque is higher than the value in par.4-16 Torque Limit Motor Mode.	Remote
AFD Initialized - xA	Cprsr	Immediate	NonLatch	Momentary NonLatch	All	TR200 Alarm Code (A80), Alarm Word: 1, Bit: 29, Dec: 536870912 Parameter settings are initialized to default settings after a manual reset.	Remote
AFD Internal Fault	Cprsr	Immediate	Latch	Latch (Trip Lock)	All	TR200 Alarm Code (A38), Alarm Word: 1, Bit: 17, Dec: 131072 This fault could occur from various situations, please contact engineering.	Local

Diagnostics

Table 29. Diagnostics — AFD (continued)

Diagnostic	Afforto	Affects Severity Target	Persi	Persistence			Reset
Name and Source			Controller	AFD ^(a)	[Inactive Modes]	Criteria	Level
AFD Inverter Heatsink Over Temperature - xA	Cprsr	Immediate	Latch	Latch (Trip Lock)	Running	TR200 Alarm Code (A29), Alarm Word: 1, Bit: 1, Dec: 2 The maximum temperature of the heatsink has been exceeded.	Local
AFD Locked Rotor - xA	Cprsr	Immediate	Latch	Latch (Trip Lock)	Running	TR200 Alarm Code (A204), Alarm Word: 2, Bit: 29, Dec: 536870912 A multi-motor overload situation was detected, which could be due to, e.g., a locked rotor.	Local
AFD Mains Phase Loss - xA	Cprsr	Immediate	Latch	Latch (Trip Lock)	All	TR200 Alarm Code (A4), Alarm Word: 1, Bit: 14, Dec: 16384 A phase is missing on the supply side, or the line voltage imbalance is too high. This message also appears for a fault in the input rectifier on the adjustable frequency drive.	Local
AFD Missing Motor - xA	Cprsr	Immediate	NonLatch	Momentary NonLatch	All	TR200 Alarm Code (A203), Warning Word: 2, Bit: 10, Dec: 1024 A multi-motor underload situation was detected, this could be due to, for example, a missing motor.	Remote
AFD Motor Current Overload - xA	Cprsr	Immediate	Latch	Latch (Trip Lock)	Running	TR200 Alarm Code (A13), Alarm Word: 1, Bit: 5, Dec: 32 The inverter peak current limit (approx. 200% of the rated current) is exceeded.	Local
AFD New Spare Parts - xA	Cprsr	Immediate	Latch	Latch (Trip Lock)	All	TR200 Alarm Code (A250), Alarm Word: 2, Bit: 2, Dec: 4 The power or switch mode power supply has been exchanged. The adjustable frequency drive type code must be restored in the EEPROM. Please contact engineering.	Local
AFD Option Configuration Change - xA	Cprsr	Immediate	NonLatch	Momentary NonLatch	All	TR200 Alarm Code (A67), Alarm Word: 1, Bit: 28, Dec: 268435456 One or more options have either been added or removed since the last powerdown.	Remote
AFD Output Phase U Loss - xA	Cprsr	Immediate	Latch	Latch (Trip Lock)	Running	TR200 Alarm Code (A30), Alarm Word: 1, Bit: 19, Dec: 524288 Motor phase U between the adjustable frequency drive and the motor is missing.	Local
AFD Output Phase V Loss - xA	Cprsr	Immediate	Latch	Latch (Trip Lock)	Running	TR200 Alarm Code (A31), Alarm Word: 1, Bit: 20, Dec: 1048576 Motor phase V between the adjustable frequency drive and the motor is missing.	Local
AFD Output Phase W Loss - xA	Cprsr	Immediate	Latch	Latch (Trip Lock)	Running	TR200 Alarm Code (A32), Alarm Word: 1, Bit: 21, Dec: 2097152 Motor phase W between the adjustable frequency drive and the motor is missing.	Local

Table 29. Diagnostics — AFD (continued)

Name and	Affects		Persistence		Active Modes		Reset
	Target	Severity	Controller	AFD ^(a)	[Inactive Modes]	Criteria	Level
AFD Over Temperature - xA	Cprsr	Immediate	NonLatch	Momentary NonLatch	Running	TR200 Alarm Code (A10), Alarm Word: 1, Bit: 8, Dec: 256 According to the electronic thermal protection (ETR), the motor is too hot. The fault is that the motor is overloaded by more than 100% for too long.	Remote
AFD Short Circuit - xA	Cprsr	Immediate	Latch	Latch (Trip Lock)		TR200 Alarm Code (A16), Alarm Word: 1, Bit: 12, Dec: 4096 There is short-circuiting in the motor or on the motor terminals.	Local

⁽a) Latch (Trip Lock) - Requires reset command from the unit controller (via Modbus communication) or from TR200 keypad and power cycle of the drive to reset alarm.

Momentary NonLatch - Drive is programmed to automatically reset the alarm. If drive automatic reset sequence is exhausted, alarm will latch, requiring a manual reset.

NonLatch - True non-latching diagnostic where reset is not required to clear the alarm.

Starter Diagnostics

Table 30. Diagnostics — Starter

Diagnostic Name and Source	Affects Target	Severity	Persistence	Active Modes [Inactive Modes]	Criteria	Reset Level
Motor Current Overload - xB	Circuit	Immediate	Latch	Cprsr Energized	Compressor current exceeded overload time vs. trip characteristic. Must trip = 140% RLA, Must hold=125%, nominal trip 132.5% in 30 seconds	Local
Over Voltage	Chiller	Normal	NonLatch	Pre-Start and Any Ckt(s) Energized	Nom. trip: 60 seconds at greater than 112.5%, +/- 2.5%, Auto Reset at 110% or less for 10 continuous seconds.	Remote
Phase Loss - xy	Cprsr	Immediate	Latch		a) No current was sensed on one or two of the current transformer inputs while running or starting (See Non-latching Power Loss Diagnostic for all three phases lost while running). Must hold = 20% RLA. Must trip = 5% RLA. Time to trip shall be longer than guaranteed reset on Starter Module at a minimum, 3 seconds maximum. Actual design trip point is 10%. The actual design trip time is 2.64 seconds. b) If Phase reversal protection is enabled and current is not sensed on one or more current transformer inputs. Logic will detect and trip in a maximum of 0.3 seconds from compressor start.	Local
Phase Reversal - xy	Cprsr	Immediate	Latch	Compressor energized to transition command [All Other Times]	A phase reversal was detected on the incoming current. On a compressor startup, the phase reversal logic must detect and trip in a maximum of .3 second from compressor start.	Local

⁽b) AFD General Fault - xA intentionally has the Controller Persistance set to NonLatch since this catch-all group that can have both latching and non-latching TR200 alarms. The diagnostic will not be latched by the UC, but instead follow the AFD. AFD will protect itself and the compressor and will require a manual reset if needed.

⁽e) AFD General Fault - xA Reset Level is set to Local, and Persistance is set to NonLatch to emphasize recommended user attention when an unexpected AFD alarm occurs.

Table 30. Diagnostics — Starter (continued)

Diagnostic Name and Source	Affects Target	Severity	Persistence	Active Modes [Inactive Modes]	Criteria	Reset Level
Power Loss - xy	Cprsr	Immediate	NonLatch	All compressor running modes	The compressor had previously established currents while running and then all three phases of current were lost. Design: Less than 10% RLA, trip in 2.64 seconds. This diagnostic will preclude the Phase Loss Diagnostic and the Transition Complete Input Opened Diagnostic from being called out. To prevent this diagnostic from occurring with the intended disconnect of main power, the minimum time to trip must be greater than the guaranteed reset time of the Starter module. Note: This diagnostic prevents nuisance latching diagnostics due to a momentary power loss – It does not protect motor/compressor from uncontrolled power reapplication. See Momentary Power Loss Diagnostic for this protection. This diagnostic is not active during the start mode before the transition complete input is proven. Thus a random power loss during a start would result in either a "Starter Fault Type 3" or a "Starter Did Not Transition" latching diagnostic.	Remote
Severe Current Imbalance - xy	Circuit	Immediate	Latch	All Running Modes	A 30% Current Imbalance has been detected on one phase relative to the average of all 3 phases for 90 continuous seconds.	Local
Starter Comm Loss: Main Processor - xy	Cprsr	Immediate	Latch	All	The Starter module detected a continual loss of communication with the main processor for greater than the Communications Loss Time bound setpoint.	Local
Starter Contactor Interrupt Failure - xy	Chiller	Immediate and Special Action	Latch	Starter Contactor not Energized [Starter Contactor Energized]	Detected compressor currents greater than 10% RLA on any or all phases when the compressor was commanded off. Detection time shall be 5 second minimum and 10 seconds maximum. On detection and until the controller is manually reset: generate diagnostic, energize the appropriate alarm relay, continue to energize the Evap Pump Output, and continue to command the affected compressor off, fully unload the effected compressor and command a normal stop to all other compressors. For as long as current continues, perform liquid level, oil return, and fan control on the circuit effected. During contactor interrupt failure, circuit will not be confirmed off, so THR unit sequence should continue running. If THR turns off due to a diagnostic or lockout during contactor interrupt failure, the circuit reverts to air-cooled condenser fan control within 1 second.	Local
Starter Did Not Transition - xy	Cprsr	Immediate	Latch	On the first check after transition	The Starter Module did not receive a transition complete signal in the designated time from its command to transition. The Must Hold time from the Starter Module transition command is 1 second. The Must Trip time from the transition command is 6 seconds. Actual design is 2.5 seconds. This diagnostic is active only for Y-Delta, Auto-Transformer, Primary Reactor, and X-Line Starters.	Local
Starter Dry Run Test - xy	Cprsr	Immediate	Latch	Starter Dry Run Mode	While in the Starter Dry Run Mode either 50 % Line Voltage was sensed at the Potential Transformers or 10 % RLA Current was sensed at the Current Transformers.	Local
Starter Failed to Arm/Start - xy	Cprsr	Immediate	Latch	All	Starter failed to arm or start within the allotted time (15 seconds).	Local
Starter Fault Type I - xy	Cprsr	Immediate	Latch	Starting - Y Delta Starters Only	This is a specific starter test where 1M(1K1) is closed first and a check is made to ensure that there are no currents detected by the CT's. If currents are detected when only 1M is closed first at start, then one of the other contactors is shorted.	Local

Table 30. Diagnostics — Starter (continued)

Diagnostic Name and Source	Affects Target	Severity	Persistence	Active Modes [Inactive Modes]	Criteria	Reset Level
Starter Fault Type II - xy	Cprsr	Immediate	Latch	Starting - All types of starters	a. This is a specific starter test where the Shorting Contactor (1K3) is individually energized and a check is made to ensure that there are no currents detected by the CT's. If current is detected when only S is energized at Start, then 1M is shorted. b. This test in a. above applies to all forms of starters (Note: It is understood that many starters do not connect to the Shorting Contactor.).	Local
Starter Fault Type III - xy	Cprsr	Immediate	Latch	Starting [Adaptive Frequency Starter Type]	As part of the normal start sequence to apply power to the compressor, the Shorting Contactor (1K3) and then the Main Contactor (1K1) were energized. 1.6 seconds later there were no currents detected by the CT's for the last 1.2 Seconds on all three phases. The test above applies to all forms of starters except Adaptive Frequency Drives.	Local
Starter Module Memory Error Type 1 - xy	Cprsr	Warning	Latch	All	Checksum on RAM copy of the Starter LLID configuration failed. Configuration recalled from EEPROM.	Local
Starter Module Memory Error Type 2 - xy	Cprsr	Immediate	Latch	All	Checksum on EEPROM copy of the Starter LLID configuration failed. Default configuration loaded into RAM and EEPROM.	Local
Transition Complete Input Opened - xy	Cprsr	Immediate	Latch	All Running Modes	The Transition Complete input was found to be shorted before the compressor was started. This is active for all electromechanical starters.	Local
Transition Complete Input Shorted - xy	Cprsr	Immediate	Latch	Pre-Start	The Transition Complete input was found to be shorted before the compressor was started. This is active for all electromechanical starters.	Local
Under Voltage	Chiller	Normal	NonLatch	Pre-Start and Any Ckt(s) Energized	Nom. trip: 60 seconds at less than 87.5%, +/- 2.8% at 200V +/- 1.8% at 575V, Auto Reset at 90% or greater for 10 continuous seconds.	Remote

Main Processor Diagnostics

Table 31. Diagnostics — main processor

Diagnostic Name	Affects Target	Severity	Persistence	Active Modes [Inactive Modes]	Criteria	Reset Level
AFD Comm Loss - xA	Cprsr	Immediate	NonLatch	All	Communication has been lost between the UC800 and the applicable AFD. Once triggered, this diagnostic will autoreset after 10 continuous minutes of restored communication to the compressor. (Note: The timer only starts once communication to the compressor is restored, which the UC800 will detect. If a manual reset request occurs during the timer period, it shall reset the diagnostic and the 'auto-reset' function will then be bypassed.)	Local
AFD Failure to Arm or Start - xA	Cprsr	Immediate	Latch	Running	The AFD failed to start within the allotted time (1 min). Definition of the "starting" value is the running status of the AFD. Note: This is a Controller diagnostic, not one originating from the AFD.	

Table 31. Diagnostics — main processor (continued)

Diagnostic Name	Affects Target	Severity	Persistence	Active Modes [Inactive Modes]	Criteria	Reset Level
AFD Interrupt Failure - xA	Chiller	Immediate Shutdown and Special Action	Latch	AFD Intended to be OFF	Respective AFD is reporting that it is still running the compressor when the MP has commanded the drive/ compressor to be Off. This diagnostic is triggered if the AFD running status remains in running for more than 16 seconds after the MP initiates the OFF command. On detection and until the controller is manually reset: this diagnostic shall be active and the alarm relay shall be energized, the Evap Pump Output will be energized, the effected compressor will be continually commanded off, and be unloaded, while a normal stop shall be commanded to all other compressors. For as long as compressor operation continues, the MP shall continue oil return and fan control on the circuit affected. During AFD interrupt failure, circuit will not be confirmed off, so THR unit sequence should continue running. If THR turns off due to a diagnostic or lockout during AFD interrupt failure, the circuit reverts to aircooled condenser fan control within 1 second.	Local
AFD Unexpected Shutdown - xA	Cprsr	Normal	NonLatch	Running	The AFD status reported back that it is stopped when the MP thinks it should be running and no AFD diagnostic exists. This diagnostic will be logged in the active buffer and then automatically cleared. This diagnostic could be caused by intermittent communication problems from the AFD to the MP or due to mis-binding. Note: This is a Controller diagnostic, not one originating from the AFD.	Local
Chiller Service Recommended	Chiller	Warning	Latch	Service Messages Enabled	Chiller service interval time has elapsed. Chiller service is recommended.	Remote
Compressor Discharge Refrigerant Temperature Sensor - xy	Cprsr	Immediate	Latch	All	Bad Sensor or LLID	Remote
Condenser Refrigerant Pressure Sensor	Circuit	Immediate	Latch	All	Bad Sensor or LLID	Remote
Emergency Stop Feedback Input	Chiller	Immediate	Latch	All	A. Emergency stop feedback input is open. An external interlock has tripped. Time to trip from input opening to unit stop shall be 0.1 to 1.0 seconds.	Local
Evap Water Pump 1 Svc Recommended	Chiller	Warning	Latch	Service Messages Enabled	Pump service recommended as service interval hours have elapsed.	Remote
Evaporator Approach Error	Circuit	Immediate	Latch	Respective circuit running	The Evaporator approach temperature for the respective circuit (ELWT – Evap Sat Temp Ckt x) is negative by more than 10°F for 1 minute continuously while the circuit / compressor is operating. Either the Evap Leaving Water Temp sensor or Evap Suction Rfgt Pressure Sensor Ckt x is in error.	Remote
Evaporator Diff Water Pressure Xdcr	Chiller	Warning	Latch	All	Bad Sensor or LLID a. Display invalid value b. Flow calculation shall be disabled. See Water_Flow_and_Tons_Sensing.doc specification for additional information	Remote
Evaporator Entering Water Pressure	Chiller	Warning	Latch	All	Bad Sensor or LLID a. Display invalid value b. Flow calculation shall be disabled. See Water_Flow_and_Tons_Sensing.doc specification for additional information	Remote

Table 31. Diagnostics — main processor (continued)

Diagnostic Name	Affects Target	Severity	Persistence	Active Modes [Inactive Modes]	Criteria	Reset Level
Evaporator Entering Water Temperature Sensor	Chiller	Normal	Latch	All	Bad Sensor or LLID. Note: Entering Water Temp Sensor is used in EXV pressure control as well as ice making so it must cause a unit shutdown even if ice or CHW reset is not installed.	Remote
Evaporator Leaving Water Pressure	Chiller	Warning	Latch	All	Bad Sensor or LLID a. Display invalid value b. Flow calculation shall be disabled. See Water_Flow_and_Tons_Sensing.doc specification for additional information	Remote
Evaporator Leaving Water Temperature Sensor	Chiller	Normal	Latch	All	Bad Sensor or LLID	Remote
Evaporator Pump 1 Starts Run Time Written	Chiller	Warning	NonLatch	All	Diagnostic is triggered when the Evap Pump 1 Starts Run Time is manually over written. Diagnostic automatically clears and is immediately placed into the Historic Diagnostic Log.	Local
Evaporator Refrigerant Pool Temperature Sensor Error	Circuit	Warning and Special Action	Latch	Ckt Energized [Ckt Not Energized]	This diagnostic can be triggered in two ways. There is an ignore time of 2 minutes following circuit startup for both criteria. The trip criteria is not evaluated until the ignore time passes. 1.) The evaporator refrigerant pool temperature measurement is larger than the evaporator entering water temperature by more than 4°C (7.2°F) for 5 continuous minutes. 2.) If the absolute value of the Actual Evap Pool Temp Correction CktX is greater than the 'Evap Pool Temp Diagnostic Threshold CktX' AND the absolute value of the Pool Temp Error is greater than the 'Evap Pool Temp Diagnostic Threshold CktX', the diagnostic will occur. Continue to display the pool temperature measurement if the diagnostic is active. If evaporator isolation valves are installed, revert to Evaporator Shell Refrigerant Saturated Temperature for freeze protection functions. If evaporator isolation valves are not installed, revert to Evaporator Saturated Temperature for freeze protection functions. Pool Temp Sensor may have failed due to incorrect installation, improper insulation, or an offset pool temperature measurement typically caused by moisture intrusion.	Local
Evaporator Refrigerant Pool Temperature Sensor	Circuit	Warning and Special Action	Latch	All	Bad Sensor or LLID. Note: The Evap Pool Temp Sensors are used for evaporator freeze protection (running and non-running). Invalidate evaporator pool temperature sensor measurement if this diagnostic is active. If evaporator isolation valves are installed, revert to Evaporator Shell Refrigerant Saturated Temperature for freeze protection functions. If evaporator isolation valves are not installed, revert to Evaporator Saturated Temperature for freeze protection functions.	Remote
Evaporator Water Flow Lost	Chiller	Immediate	NonLatch	[All Stop Modes]	A. The Evaporator water flow switch input was open for more than 6 contiguous seconds (or 20 seconds for thermal dispersion type flow switch). B. This diagnostic does not de-energize the evap pump output. C. 6 seconds of contiguous flow shall clear this diagnostic. (further review needed when implementing thermal dispersion for Pueblo)	Remote

Diagnostics

Table 31. Diagnostics — main processor (continued)

Diagnostic Name	Affects Target	Severity	Persistence	Active Modes [Inactive Modes]	Criteria	Reset Level
Evaporator Water Flow Overdue	Chiller	Normal	NonLatch		Evaporator water flow was not proven within 20 minutes of the Evaporator water pump relay being energized in normal "Stop" to "Auto" transition. If the pump is overridden to "On" for certain diagnostics, the delay on diagnostic callout shall be only 255 seconds. The pump command status will not be effected by this diagnostic in either case.	Remote
Evaporator Water Pump Fault	Chiller	Immediate	NonLatch	All	For systems with a single variable-speed evaporator pump, an immediate shutdown shall be performed, see Evaporator_Water_Pump_Control.doc	Remote
Evaporator Water Pump Speed Feedback	Chiller	Warning	Latch	All	Bad Sensor or LLID	Remote
Excessive Condenser Pressure	Circuit	Immediate	Latch	All	The condenser pressure sensor of this circuit has detected a condensing pressure in excess of the design high side pressure as limited by the particular compressor type.	Remote
External Chilled Water Setpoint	Chiller	Warning	Latch	All	A. Function Not "Enabled": no diagnostics. B. "Enabled ": Out-Of-Range Low or Hi or bad LLID, set diagnostic, default CWS to next level of priority (e.g. Front Panel SetPoint).	Remote
External Demand Limit Setpoint	Chiller	Warning	Latch	All	A. Not "Enabled": no diagnostics. B. "Enabled ": Out-Of-Range Low or Hi or bad LLID, set diagnostic, default CLS to next level of priority (e.g. Front Panel SetPoint.)	Remote
Fan Inverter Fault	Circuit	Warning	NonLatch	All	A fault signal has been detected from at least one of the Variable Speed Inverter Drive Condenser Fans of Circuit 1 or 2 (including the right hand fan of the Shared Fan Module if present). Starting in build after 4/5/2023, the fault signal must be faulted for at least 150sec (adjustable) continuously before this diagnostic is triggered. No action is taken.	Remote
Free Cooling Dedicated Fan Inverter Fault	Free Cooling	Warning	NonLatch	All	A fault signal has been detected from at least one of the Free Cooling Dedicated Fan Variable Speed Inverter Drive. Starting in build after 4/5/2023, the fault signal must be faulted for at least 150sec (adjustable) continuously before this diagnostic is triggered. No action is taken.	Remote
Free Cooling Entering Water Temperature	Free Cooling	Normal	Latch	All	Bad Sensor or LLID.	Remote
High Compressor Refrigerant Discharge Temp - xy	Cprsr	Immediate	Latch	All [compressor run unload or compressor not running]	The compressor discharge temperature exceeded 199.4°F (without oil cooler) or 230°F (with oil cooler). This diagnostic will be suppressed during Stopping mode or after the compressor has stopped. Note: As part of the Compressor High Temperature Limit Mode (aka Minimum Capacity Limit), the compressor shall be forced loaded as the filtered discharge temperature reaches 190°F (without oil coolers), or 220°F (with oil coolers).	Remote
High Differential Refrigerant Pressure - xy	Cprsr	Normal	Latch	Cprsr Energized	GP2 Cprsr: The differential pressure for the respective circuit was above 275 Psid (1890 kPa) for 2 consecutive samples 5 seconds apart.	Remote

Table 31. Diagnostics — main processor (continued)

Diagnostic Name	Affects Target	Severity	Persistence	Active Modes [Inactive Modes]	Criteria	Reset Level
High Evaporator Refrigerant Pressure	Chiller	Immediate	NonLatch	All	The evaporator refrigerant pressure of either circuit has risen above 190 psig. The evaporator water pump relay will be de-energized to stop the pump regardless of why the pump is running. The diagnostic will auto reset and the pump will return to normal control when all of the evaporator pressures fall below 185 psig. The primary purpose is to stop the evaporator water pump and its associated pump heat from causing refrigerant side pressures, close to the evaporator relief valve setting, when the chiller is not running, such as could occur with Evap Water Flow Overdue or Evaporator Water Flow Loss Diagnostics.	Remote
High Evaporator Water Temperature	Chiller	Warning and Special Action	NonLatch	Only effective if either 1) Evap Wtr Flow Overdue, 2) Evap Wtr Flow Loss, or 3) Low Evap Rfgt Temp, Unit Off, diagnostic is active.	Either the leaving or the entering water temperature exceeded the high evap water temp limit (TU service menu settable –default 105°F (65.55°C), range 80°F (26.67°C)-120°F (48.9°C) for 15 continuous seconds. The evaporator water pump relay will be de-energized to stop the pump but only if it is running due one of the diagnostics listed on the left. The diagnostic will auto reset and the pump will return to normal control when both the entering and leaving temperatures fall 5°F below the trip setting. The primary purpose is to stop the evaporator water pump and its associated pump heat from causing excessive waterside temperatures and waterside pressures when the chiller is not running but the evap pump is on due to either Evap Water Flow Overdue, Evaporator Water Flow Loss, or Low Evap Temp – Unit Off Diagnostics. This diagnostic will not auto clear solely due to the clearing of the enabling diagnostic.	Remote
High Motor Winding Temperature - xA	Cprer	Immediate	Latch	All	The respective compressor's motor winding thermostat is detected to be open. The compressor shall stop within 5 seconds of this diagnostic. For GP4 with triple RTD temperature sensors, a temperature greater than 265°F will generate this diagnostic.	Local
High Pressure Cutout - xy	Cprsr	Immediate	Latch	All	A high pressure cutout was detected; trip at 315 ± 5 PSIG. See 'AFD High Pressure Cutout - xy' diagnostic for AFD equivalent. This is only applicable to the Electro-Mechanical starter (i.e. GP2/GP2.5 Fixed Speed)	Local
High Refrigerant Pressure Ratio - xy	Cprsr	Immediate	Latch	Cprsr Energized	The pressure ratio for the respective circuit exceeded 12.3 for 1 contiguous minute while any compressor is running or in service pumpdown. This pressure ratio is a fundamental limitation of the HiVi compressor. The pressure ratio is defined as Pcond (abs)/Pevap(abs).	Remote
Inverted Evaporator Water Temperature	Chiller	Warning/Normal	NonLatch/Latch	Any Ckt Energized [No Ckts Energized]	*Function: Not Enabled (Default): diagnostic is Non-Latching and Warning. Enabled: diagnostic is Latching and Normal Shutdown. The entering evaporator water temp fell below the leaving evaporator water temp by more than 2°F for 180 °F-sec, minimum trip time 30 seconds. Diagnostic will auto clear if the leaving water temp – entering water temp < 2F. It can warn of improper flow direction through the evaporator, misbound water temperature sensors, improper sensor installation, partially failed sensors, or other system problems. Note that either entering or leaving water temp sensor or the water system could be at fault.	Remote

Diagnostics

Table 31. Diagnostics — main processor (continued)

Diagnostic Name	Affects Target	Severity	Persistence	Active Modes [Inactive Modes]	Criteria	Reset Level
Liquid Line Pressure Sensor	Circuit	Normal	Latch	All	Bad Sensor or LLID. Note: This is the subcooled liquid line temp sensor.	Remote
Liquid Line Temperature Sensor	Circuit	Normal	Latch	All	Bad Sensor or LLID. Note: This is the subcooled liquid line temp sensor.	Remote
Loss of Oil for Compressor (Running)	Circuit	Immediate	Latch	Starter Contactor Energized	In running modes, Oil Loss Level Sensor detects lack of oil in the oil sump feeding the compressor (distinguishing a liquid flow from a vapor flow).	Local
Loss of Oil for Compressor (Stopped)	Circuit	Immediate Shutdown and Special Action	Latch	Start	In running modes, Oil Loss Level Sensor detects lack of oil in the oil sump feeding the compressor (distinguishing a liquid flow from a vapor flow).	Local
Low Differential Refrigerant Pressure - xy	Cprsr	Immediate	Latch	Cprsr Energized	For startup, please refer to oil flow protection spec. For running, the system differential pressure for the respective circuit was below the greater of 25 psid (240.5 kPa) or the pressure ratio listed in the table in GP2 Compressor Type FSpec while the compressor is running for a period of time dependent on the deficit (15 sec ignore time from circuit start) – refer to the Oil Flow Protection specification for the time to trip function.	Remote
Low Discharge Superheat - xy	Cprsr	Normal	Latch	Any Running Mode	While Running Normally, the Compressor Discharge Superheat CprsrXY was less than the Low Disch Superheat Trip Setpt CprsrXY for more than (650* Low Discharge Superheat Setpoint) degree F seconds, for GP2 or more than (542* Low Discharge Superheat Setpoint) degree F seconds, for GP4. At circuit startup, the Discharge Superheat will be ignored for 5 minutes.	Remote
Low Evaporator Entering Water Pressure	Chiller	Normal	Latch	All	Evaporator Entering Water Pressure fell below the Low Evaporator Water Pressure Cutout for more than 30 seconds.	Remote
Low Evaporator Leaving Water Pressure	Chiller	Normal	Latch	All	Evaporator Leaving Water Pressure fell below the Low Evaporator Water Pressure Cutout for more than 30 seconds.	Remote
Low Evaporator Refrigerant Temperature Circuit 1: Unit Off	Chiller	Special Action	NonLatch	Unit in Stop Mode, or in Auto Mode and No Ckt (s) Energized [Any Ckt Energized]	The respective circuit's LERTC Integral was seen to be > 0 while the chiller is in the Stop mode, or in Auto mode with no compressors running for at least one minute. The LERTC integral is increased if the Evap Refrigerant Pool Temp is below the value of the Low Evap Rfgt Temp Cutout + 2°F. Energize Evap Water Pump and Off-Cycle Freeze Avoidance Request Relay until diagnostic auto resets, then return to normal evap pump control and de-energize the Freeze Avoidance Request. Automatic reset occurs when the respective Evap Rfgt Pool Temp rises 4°F(1.1°C) above the LERTC cutout setting for 1 minute and the Chiller Off LERTC Integral = 0 This diagnostic even while active, does not prevent operation of either circuit.	Remote
Low Evaporator Refrigerant Temperature Circuit 2: Unit Off	Chiller	Special Action	NonLatch	Unit in Stop Mode, or in Auto Mode and No Ckt (s) Energized [Any Ckt Energized]	The respective circuit's LERTC Integral was seen to be > 0 while the chiller is in the Stop mode, or in Auto mode with no compressors running for at least one minute. The LERTC integral is increased if the Evap Refrigerant Pool Temp is below the value of the Low Evap Rfgt Temp Cutout + 2°F. Energize Evap Water Pump and Off-Cycle Freeze Avoidance Request Relay until diagnostic auto resets, then return to normal evap pump control and de-energize the Freeze Avoidance Request. Automatic reset occurs when the respective Evap Rfgt Pool Temp rises 4°F(1.1°C) above the LERTC cutout setting for 1 minute and the Chiller Off LERTC Integral = 0 This diagnostic even while active, does not prevent operation of either circuit.	Remote

Table 31. Diagnostics — main processor (continued)

Diagnostic Name	Affects Target	Severity	Persistence	Active Modes [Inactive Modes]	Criteria	Reset Level
Low Evaporator Water Flow	Chiller	Warning	NonLatch	Chiller Auto, manual water pump and All Running Modes	a. The evap. water flow measurement option was installed and the flow dropped to or below the Evaporator Low Water Flow Warning Setpoint. This diagnostic shall be Auto Reset when flow is (0.1 gpm/ton * NTON) above the adjustable trippoint or when the Evaporator water pump is turned off. b. See Water_Flow_and_Tons_Sensing.doc specification for additional information.	Remote
Low Evaporator Water Temperature (Unit Off)	Chiller	Special Action	NonLatch	Unit in Stop Mode, or in Auto Mode and No Ckt (s) Energized [Any Ckt Energized]	Either the entering or leaving evaporator water temp fell below the leaving water temp cutout setting for 30 degree F-seconds while the Chiller is in the Stop mode, or in Auto mode with no compressors running. Energize Freeze Avoidance Request Relay and Evap Water Pump Relay until diagnostic auto resets, then de-energize the Freeze Avoidance Request Relay and return to normal evap pump control. Automatic reset occurs when both temps rise 2°F (1.1°C) above the cutout setting for 5 minutes, or either circuit starts. This diagnostic even while active, does not prevent operation of either circuit.	Remote
Low Evaporator Water Temperature (Unit On)	Chiller	Immediate Shutdown and Special Action	NonLatch	Any Ckt[s] Energized [No Ckt(s) Energized]	The evaporator entering or leaving water temperature fell below the cutout setpoint for 30 degree F Seconds while the compressor was running. Automatic reset occurs when both of the temperature rises 2°F(1.1°C) above the cutout setting for 2 minutes. This diagnostic shall not de-energize the Evaporator Water Pump Output.	Remote
Low Oil Flow - xy	Cprsr	Immediate	Latch	and	The intermediate oil pressure sensor for this compressor was out of the acceptable pressure range for 15 seconds, while the Delta Pressure was greater than 15 Psid. See Oil Flow Protection	Local
Low Refrigerant Temperature	Circuit	Immediate	Latch	All Ckt Running Modes	The warmer of either the either the Evaporator Refrigerant Pool Temperature or Active Rfgt Sat Temp for the respective circuit dropped below the Low Refrigerant Temperature Cutout Setpoint for 2250°F-sec (12°F-sec max rate for early circuit startup period) while the circuit was running. The minimum LRTC setpoint is -5°F the point at which oil separates from the refrigerant. The integral is held nonvolatile though power down, is continuously calculated, and can decay or build during the circuit off cycle as conditions warrant.	Remote
Low Suction Refrigerant Pressure - xy	Cprsr	Immediate	Latch	Cprsr Prestart and Cprsr Energized	A. The Suction Pressure dropped below 10 Psia just prior to compressor start (after EXV preposition). (compressor is the lead compressor in circuit) B. During Early Startup Period: the Suction Pressure fell below a pressure equal to Condenser Pressure ÷ 8 but as limited to not less than 6 or greater than10 psia. C. After Early Startup Period expires: The Suction Pressure fell below 16 Psia.	Local
Mfr Maintenance Recommended - xy	Cprsr	Warning	Latch	Service Messages Enabled	Compressor service recommended as service interval hours have elapsed.	Remote
Motor Winding Temperature Sensor - xA	Cprsr	Warning(default) or Normal	Latch	All	Bad Sensor or LLID. See High Motor Winding Temperature Protection functional spec for other key details related to setting and the effects of the setting on the Severity.	Remote
MP: Invalid Configuration	Platform	Warning	Latch	All	MP has an invalid configuration based on the current software installed. The unit will niot be allowed to run until a valid configuration is saved.	Remote

Diagnostics

Table 31. Diagnostics — main processor (continued)

Diagnostic Name	Affects Target	Severity	Persistence	Active Modes [Inactive Modes]	Criteria	Reset Level
MP: Reset Has Occurred	Platform	Warning	NonLatch	All	The main processor has successfully come out of a reset and built its application. A reset may have been due to a power up, installing new software or configuration. This diagnostic is immediately and automatically cleared and thus can only be seen in the Historic Diagnostic List in Tracer TU.	Remote
No Differential Refrigerant Pressure - xy	Cprsr	Immediate	'A' cprsr: Auto Reset on timer – Latch if 3 instances in 30 minutes 'B' cprsr: Latch	Compressor running on Circuit	The system differential pressure was below 7.7 Psid (53 kPa) for 6 seconds after the 11 seconds ignore time relative to cprsr/circuit startup had expired. 'A' GP4 compressors: Auto Reset on a 3 min timer, 2 retries allowed (beginning with build xxx when ACRC was introduced). 'B' GP2.5 compressors: always latching diagnostic ('no' Auto Reset).	Remote
Oil Flow Protection Fault - xy	Cprsr	Immediate	Latch	Starter Contactor Energized [all Stop modes]	The Intermediate Oil Pressure Sensor for this cprsr is reading a pressure either above its respective circuit's Condenser Pressure by 15 Psid or more, or below its respective compressor Suction Pressure 10 Psid or more for 30 seconds continuously.	Local
Oil Pressure Sensor - xy	Cprsr	Immediate	Latch	All	Bad Sensor or LLID	Remote
Oil Supply Temperature Sensor	Circuit	Normal	Latch	All	Bad Sensor or LLID	Remote
Outdoor Air Temperature Sensor	Chiller	Normal	Latch	All	Bad Sensor or LLID.	Remote
Pumpdown Terminated By Time	Circuit	Warning	Latch	Service Pumpdown	Service Pumpdown cycle for this circuit was terminated abnormally due to excessive time. Reference Service Pumpdown spec for maximum time allowed.	Local
Restart Inhibit Invoked - xy	Cprsr	Warning	NonLatch	All	When restart inhibit warning is enabled, the warning exists when unit has been inhibited from starting and is cleared when a start of a compressor is possible (Start-to-Start Timer expires)	Remote
Software Error 1001: Call Trane Service	Chiller	Immediate	Latch	All	A high level software watchdog has detected a condition in which there was a continuous 1 minute period of compressor operation, with neither Evaporator water flow nor a" contactor interrupt failure" diagnostic active. The presence of this software error message suggests an internal software problem has been detected. The events that led up to this failure, if known, should be recorded and transmitted to Trane Controls Engineering.	Local
Software Error 1002: Call Trane Service	Chiller	Immediate	Latch	All	Reported if state chart misalignment in stopped or inactive state occurred while a compressor was seen to be operating and this condition lasted for at least 1 minute (cprsr operation due to Service Pumpdown or with Contactor Interrupt Failure diagnostic is excluded). The presence of this software error message suggests an internal software problem has been detected. The events that led up to this failure, if known, should be recorded and transmitted to Trane Controls Engineering.	Local
Software Error 1003: Call Trane Service	Chiller	Immediate	Latch	All	Reported if state chart misalignment occurred inferred from the Capacity Control, Circuit, or Compressor State Machines remaining in the Stopping state for more than 3 minutes. The presence of this software error message suggests an internal software problem has been detected. The events that led up to this failure, if known, should be recorded and transmitted to Trane Controls Engineering. NOTE: This diagnostic will only apply to GP2 compressors with starter module.	Local

Table 31. Diagnostics — main processor (continued)

Diagnostic Name	Affects Target	Severity	Persistence	Active Modes [Inactive Modes]	Criteria	Reset Level
Starts/Hours Modified - xy	Cprsr	Warning	NonLatch	All	The current value for the cumulative starts and or hours for the given compressor have been modified by a write override from TU in any running mode. The diagnostic will only appear in the Historic Alarms list.	Remote
Suction Refrigerant Pressure Sensor - xy	Cprsr	Immediate	Latch	All	Bad Sensor or LLID	Remote
Unexpected Starter Shutdown - xy	Cprsr	Normal	NonLatch	All Cprsr Running modes, Starting, Running and Preparing to Shutdown	The Starter module status reported back that it is stopped when the MP thinks it should be running and no Starter diagnostic exist. This diagnostic will be logged in the active buffer and then automatically cleared. This diagnostic could be caused by intermittent communication problems from the Starter to the MP or due to mis-binding	Local
Very Low Evaporator Refrigerant Pressure - xy	Chiller	Immediate	Latch	All	The respective circuit's evaporator pressure dropped below 80% of the current Low Evap Refrigerant Press Cutout setting (see above) or 8 psia, whichever is less, regardless of the running state of the circuit's compressor. Note: Unlike previous products, even if the circuit associated with the suction pressure sensor is locked out, it will not defeat the protection afforded by this diagnostic.	Local
Write Command Failure Energy Meter X	Chiller	Warning	Latch	All	Loss of communication to the Energy Meter during write command process (Controller writes to Energy Meter). Or Energy Meter X's 'Command Status' returns value that is NOT equal to 0 or 3 (0: successful, 3: in Progress). Note: This diagnostic is applied to Schneider energy meter only.	Remote
Write Value Failure Energy Meter X	Chiller	Warning	Latch	All	The read back value is not equal the written value. It will be tripped after two retries of write failure. Note: This diagnostic currently applies to Trane Enercept (Veris) energy meter only.	Remote

Communication Diagnostics

Table 32. Diagnostics — communication

Diagnostic Name	Affects Target	Severity	Persistence	Active Modes [Inactive Modes]	Criteria	Reset Level
Comm Loss: Condenser Receiver Tank Valve	Circuit	Warning	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: Condenser Refrigerant Pressure	Circuit	Immediate	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: Electronic Expansion Valve	Circuit	Normal	Latch	All	Continual loss of communication between the MP and the EXV Step Status has occurred for a 30 second period, OR EXV Steps Maximum Position has not been received. If EXV Steps Maximum Position has not been received, MP will periodically request EXV Steps Maximum Position, since it is only transmitted upon request.	Remote

Table 32. Diagnostics — communication (continued)

Diagnostic Name	Affects Target	Severity	Persistence	Active Modes [Inactive Modes]	Criteria	Reset Level
Comm Loss: Electronic Expansion Valve 2	Circuit	Normal	Latch	All	Continual loss of communication between the MP and the EXV Step Status has occurred for a 30 second period, OR EXV Steps Maximum Position has not been received. If EXV Steps Maximum Position has not been received, MP will periodically request EXV Steps Maximum Position, since it is only transmitted upon request.	Remote
Comm Loss: Emergency Stop Feedback Input	Chiller	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: Energy Meter X	Chiller	Warning	Latch	All	Continual loss of communication between the MP and the Power Meter has occurred for a 30 second period.	Remote
Comm Loss: Evaporator Entering Water Temperature	Chiller	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period. Note: Entering Water Temp Sensor is used in EXV pressure control as well as ice making & CHW reset, so it must cause a unit shutdown even if Ice or CHW reset is not installed.	Remote
Comm Loss: Evaporator Leaving Water Temperature	Chiller	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: Evaporator Refrigerant Pool Temperature	Circuit	Warning/ Special Action	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period. Invalidate evaporator pool temperature sensor measurement if this diagnostic is active. If evaporator isolation valves are installed, revert to Evaporator Shell Refrigerant Saturated Temperature for freeze protection functions. If evaporator solation valves are not installed, revert to Evaporator Saturated Temperature for freeze protection functions.	Remote
Comm Loss: Evaporator Water Flow Switch	Chiller	Immediate	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: Evaporator Water Pump Relay	Chiller	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: Ext Noise Reduction Request	Chiller	Warning	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: External Auto/ Stop	Chiller	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: External Chilled Water Setpoint	Chiller	Warning/ Special Action	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period. Chiller shall discontinue use of the External Chilled Water Setpoint source and revert to the next higher priority for setpoint arbitration	Remote
Comm Loss: External Ckt Lockout	Circuit	Warning/ Special Action	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period. MP will nonvolatile hold the lockout state (enabled or disabled) that was in effect at the time of comm loss.	Remote
Comm Loss: External Demand Limit Setpoint	Chiller	Warning/ Special Action	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period. Chiller shall discontinue use of the External Demand limit setpoint and revert to the next higher priority for Demand Limit setpoint arbitration.	Remote

Table 32. Diagnostics — communication (continued)

Diagnostic Name	Affects Target	Severity	Persistence	Active Modes [Inactive Modes]	Criteria	Reset Level
Comm Loss: External Ice Building Command	Chiller	Warning/ Special Action	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period. Chiller shall revert to normal (non-ice building) mode regardless of last state.	Remote
Comm Loss: Fan Inverter Fault	Circuit	Warning	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: Fan Inverter Speed Command	Circuit	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: Fan Inverter Speed Command, Shared Circuit 1 & 2	Circuit	Warning	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 15-30 second period. This is a warning, as it is conceivable that the circuit may run without the center shared fan deck working if there are many other coils/fans on the circuits.	Remote
Comm Loss: Free Cooling Bypass Valve	Free Cooling	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: Free Cooling Entering Water Temperature	Free Cooling	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: Free Cooling Valve	Free Cooling	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: High Pressure Cutout Switch - xy	Cprsr	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: Liquid Line Pressure	Circuit	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: Liquid Line Temperature	Circuit	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period. Note: The Subcooled Liquid Line Temperature Sensors are used for determination of charge and accurate tonnage predictions	Remote
Comm Loss: Motor Winding Temperature 1, CprsrXY	Cprsr	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: Motor Winding Temperature 2, CprsrXY	Cprsr	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: Oil Loss Level Sensor Input	Circuit	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: Oil Pressure - xy	Cprsr	Immediate	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: Oil Return Line Solenoid Valve - xB	Cprsr	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote

Diagnostics

Table 32. Diagnostics — communication (continued)

Diagnostic Name	Affects Target	Severity	Persistence	Active Modes [Inactive Modes]	Criteria	Reset Level
Comm Loss: Oil Return Valve - xy	Circuit	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period. Design Note: this diagnostic is intended for the GP4 compressors only (Cprsrs 1A and 2A). Some consideration was given to making this a circuit shutdown since without the valve, the GP4 oil return cannot work properly, and if the GP4 can't run, neither can its manifolded GP2 - but if the valve is open somewhere between its min and max, the circuit may be able to run reasonably well – and other diagnostics can protect against oil loss, or low disch SH, or lack of drive cooling that may result.	Remote
Comm Loss: Oil Supply Temperature	Circuit	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: Outdoor Air Temperature	Chiller	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: Programmable Relay Board 1	Chiller	Warning	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: Programmable Relay Board 2	Chiller	Warning	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: Slide Valve Load - xy	Cprsr	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: Slide Valve Unload - xy	Cprsr	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: Starter xy	Cprsr	Immediate	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Local
Comm Loss: Step Load - xy	Cprsr	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: Suction Refrigerant Pressure - xy	Cprsr	Immediate	Latch	All [Ckt/Cprsr lock out]	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: Variable Vi Valve - CprsrXY	Cprsr	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: % RLA Indication Output(Vdc)	Chiller	Warning	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: Auxiliary Setpoint Command	Chiller	Warning	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: Compressor Discharge Refrigerant Temperature - xy	Cprsr	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: Condenser Fan Enable	Circuit	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote

Table 32. Diagnostics — communication (continued)

Diagnostic Name	Affects Target	Severity	Persistence	Active Modes [Inactive Modes]	Criteria	Reset Level
Comm Loss: Condenser Fan Enable, Shared Circuit 1 & 2	Circuit	Warning	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period. This is a warning, as it is conceivable that the circuit may run without the center shared fan deck working if there are many other coils/fans on the circuits.	Remote
Comm Loss: Evap Diff Water Pressure	Chiller	Warning	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period. Flow and tons calculation shall be disabled. Display invalid value.	Remote
Comm Loss: Evaporator Entering Water Pressure	Chiller	Warning	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period. Flow and tons calculation shall be disabled. Display invalid value.	Remote
Comm Loss: Evaporator Leaving Water Pressure	Chiller	Warning	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period. Flow and tons calculation shall be disabled. Display invalid value.	Remote
Comm Loss: Evaporator Oil Return Purge Valve - XY	Cprsr	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: Evaporator Pump Fault Input	Chiller	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: Evaporator Pump Inverter Running Status	Chiller	Warning	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: Evaporator Pump Speed Command	Chiller	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: Evaporator Pump Speed Feedback	Chiller	Warning	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: Free Cooling Dedicated Fan Enable	Free Cooling	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: Free Cooling Dedicated Fan Inverter Fault	Free Cooling	Warning	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: Free Cooling Dedicated Fan Inverter Speed Command	Free Cooling	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote
Comm Loss: Hot Gas Oil Return Valve - xy	Cprsr	Normal	Latch	All	Continual loss of communication between the MP and the Functional ID has occurred for a 30 second period.	Remote

Unit Wiring

The following table provides a list of electrical schematics, field wiring diagrams and connection diagrams. Wiring diagrams can be accessed via e-Library. A

laminated wiring diagram booklet is also shipped with each unit

Table 33. Wiring diagrams — 150 to 330 ton units

Document No	umber		Description
	Sheet 1		Device Designations, Locations, and Warning
	Sheet 2		Condenser Fan Locations
	Sheet 3		Unit Power Distribution
	Sheet 4		Compressor VFDs, Harmonic Filters, and Evaporator Pump Power Distribution
	Sheet 5		Circuit 1 Variable Speed Condenser Fans (default)
	Sheet 6		Circuit 2 Variable Speed Condenser Fans (default)
	Sheet 7		Extra Free Cooling Fans (optional)
	Sheet 8		Circuit 1 Fixed Speed condenser Fans (optional)
	Sheet 9		Circuit 2 and Split V Fixed Speed Condenser Fans (optional)
	Sheet 10		Compressor VFD Control and Options Enclosure Interface
2311-5991	Sheet 11	Schematic Wiring	Compressor Control
	Sheet 12		Refrigerant, Heater, and Common Panel Control
	Sheet 13		115 VAC 27 VAC CPTS, 24 VDC Power Supplies, Flow Switch, and Oil Level Switches
	Sheet 14		Variable Speed Condenser Fan Control Refrigerant Circuit 1 and 2 (default)
	Sheet 15		Fixed Speed Condenser Fan Control Refrigerant Circuit 1 (optional)
	Sheet 16		Fixed Speed Condenser Fan Control Refrigerant Circuit 2 and Shared V (optional)
	Sheet 17		Free Cooling Bypass Actuators and Extra Free Cooling Fan Control
	Sheet 18		Evaporator Pump Package (optional)
	Sheet 19		Global Bus Connections
	Sheet 20		Symbio 800 Connections
	Sheet 21		Field Connections; 115 VAC/1 and 24 VDC, Convenience Outlet, Evaporator Heaters, and I/O
	Sheet 1		Power and Communications Connections
2311–6454	Sheet 2	Field Wiring	Field Connections; 115VAC/1 and 24 VDC, Convenience Outlet, Evaporator Heaters, and I/O
5732–5331		Panel Component Location	
5732–5333		Unit Component Location	

Table 34. Wiring diagrams — Units larger than 330 tons

Document l	Number	Description			
	Sheet 1		Device Designations and Descriptions		
	Sheet 2		Device Locations, Notes, and Warning		
	Sheet 3		Single Point and Circuit 1 Power Distribution		
	Sheet 4		Compressor 1A VFD, Compressor 1B YD, and Harmonic Filter Power Distribution and Control		
	Sheet 5		Circuit 1 Variable Speed Condenser Fans (12 or 14) (default)		
	Sheet 6		Circuit 1 Fixed Speed Condenser Fans (12) (optional)		
	Sheet 7		Circuit 1 Fixed Speed Condenser Fans (14) (optional)		
	Sheet 8		Compressor 1A VFD Control and Options Enclosure Interface		
	Sheet 9		Compressor 1A, Refrigerant Circuit 1, and Common Panel Control		
	Sheet 10		Compressor 1B Wye Delta, Heater, and Refrigerant Circuit 1 Oil Separator Heater		
	Sheet 11		Compressor 1B Solenoid Control and High Pressure Switch		
	Sheet 12		115 VAC-27 VAC CPTS, 24VDC Power Supplies, Flow Switch, and Oil Switch		
	Sheet 13		Variable Speed Condenser Fan Control Refrigerant Circuit 1 (default)		
	Sheet 14		Fixed Speed Condenser Fan Control Refrigerant Circuit 1 (optional)		
	Sheet 15		Free Cooling Bypass Actuators		
0044 5000	Sheet 16	Cohomatia Wiring	Power Distribution Circuit 2		
2311-5990	Sheet 17	Schematic Wiring	Compressor 2A VFD, Compressor 2B YD, and Harmonic Filter Power Distribution and Control		
	Sheet 18		Circuit 2 Variable Speed Condenser Fans (6) (default)		
	Sheet 19		Circuit 2 Variable Speed Condenser Fans (8 or 10) (default)		
	Sheet 20		Circuit 2 Fixed Speed Condenser Fans (6 or 8) (optional)		
	Sheet 21		Circuit 2 Fixed Speed Condenser Fans (10) (optional)		
	Sheet 22		Compressor 2A VFD Control and Options Enclosure Interface		
	Sheet 23		Compressor 2A, Refrigerant Circuit 2, and Common Panel Control		
	Sheet 24		Compressor 2B Wye Delta, Heater, and Refrigerant Circuit 2 Oil Separator Heater		
	Sheet 25		Compressor 2B Solenoid Control and High Pressure Switch		
	Sheet 26		115 VAC-27 VAC CPTS, 24VDC Power Supplies, and Oil Switch		
	Sheet 27		Variable Speed Condenser Fan Control Refrigerant Circuit 2(default)		
	Sheet 28		Fixed Speed Condenser Fan Control Refrigerant Circuit 2 (optional)		
	Sheet 29		Global Bus Connections		
S	Sheet 30		Symbio 800 Connections		
	Sheet 31		Field Connections; 115VAC/1 and 24 VDC. Convenience Outlet, Evaporator Heaters, and (/)		
	Sheet 1		Power Connections		
2311–6453	Sheet 2	Field Wiring	Communication Connections		
	Sheet 3		Field Connections; 115VAC/1 and 24 VDC, Convenience Outlet, Evaporator Heaters, and I/O		

Table 34. Wiring diagrams — Units larger than 330 tons (continued)

Document Number			Description
5732–5332		Panel Component Location	
5732–5334		Unit Component Location	

The following are included for use as appropriate, for installation completion verification before Trane start-up is scheduled, and for reference during the Trane start-up. Where the log or check sheet also exists outside of this publication as standalone literature, the literature order number is also listed.

- Installation Completion and Request for Trane Service, Ascend™ Air-Cooled Chiller Model ACR Series C Form (AC-ADF005*-EN)
- · Operator Log

Ascend™ Model ACR Series C **Installation Completion Check Sheet and Request for Trane**

S	er	vice
lmį	port	tant: A copy of this completed form must be submitted to the Trane service agency that will be responsible for the start-up of the chiller. Start-up will NOT proceed unless applicable items listed in this form have been satisfactorily completed.
To) :	
Tr	ane	Service Office:
S.	O. N	umber:
Se	erial	Numbers:
Jo	b/Pr	oject Name:
A	ddre	ss:
ar	e be	llowing items ing installed Il be completed by:
		tant: Start-up must be performed by Trane or an agent of Trane specifically authorized to perform start-up and warranty of Trane® products. Contractor shall provide Trane (or an agent of Trane specifically authorized to perform start-up) with notice of the scheduled start-up at least two weeks prior to the scheduled start-up.
ımı	oon	tant: Chiller heaters must be energized a minimum of 24 hours prior to start-up. Chiller should have power applied for this amount of time before Trane Service arrives for start-up.
Ch "ye		boxes if the task is complete or if the answer is
1.	Ch	iller
		Installation meets foundation requirements.
		In place and piped.
		Isolation pads or elastomeric pads installed (optional).
		For units with InvisiSound™ Ultimate Option (mode number digit 13 = E), compressor mounting bolts have been removed.
2.	Re	frigerant Pressure Check
		PRIOR to water being pumped into system, use gauges to verify positive pressure in the evaporator and condenser. Lack of pressure could indicate a system leak. When charging in the factory, approximately 95% of the refrigerant charge is isolated in the evaporator, and the other 5% is

contained in the condenser and compressor. If no pressure is present, contact local Trane service.

Note: Verification must be done by gauges. Do NOT rely only on values from unit controls.

3.	Piping					
		Water piping flushed before making final connections to the system				
		Chilled water piping connected to:				
		□ Evaporator				
		□ Pumps				
		☐ Flow switch or flow proving device installed (if not factory provided)				
		☐ Strainer installed and cleaned				
		Water supply connected to filling system				
		Does unit have freeze inhibitor? If unit has freez inhibitor:				
		☐ Verify type and concentration is correct per unit submittal				
		☐ Calculate and record freeze point of the solution:				
		Systems filled				
		Pumps run, air bled from system				
		Relief valve ventilation piping installed (if applicable)				
4.	Flow balancing valves installed					
		Leaving chilled water				
5.	Ga	uges, thermometers, and air vents				
		Installed on both sides of evaporator				
6.	Electrical					
		Wire size per submittal and NEC table 310.15(B)(16)				
		Full power available				
		Interconnecting wiring, starter to panel (as required)				
		External interlocks (flow switch, pumps auxiliary, etc.)				
		Chilled water pump (connected and tested)				
		115 Vac power available for service tools				
		All controls installed and connected				
		Power distribution grounding type identified:				
		☐ Solidly Grounded (Center Ground Wye)				
		-or-				
		☐ Non-Solidly Grounded (Any Delta, High				

Important: When the unit is connected to a cornergrounded supply, completely remove ground wire(s) 1004B/2004B from surge arrestor components 1FA1 and 2FA1 on subpanel(s). See schematic for details.

Impedance Ground, or Ungrounded Wye

7.	Testing	This is to certify that the Trane® equipment has been		
	☐ Dry nitrogen available for pressure testing	properly and completely installed, and that the applicable items listed above have been satisfactorily completed.		
	☐ Trace gas amounts of refrigerant available for leak testing, if necessary	Checklist		
8.	Refrigerant on job site (if nitrogen charge option, model number digit 16 = F, is chosen)	completed by:		
9.	Systems can be operated under load conditions	Date:		
10.	Heaters			
	☐ If unit was factory charged (model number digit 16 = E), energize heaters for 24 hours prior to start-up.	In accordance with your quotation and our purchase order number, we will therefore require		
	Important: Chiller heaters must be energized a minimum of 24 hours prior to start-up. Chiller should have power applied for this amount of time before Trane Service arrives for start-up.	the presence of Trane service on this site, for the purpose of start-up and commissioning, by(date). Note: Minimum two-week advance notification is required to allow scheduling of the chiller start-up.		
	☐ If unit has nitrogen charge (model number digit 16 = F), contact Trane Service for unit charging prior to start-up.	Additional Comments/Instructions:		
	Important: Do NOT apply shore/service power to unit			
	with nitrogen charge. Shore/service power will drive EXV valves, inhibiting ability to adequately Vac and charge unit.			
11.	Owner Awareness			
	Does the owner have a copy of the MSDS for refrigerant?			
No	e: Additional time required to properly complete the			

start-up and commissioning, due to any

prevailing rates.

incompleteness of the installation, will be invoiced at

Note: A copy of this completed from must be submitted to the Trane Service Office that will be responsible for start-up of chiller.

Operator Log

1 hour

Ascend™ ACR Chiller with Symbio™ 800 Controller - AdaptiView™ Reports - Log Sheet					
	Start	15 minutes	30 minutes	1 hour	
Average Motor Current (%)					
Percent Speed					
AFD Average Input Voltage (Volts)					
AFD Input Power (kW)					
AFD Output Power (kW)					
AFD Speed (rpm)					
	MOTOR 1B		1	<u>'</u>	
Average Motor Current (%)					
	COMPRESSOR 24	\	•		
Running Status					
Starts					
Running Time (Hr:Min)					
Oil Pressure (psia)					
	COMPRESSOR 2E	3			
Running Status					
Starts					
Running Time (Hr:Min)					
Oil Pressure (psia)					
MOTOR 2A					
Average Motor Current (%)					
Percent Speed					
AFD Average Input Voltage (Volts)					
AFD Input Power (kW)					
AFD Output Power (kW)					
AFD Speed (rpm)					
	MOTOR 1B				
Average Motor Current (%)					

Date:	
Technician:	
Owner:	

Trane - by Trane Technologies (NYSE: TT), a global innovator - creates comfortable, energy efficient indoor environments for commercial and residential applications. For more information, please visit trane.com or tranetechnologies.com.
Trane has a policy of continuous product and product data improvements and reserves the right to change design and specifications without notice. We are committed to using environmentally conscious print practices.